

Supplementary Fig. 1 FabT regulator and FASII pathway in GAS. a, The FASII synthesis pathway comprises a first initiation phase for precursor synthesis, followed by the recursive elongation cycle. The final product, acyl-ACP, supplies FAs for phospholipid synthesis. FabM (orange) leads to unsaturated *cis* FAs; FabK products are saturated. Initiation phase and elongation cycle enzymes are represented in green and red, respectively. From ¹. **b**, FabT sequence; amino acids involved in DNA binding are in red, and those interacting with acyl-Acyl carrier protein are in blue. Arrow indicates the His105Tyr FabT mutation studied in this work. Magenta stars highlight amino acids spontaneously mutated *in vivo* and in a saturated-FA environment (this work). **c**, Overall structure of FabT dimer predicted by Alphafold and adapted with ChimeraX ^{2,3}; one monomer is represented as multicolored (each color designates a separate domain), and the other is beige. Residues Thr65, Gly99 and His105, in magenta, correspond to mutants isolated in this study.

- 1. Lambert, C., Poyart, C., Gruss, A. & Fouet, A. FabT, a Bacterial Transcriptional Repressor That Limits Futile Fatty Acid Biosynthesis. *Microbiol Mol Biol Rev*, e0002922, doi:10.1128/mmbr.00029-22 (2022).
- 2. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-589, doi:10.1038/s41586-021-03819-2 (2021).
- 3. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Sci* **30**, 70-82, doi:10.1002/pro.3943 (2021).

Supplementary Fig. 2 | Impact of FabT mutations on GAS growth. a-d, WT growth was compared to mFabT (a and b left; adapted from reference 1) or to $\Delta fabT$ (c and d) on THY and THY-Tween. Viability tests (a and b, right), using the LIVE/DEAD® BacLightTM Bacterial Viability Kit, were performed on WT and mFabT cultures after growth to $OD_{600} = 0.4 - 0.5$. Legend at the right of d is for growth curves. e, Ratios of CFUs of WT or mFabT strains after 8 h over respective initial inocula (10³/ml for each) in RPMI medium; ratio below 1 indicates that bacteria die. f, Real-time growth of WT and mFabT in endometrial conditioned supernatant followed using Live-Cell Analysis System (IncuCyte®, Sartorius) and the Basic analyzer. a-d, e, N=3; f N=10; differences in a, b, and e were not statistically significant using T-test. WT, black lines or white bars; mFabT, green lines or bars. a, b, e, Outliers were searched using ROUT method (GraphPad), with Q=1 %. WT, black lines or white bars; mFabT, green lines or bars. Source data for a, b, c, d, e and f are provided as a Source Data file.

1. Lambert, C. *et al.* Acyl-AcpB, a FabT corepressor in *Streptococcus pyogenes*. *J Bacteriol* **205**, e0027423, doi:10.1128/jb.00274-23 (2023).

а MGDG 34:1 C18:1/C16:0 WT 36:2 C18:1/C18:1 841.601 100 NL: 8.46E5 60-32:1 C16:1/C16:0 787.555 34:2 C18:1/C16:1 80 40-36:1 60 20-(%) 909W C18:1/C18:0 843.616 813.570 40 20 785.539 17 593 839.58 THY 4-1 mFabT 843.617 100-815.586 6 46EF Relative punqe 20 841.602 845.623 0 787,555791.542 813.571 817.593 32. 32 So. 30. 0 WT 841,602 100 NL: 9.18E5 60-98 Abundance 40 40 20 815.586 813.571 Relative 40-20-787,555791.542 817.558 843.608 MGDG (%) THY 0 mFabT 4 815.586 -Tween 100 NI · 8 42E5 80 60 40 20 Relative 2 813.570 817.593 787.554791.541 0 820 m/z 850 22. 21. 24. 34. 34. 34. So. 50 800 810 830 840 860 6.20

b

С

Supplementary Fig. 3 page 1

d

3 Fig. Phospholipid membrane composition. Supplementary Identification of a. monoglucosyldiacylglycerol (MGDG), b, diglucosyldiacylglycerol (DGDG), c, phosphatidylglycerol (PG), d, cardiolipin (CL) and putative deoxidized cardiolipin (Deoxy-CL). For each class, lipids are presented as the percentage of total lipids, and are quantified in Supplementary Table 2. For **a**, **b**, and c, fatty acid assignments are presented directly on mass spectrometry analyses. Cardiolipin assignments were ambiguous and are not shown. Lipids were analyzed on 3 independently prepared culture extracts (N=3). Statistical values were determined using 2-way ANOVA, Bonferroni post-test. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. Strains were grown in THY (open bars) and THY-Tween (hatched bars). WT, black lines and white bars; mFabT, green lines and bars. Source data are provided as a Source Data file.

b

Supplementary Fig. 4 | Impact of mFabT on FASII and non-FASII gene expression in the absence of FA supplementation. a-c, WT and mFabT strains were grown in THY medium. a, c, RNAs were quantified by qRT-PCR. Expression was normalized to that of gyrA; relative gene expression is expressed as the log2-fold ratio. a, FASII gene expression of mFabT relative to WT is reproduced from Reference 1. b, mRNA transcript analysis of FASII locus genes: agarose gel of PCR amplification products on cDNA using primer pairs from neighboring genes. MW, molecular weight reference (Generuler 100 bp, ThermoFisher Scientific). Lane 1, fabM-fabT (234 bp); 2, fabH-acpA (221 bp); 3, acpA-fabK (302 bp); 4, fabZ-accC (105 bp); 5, accD-serS (288 bp). Results confirm the FASII transcriptional units indicated in Fig. 2a. c, expression of non-FASII genes in WT and mFabT strains (see Supplementary Table 1 for gene assignments). The relative gene expression is expressed as the log2-fold ratio in a given strain grown in THY-Tween vs in THY. *, significance of differences in the two media between WT and mFabT. In **a-c**, WT, white bars; mFabT, green bars. **a**, **b**, N=4; **c**, N=3. a-c, 2-way ANOVA, Bonferroni post-test *p<0.05; ****p<0.0001. c, expression of non-FASII genes in WT and mFabT strains (see Supplementary Table 1 for gene assignments). In a-c, WT, white bars; mFabT, green bars. a, b, N=4; c, N=3. a-c, 2-way ANOVA, Bonferroni post-test *p<0.05; ****p<0.0001. Source data for **a** and **c** are provided as a Source Data file.

1. Lambert, C. et al. Acyl-AcpB, a FabT corepressor in *Streptococcus pyogenes*. J Bacteriol 205, e0027423, doi:10.1128/jb.00274-23 (2023).

Supplementary Fig. 5 Carbohydrates and amino acid residues produced by human endometrial cells. Metabolomic analysis of RPMI and HEC-1-A conditioned supernatants, as per legend at right. (see Supplementary Table 5 for complete data). N=3, 2-way ANOVA, Bonferroni post-test; *p<0.05; ***p<0.005; ****p<0.001.

Supplementary Fig. 6. FabT mutant growth and FA profiles in the absence and presence of exogenous C14:0. Triplicate cultures of the two isolated *fabT* mutants (FabT^{T65M} and FabT^{G99S}) and controls (WT, mFabT, $\Delta fabT$) were prepared in BHI medium with 0.025 % BSA. Medium was without (left column), or with 100 μ M C14:0 (right column). OD₆₀₀ is shown for each strain and both conditions after 4 h growth (boxed). For each strain, proportions of C14:0 present in FA profiles of WT and *fabT* mutant strains are in red; proportions, from left to right, of C16:0, C18:0, C18:1 Δ 9 and C18:1 Δ 11 are in black.

Supplementary Table 1. Effects of FabT mutation on fatty acid (FA) composition.

	Cultivated in						p-value				
		THY			THY-Tween		THY	-Tween vs	THY		
Fatty acids ^a	WT ^e	mFabT ^e	∆fab T	WT ^e	mFabT ^e	$\Delta fabT$	WT	mFabT	∆fabT		
C14:0	1.9 ± 0.8	0.6 ± 0.1	$0.3\ \pm 0.1$	8.1 ± 2.2	0.9 ± 0.1	0.4 ± 0.2	< 0.0001	>0.9999	>0.9999		
C16:0	29.2 ± 2.3	21.2 ± 2.6	15.2 ± 3.2	21.2 ± 5.8	27.1 ± 2.0	10.5 ± 1.2	< 0.0001	0.0001	0.0067		
C16:1	17.0 ± 0.5	7.9 ± 1.8	3.6 ± 1.4	8.3 ± 1.6	$4.6\ \pm 0.4$	2.0 ± 0.2	< 0.0001	0.0694	>0.9999		
C18:0	6.8 ± 0.7	26.1 ± 0.7	26.1 ± 0.5	0.2 ± 0.3	12.4 ± 0.8	26.3 ± 0.4	< 0.0001	< 0.0001	>0.9999		
C18:1Δ9	$9.1\ \pm 2.4$	10.8 ± 2.0	$11.7\ \pm 0.2$	54.8 ± 3.3	30.4 ± 1.5	15.0 ± 0.1	< 0.0001	< 0.0001	0.1008		
C18:1Δ11	29.1 ± 1.3	28.9 ± 1.2	31.6 ± 2.3	$3.4\ \pm 3.0$	20.1 ± 1.9	30.5 ± 0.4	< 0.0001	< 0.0001	>0.9999		
others b	6.8 ± 1.5	4.5 ± 1.2	11.5 ± 1.7	$4.2\ \pm 2.8$	4.5 ± 1.6	15.3 ± 0.9	0.263	>0.9999	0.0394		
(C18):(C16) °	1.0	2.3	3.7	2.0	2.0	5.8	0.0092	0.5304	0.974		
UFA:SFA	1.5	1.0	1.1	2.3	1.4	1.3	0.0577	0.6405	>0.9999		

^a Percent of total FAs. ^b FAs that represent less than 2 % total FAs. ^c Ratio of chain lengths = (C18:0 + C18:1)/(C16:0 + C16:1). ^d Ratio unsaturated/saturated FAs = $(C16:1 + C18:1\Delta9 + C18:1\Delta11)/(C14:0 + C16:0 + C18:0)$. ^e As reported in reference 1. In bold, percent saturated FA C18:0, a main FA with increased proportions in mFabT. See reference 2 for studies in *Streptococcus pneumoniae*. In blue, differences between mFabT and Δ fabT are highlighted. 2-way ANOVA, Bonferroni post-test.

Source data are provided as a Source Data file.

1. Lambert C, d'Orfani, A, Gaillard M, Zhang Q, Gloux K, Poyart C, Fouet A. Acyl-AcpB, a FabT co-repressor in *Streptococcus pyogenes*. J Bacteriol 205, e00274-23, doi: 10.1128/jb.00274-23 (2023).

2. Lu YJ, and Rock CO. Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae . Mol Microbiol 59:551-66 (2006).

			P-v:	alue			
		Cultivate	ed	Cultivat	ed	THV T-	TIN
		in THY	7	in THY-T	ween	THY-Twe	en vs THY
Lipids ^a	m/z	WT	mFabT	WT	mFabT	WT	mFabT
MGDG species							
32:2	785.54	$3.6~\pm~1.0$	$0.3~\pm~0.1$	$1.3~\pm~0.3$	$0.1~\pm~0.0$	>0.9999	>0.9999
32:1	787.56	$12.1~\pm~1.8$	5.9 ± 1.2	$5.9~\pm~1.4$	$2.5~\pm~0.4$	0.0136	< 0.0001
34:3	811.56	$1.9~\pm~0.4$	$0.1~\pm~0.0$	$0.2~\pm~0.1$	$0.1~\pm~0.0$	>0.9999	>0.9999
34:2	813.57	17.2 ± 2.2	$3.0~\pm~0.5$	$17.0~\pm~2.6$	$4.1~\pm~0.5$	>0.9999	0.8522
34:1	815.59	$38.2~\pm~2.5$	$39.7~\pm~3.0$	$32.6~\pm~7.4$	$46.9~\pm~4.6$	0.0138	< 0.0001
35:2	827.59	0.5 ± 0.6	0.2 ± 0.2	2.4 ± 0.2	0.7 ± 0.5	>0.9999	>0.9999
35:1	829.60	0.5 ± 0.4	1.3 ± 1.3	1.4 ± 0.4	3.0 ± 1.1	>0.9999	0.105
36:3	839.59	3.0 ± 0.3	0.6 ± 0.3	0.8 ± 0.3	0.5 ± 0.2	>0.9999	>0.9999
36:2	841.60	16.3 ± 1.7	8.7 ± 2.7	33.7 ± 5.0	20.7 ± 3.1	< 0.0001	< 0.0001
36:1	843.62	6.7 ± 2.2	40.3 ± 1.4	4.7 ± 0.7	21.2 ± 1.8	>0.9999	< 0.0001
DGDG species	0.47.50	10.16	0.0.1.0.2	16.06	0.4 + 0.1	0.12(0	
32:2	947.59	4.9 ± 1.6	0.8 ± 0.2	1.6 ± 0.6	0.4 ± 0.1	0.1369	>0.9999
32:1	949.61	18.8 ± 3.6	14.3 ± 3.1	8.4 ± 1.0	5.3 ± 0.6	< 0.0001	< 0.0001
34:2	9/5.62	15.5 ± 1.0	3.5 ± 0.7	13.3 ± 2.7	4.8 ± 0.9	0.7991	>0.9999
34:1	9//.04	40.1 ± 2.5	43.3 ± 1.3	43.1 ± 5.3	34.9 ± 3.9	<0.0043	< 0.0001
30:2	1005.05	12.3 ± 2.1	3.8 ± 1.8	23.1 ± 2.3	$1/.1 \pm 1.5$ 17.2 ± 1.5	< 0.0001	< 0.0001
PC spacios	1003.07	7.1 ± 1.4	51.8 ± 2.2	4.1 ± 0.9	17.2 ± 1.3	0.2387	<0.0001
28.0	665 44	19 + 14	0.7 ± 0.5	0.4 ± 0.3	0.2 ± 0.2	>0 9999	>0 9999
30:2	689.44	1.9 ± 1.4 1.6 ± 0.6	0.7 ± 0.3 0.3 ± 0.2	0.4 ± 0.5 0.2 ± 0.1	0.2 ± 0.2 0.0 ± 0.0	>0.9999	>0.9999
30:1	691.45	6.4 ± 1.1	2.4 ± 0.8	5.8 ± 1.8	0.9 ± 0.5	>0.9999	0.1678
30:0	693.47	5.4 ± 1.2	1.7 ± 0.9	4.3 ± 2.0	1.6 ± 0.6	>0.9999	>0.9999
32:2	717.47	7.8 ± 1.0	1.5 ± 0.3	3.8 ± 0.5	0.7 ± 0.1	0.0153	>0.9999
32:1	719.48	16.7 ± 2.0	12.1 ± 2.1	23.5 ± 2.7	6.2 ± 0.7	< 0.0001	< 0.0001
32:0	721.50	$2.3~\pm~0.9$	0.9 ± 0.7	0.0	2.6 ± 0.8	0.8064	0.0995
33:1	733.50	0.3 ± 0.2	0.2 ± 0.2	$4.3~\pm~0.4$	1.2 ± 0.4	0.0232	>0.9999
34:3	743.48	$2.5~\pm~0.3$	$0.3~\pm~0.2$	$0.1~\pm~0.0$	0.2 ± 0.1	0.6926	>0.9999
34:2	745.50	$16.2~\pm~2.6$	5.6 ± 1.0	$15.8~\pm~3.6$	7.4 ± 0.6	>0.9999	0.0983
34:1	747.51	$24.4~\pm~1.3$	$34.1~\pm~1.5$	$18.2~\pm~2.3$	$46.1~\pm~3.5$	< 0.0001	< 0.0001
36:3	771.51	$2.0~\pm~0.2$	$0.8~\pm~0.5$	$0.5~\pm~0.2$	$0.7~\pm~0.4$	>0.9999	>0.9999
36:2	773.53	$9.0~\pm~2.2$	$9.6~\pm~3.8$	$20.7~\pm~3.3$	$17.6~\pm~2.5$	< 0.0001	< 0.0001
36:1	775.55	3.5 ± 2.3	29.8 ± 1.1	$2.4~\pm~0.4$	$14.6~\pm~2.6$	>0.9999	< 0.0001
CL species							
62:2	1319.90	4.8 ± 1.2	0.5 ± 0.1	3.3 ± 0.2	0.1 ± 0.0	>0.9999	>0.9999
62:1	1321.91	3.0 ± 1.2	0.6 ± 0.2	2.5 ± 0.9	0.2 ± 0.1	>0.9999	>0.9999
64:4	1343.90	2.1 ± 0.4	0.1 ± 0.0	0.7 ± 0.6	0.0 ± 0.0	>0.9999	>0.9999
64:3	1345.91	6.1 ± 1.1	0.6 ± 0.1	3.5 ± 1.2	0.2 ± 0.0	0.1157	>0.9999
64:2	1347.93	8.5 ± 1.4	2.8 ± 0.9	10.1 ± 0.2	1.1 ± 0.1	0.8048	0.1591
64:1	1349.95	2.9 ± 0.9	1.1 ± 0.5	3.3 ± 1.0	1.1 ± 0.2	>0.9999	>0.9999
63:2	1271.02	0.2 ± 0.1	0.1 ± 0.1	2.0 ± 0.2	0.3 ± 0.1	0.7997	>0.9999
66:4	13/1.93	3.1 ± 2.0	0.4 ± 0.0	1.2 ± 0.3	0.2 ± 0.0	0.6299	>0.9999
66:2	1375.94	9.3 ± 0.7	2.3 ± 0.2	0.7 ± 2.3	1.4 ± 0.2	~0.99999	~0.99999
68:4	1399.96	4.0 ± 0.3	1.1 ± 0.3	26 ± 11	0.7 ± 0.3 0.8 ± 0.3	>0.09999	>0.0001
68.3	1401 98	73 ± 18	64 ± 0.8	91 ± 14	0.8 ± 0.5 70 ± 0.6	0.454	>0.9999
68.2	1403.99	45 ± 23	17.7 ± 0.8	3.7 ± 2.6	7.0 ± 0.0 22.6 + 2.6	>0.9999	< 0.0001
70:4	1427.99	1.7 ± 0.7	1.6 ± 0.7	2.2 ± 0.9	1.8 ± 0.5	>0.9999	>0.9999
70:3	1430.01	1.8 ± 1.3	7.0 ± 2.1	2.0 ± 1.3	11.1 ± 1.7	>0.9999	< 0.0001
70:2	1432.02	0.5 ± 0.4	11.0 ± 3.1	0.7 ± 0.3	8.4 ± 2.3	>0.9999	0.002
Deoxy-CL spec	ies						
64:4	1327.90	$9.3~\pm~1.9$	$0.8~\pm~0.2$	5.8 ± 2.3	$0.3~\pm~0.3$	0.2081	>0.9999
64:3	1329.92	$12.7~\pm~2.8$	$3.9~\pm~1.3$	$16.3~\pm~0.8$	$1.8~\pm~1.4$	0.1888	>0.9999
64:2	1331.93	$3.7~\pm~1.1$	$1.4~\pm~0.6$	$4.8~\pm~1.6$	1.7 ± 1.2	>0.9999	>0.9999
66:5	1353.92	$6.6~\pm~1.8$	$0.5~\pm~0.1$	$2.0~\pm~1.0$	$0.2~\pm~0.1$	0.0299	>0.9999
66:4	1355.93	$16.2~\pm~1.8$	$3.7~\pm~0.4$	$15.4~\pm~4.3$	$2.0~\pm~0.3$	>0.9999	>0.9999
66:3	1357.95	$14.4~\pm~1.2$	$14.5~\pm~3.5$	$19.2~\pm~3.8$	$8.3~\pm~1.1$	0.0236	0.005
68:5	1381.95	$7.6~\pm~0.8$	$1.8~\pm~0.4$	$4.7~\pm~2.2$	1.2 ± 0.3	0.561	>0.9999
68:4	1383.97	13.9 ± 2.3	10.7 ± 1.1	17.3 ± 1.3	11.4 ± 1.4	0.2831	>0.9999
68:3	1385.98	7.7 ± 3.1	29.3 ± 3.5	$4.7~\pm~5.0$	36.6 ± 3.2	0.502	0.0005
70:5	1409.98	3.5 ± 1.1	3.1 ± 1.2	4.1 ± 1.8	3.1 ± 0.8	>0.9999	>0.9999
70:4	1412.00	3.5 ± 2.3	9.7 ± 7.8	4.4 ± 2.8	19.3 ± 1.7	>0.9999	< 0.0001
70:3	1414.01	0.8 ± 0.8	20.7 ± 5.2	1.5 ± 0.6	14.1 ± 3.9	>0.9999	0.0023

Supplementary Table 2. Membrane lipid composition.

^a Percent lipid species. Lipids were analyzed on 3 independently prepared culture extracts (N=3).

MGDG, monoglucosyldiacylglycerol; DGDG, diglucosyldiacylglycerol; PG, phosphatidylglycerol; CL, cardiolipin; Deoxy-CL, putative deoxidised cardiolipin species.

CL, putative deoxidised cardiolipin species. 2-way ANOVA, Bonferroni post-test; p<0.05; ** p<0.01; *** p<0.001; ****p<0.001Primary lipid data are available at http://dx.doi.org/10.21228/M88C05.

		Cultivated in <i>p-valu</i>						
	TH	Y	THY-1	ſween	THY-Tween vs THY			
Lipids ^a	WT	mFabT	WT	mFabT	WT	mFabT		
MGDG	0.2 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.2 ± 0.2	>0.9999	>0.9999		
DGDG	1.1 ± 0.4	0.7 ± 0.2	0.7 ± 0.2	0.7 ± 0.4	0.0803	>0.9999		
PG	0.7 ± 0.3	0.7 ± 0.2	0.5 ± 0.1	0.7 ± 0.4	0.9259	>0.9999		
CL	1.0 ± 0.6	0.4 ± 0.2	0.7 ± 0.2	0.5 ± 0.3	0.3312	>0.9999		
Total	3.0	1.9	2.1	2.1	0.3126	>0.9999		

Supplementary Table 3. Membrane lipid species.

Total3.01.92.12.1a Milligrams lipids extracted from the equivalent of $OD_{600} = 100$ (N=4).

MGDG, monoglucosyldiacylglycerol; DGDG, diglucosyldiacylglycerol; PG, phosphatidylglycerol; CL, cardiolipin.

2-way ANOVA, Bonferroni post-test; *p<0.05.

Source data are provided as a Source Data file.

	Supplementary Table 4. Modification of gene expression under all tested conditions. Adjusted P-values										
			THY	THY-Tween	WT	mFabT		THY	THY-Tween	WT	mFabT
Locus	Gene	Gene product	mFabT	mFabT	THY-Tween	THY-Tween	Function	mFabT	mFabT	THY-Tween	THY-Tween
			vs WT	vs WT	vs THY	vs THY		vs WT	vs WT	vs THY	vs THY
M28 Spy0022	purC	Phosphoribosylaminoimidazole-succinocarboxamide synthase, PurC	1.327				Purine synthesis	6.63E-03			
M28 Spy0023	purL	Phosphoribosylformylglycinamidine synthase, PurL	1.245				Purine synthesis	2.31E-03			
M28 Spy0024	purF	Amidophosphoribosyltransferase, Puri-	1.102				Purine synthesis	5.22E-03			
M28 Spy0025	purm	Phosphoribosyltormylgiycinamidine cycio-iigase, PurM Dhawhawhawhawhawamida formultana-forma DueM	1.313				Purine synthesis	5.22E-03			
M28 Spy0026	purn	Collegen kinding pertain Car	1.409				A dhanin	0.10E-03			
M28 Spy0107	cpu sin 4	Signal pentidase I SinA	2.081				Signal pentidase	3.44E-08			
M28 Spy0109	M28 Smv0109	T28 T-antigen	2.195				Adhesin	1.36E-09			
M28 Snv0110	srtB	Class B sortase protein. SrtB	1.734				Sortase	3.37E-05			
M28 Spy0111	fctB	Pilin minor structural protein, FctB	1.949				Adhesin	2.53E-08			
M28 Spy0137*	nga	NAD glycohydrolase, Nga	-1.350				Virulence factor	2.53E-06			
M28 Spy0138*	ifs	Immunity factor for SPN/NAD glycohydrolase protein, Ifs	-1.540				Resistance factor	2.48E-04			
M28 Spy0139*	slo	Thiol-activated cytolysin, SLO	-1.357				Virulence factor	1.68E-03			
M28_Spy0140	M28_Spy0140	Uncharacterized protein	-1.578		-1.688		Unknown function	7.30E-05		1.41E-04	
M28_Spy0184*	M28_Spy0184	RofA-related transcriptional regulator			-1.082		Transcriptional regulator			2.09E-06	
M28_Spy0249	M28_Spy0249	Transposase *	-14.443				Transposition	3.36E-02			
M28 Spy0338	M28 Spv0338	Uncharacterized protein	-1.613	-0.836	-1.207		Unknown function	9.48E-14	4.11E-02	2.42E-06	
M28 Spy0341	M28 Spy0341	Uncharacterized protein	-1.689		-0.895		Unknown function	2.20E-09		3.76E-02	
M28_Spy0346	M28_Spy0346	Uncharacterized protein	-1.475		-1.011		Unknown function	1.66E-10		4.75E-04	
M28_Spy0371**	M28_Spy0371	67 kDa myosin-crossreactive antigen MCRA; fatty acid double bond hydratase	1.534		1.941	0.588	Fatty acid degradation	1.67E-19		4.26E-26	2.62E-02
M28 Spy0658	M28 Spy0658	5'-nucleotidase	1.187				DNA regulation	1.16E-03			
M28 Spy0757	M28 Spy0757	PTS system, mannose/fructose family IIA component	-0.996				Phosphotransferase system	4.15E-02			
M28 Spy0853**	M28 Spy0853	Diacylglycerol kinase family lipid kinase	0.877			-1.102	Lipid metabolism	2.22E-07			3.34E-12
M28 Spy0855**	M28 Spy0855	Uncharacterized protein	1.609			-1.969	Unknown function	6.63E-03			2.32E-08
M28_Spy0977	phage protein	Hyaluronoglucosaminidase			1.594		Phage	1.73E-05		7.54E-04	
M28 Spy1014	M28 Spy1014	Phage DNA/RNA helicase	1.028				Phage	3.33E-02			
M28 Spy1098**	grab	Protein G-related alpha 2M-binding protein, Grab	1.647				Virulence factor	5.01E-03			
M28 Spy1112**	gapN M29 Smill26	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, GapN	-1.220		-0./40		Glycolysis	2.53E-08		1.805.04	
M28_Spy1130	M28_Spy1150	D-alanyi-D-alanine carboxypeptidase	1.033		0.917		Peptidogiycan biosynthesis	1.89E-17		1.69E-04	
M28 Spy1137	M28 Spy1157	Uncharacterized protein	1.390				Unknown function	5.64E 02			
M28 Spy1136	M20 Spy1150	Probable notassium transport system protein Kup	2 234			-0.854	Transporter	6.46E-17			6.13E-02
M28 Spy1228	M28 Smv1228	Phage protein	2.2.5		1.361	0.024	Phage	0.101217		4.08E-03	
M28 Spy1229	M28 Spv1229	Phage protein			1.061		Phage			9.75E-03	
M28 Spy1234	M28 Spy1234	Phage endopeptidase			1.082		Phage			4.28E-02	
M28_Spy1236	M28_Spy1236	Phage protein			1.223		Phage			1.10E-02	
M28_Spy1237	M28_Spy1237	Phage protein			1.160		Phage			1.80E-02	
M28_Spy1238	M28_Spy1238	Phage protein			1.240		Phage			2.53E-02	
M28_Spy1239	M28_Spy1239	Major tail shaft protein			1.302		Phage			4.08E-03	
M28_Spy1244	M28_Spy1244	Major head protein			1.258		Phage			8.34E-03	
M28_Spy1245	M28_Spy1245	Phage protein			1.199		Phage			1.22E-02	
M28_Spy1249	M28_Spy1249	Minor capsid protein			1.126		Phage			7.22E-03	
M28_Spy1251	M28_Spy1251	Phage protein			1.225		Phage			2.42E-02	
M28_Spy1255	M28_Spy1255	ParB-like protein			1.219		Phage			8.34E-03	
M28_Spy1336	M28_Spy1336	R28 protein GAS-specific adhesin	1.041		1.412		Adhesin	5.22E-03		1.42E-04	1.005.00
M28_Spy1434	M28_Spy1434	DegV family protein, FakB3, fatty acid metabolism			-1.491	-1.409	Lipid metabolism		6 0 M D 1 4	3.12E-07	4.29E-08
M28 Spy14/3	accD	Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha, AccD		2.367	-2.343		Fatty acid biosynthesis		6.07E-15	1.07E 11	
M28 Spy14/4**	accA	Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, AccA		2.389	-2.337		Fatty acid biosynthesis		9./5E-12	3.01E-11	
M28 Spy1475**	fahZ	3.bydrayyacyl.facyl.carrier.protein1.debydratase FabZ		2.559	-2.335		Fatty acid biosynthesis		1.65E-09	2.29E-09	
M28 Spy1477**	accB	Biotin carboxyl carrier protein of acetyl-CoA carboxylase AccB		2 534	-2.535		Fatty acid biosynthesis		3 23E-11	2.47E-13	
M28 Snv1478**	fahF	3-oxoacyl-facyl-carrier-protein] synthase 2. FabF		2.601	-2.524		Fatty acid biosynthesis		3.81E-32	2.09E-36	
M28 Spy1479**	fabG	3-oxoacyl-[acyl-carrier-protein] reductase, FabG		2.676	-2.486		Fatty acid biosynthesis		1.78E-24	2.96E-25	
M28 Spy1480**	fabD	Malonyl CoA-acyl carrier protein transacylase, FabD		2.434	-2.430		Fatty acid biosynthesis		3.83E-21	2.96E-25	
M28 Spy1481**	fabK ^a	Enoyl-[acyl-carrier protein] reductase (NADH), FabK		2.351	-2.397		Fatty acid biosynthesis		7.62E-10	3.35E-12	
M28 Spy1483	fabH	3-oxoacyl-[acyl-carrier-protein] synthase 3, FabH		0.679	-1.176		Fatty acid biosynthesis		9.91E-02	3.40E-07	
M28 Spy1484	fabT	Transcriptional regulator, FabT			-0.921		Fatty acid biosynthesis			4.22E-02	
M28 Spy1485*	fabM*	Enoyl-CoA hydratase, FabM			-1.160		Fatty acid biosynthesis			2.67E-02	
M28 Spy1562**	uspA	Universal stress protein family, UspA	-1.740	-4.066	1.843		Stress response	3.88E-03	1.13E-11	4.08E-03	
M28 Spy1563**	norA	Quinolone resistance protein, NorA	-1.288	-3.229	1.529		Antibiotic resistance	6.14E-06	2.22E-26	4.97E-07	
M28 Spy1638**	fakB4	DegV family protein, FakB4		0.835	-1.083		Fatty acid storage-catabolism		8.71E-03	2.09E-06	
M28_Spy1672*	ska	Streptokinase, Ska	0.929		1.069		Tissue invasion	9.29E-03		6.66E-03	
M28 Spy1675	sclA/scl1	Collagen-like surface protein A, ScIA/ScI1	-1.823		-0.996		Adhesin	9.80E-09		3.86E-02	
M28 Spy1699**	M28_Spy1699	Cell surface protein	-0.923		-1.822		Adhesin	3.36E-02		4.97E-07	
M28 Spy1700**	SCPA	Coa peptidase, ScpA	-1.162		-2.073		Adnesin	2.92E-03		7.84E-09	
M28_Spy1701	M28_Spy1701 M28_Smi1702	Enn protein	-0.8/1		-1.020		Adnesin	4.49E-02		2.5512-02	
M28 Spy1702	M28 Spy1/02	M28 protein	-1.985		1 350		Adnesin	1.22E-07		5 78E 04	
M28_Spy1715	SIDA	r montecum-omanig protein, SIDA	-0.889		-1.339		Adhasin	5.22E-05 1.02E.05		4 29E-07	
M28_Spy1812	M28 Sm:1813	Phage protein	-1.093				Phage	1.95E-05		1.272.07	
M28 Spy1838**	M28 Spv1838	Phage protein	2.661	1.618	3.203	2.160	Phage	1.77E-31	6.00E-08	1.24E-37	2.28E-22

M28 Spy1838* M28 Spy1838 Phage protein 2.661 1.618 3.203 2.160 Phage Protein 2.661 1.618 3.203 2.160 Phage Protein 2.661 1.618 3.203 2.160 Phage Protein 2.661 Phage Phage Protein 2.661 Phage Phage Protein 2.661 Phage Phage

1. Eraso, J. M. et al. Genomic Landscape of Intrahost Variation in Group A Streptococcus: Repeated and Abundant Mutational Inactivation of the fabT Gene Encoding a Regulator of Fatty Acid Synthesis. Infect Immun 84, 3268-3281, doi:10.1128/IAL00608-16 (2016).

	Supplementary Table 5. Metabolites present in the different media tested.																		
		Infact	tion modium (DPMI)	Conditio	nod ownownot	ante (CNI)	SN inoculated with											
Metabolites	LOD* [µM]	intec	tion mediani (KI MI)	Conuntio	neu supernau	ants (SIN)		WT strain 8	h	n	FabT strain	8 h	,	WT strain 16	h	m	FabT strain 1	6 h
	[1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Anino acids																			
Asn	102	290	242	320	375	375	353	392	328	381	394	378	352	371	351	381	341	301	304
Asp	153	121	103	134	155	158	154	162	165	168	170	175	164	211	163	183	174	182	189
Gly	103	104	90	115	180	180	173	185	164	180	185	186	175	190	167	181	172	160	165
His	20.1	66.9	56.6	73.3	85.5	86.4	82.5	93.6	83.5	89.6	91.8	91.3	87.5	92.1	82.4	89.9	83.4	80	82.1
He	205	305	255	332	344	357	333	369	328	365	357	367	348	374	330	371	332	307	328
Lys	104	160	133	169	200	199	197	213	188	210	211	218	200	216	195	214	190	183	187
Met	44.6	45.9	39.5	51.1	60.2	59.5	58.6	63.6	55.7	63.9	63.8	64.7	61.4	66.6	57.5	63.5	59.2	56.4	58.7
Pro	93.8	127	107	136	159	161	154	169	152	165	165	173	163	169	155	173	155	148	153
Ser	156	215	183	228	198	210	200	226	196	217	224	229	215	223	206	220	202	192	198
Thr	116	130	109	140	164	167	158	172	156	173	170	172	169	177	155	173	158	151	153
Tyr	42.2	77.2	66.1	83.4	97.8	98.9	95.6	103	92.4	103	105	105	99.8	108	94	105	93.8	90.6	93.8
Kynurenine	0.285	1.1	0.87	1.21	1.4	1.5	1.44	1.53	1.44	1.52	1.55	1.63	1.42	1.59	1.45	1.61	1.36	1.43	1.39
Met-SO	27.9	29	24.4	31	34.1	35.2	33.7	37	34.4	36.9	36.5	37.4	36	36.8	34.4	37.4	33.4	32.5	32.9
Sugar																			
Havaras	520	8212	6915	8642	9672	9746	9962	10393	9172	10093	10243	9859	10215	10244	9217	10213	9411	8581	8967

Hexase 529 8.12 0913 8842 9672 9746 9962 10393 9172 10093 10243 9859 10213 10244 9217 10213 9411 8581 8967 * 10D: limit of detection Results of independent triplicates (1, 2, and 3) are shown. Values are all in µM. In bold, metabolites produced by uninfected cells. In red, products that were consumed more in mFabT- than in WT- depleted conditioned supermatants. Source data are available at http://dx.doi.org/10.21228/M88C05.

	00	9 ₆₀₀ at 4 h
	WT	mFabT
BHI+BSA	1.05 ± 0.13	1.03 ± 0.22
BHI+BSA+Platensimycin	0.34 ± 0.05	0.91 ± 0.18
BHI+BSA+C17:1	1.38 ± 0.19	1.28 ± 0.21
BHI+BSA+C17:1+Platensimycin	1.37 ± 0.19	1.23 ± 0.19

Supplementary Table 6. Bacterial growth in the presence of platensimycin $(1 \ \mu g/mL)^a$

^a Bacteria were grown in indicated conditions starting from an overnight BHI culture and then diluted to an initial $OD_{600} = 0.05$ (N=3, corresponding to 3 independent culture samples). Medium was BHI supplemented with FA-free BSA (0.025 %), to which Platensimycin (1 µg/mL) and C17:1 100 µM were added when indicated.

Source data are provided as a Source Data file.

Strains	Relevant properties	Source
or plasmids		or reference
Streptococcus pyogenes		
WT	Wild-type representative emm28 clinical isolate, M28PF1	1
CCH1718	M28PF1 derivative harboring multiple mutations including the replacement in	Laboratory collection
	fabT of C313 by T encoding the FabT ^{H105Y} polymorphism	
$\Delta fabT$	M28PF1 deleted for <i>fabT</i>	This study
mFabT	M28PF1 mutated in <i>fabT</i> C313T (FabT ^{H105Y})	2
WT ^{eryR} -igfp	M28PF1 with the integrated pG1-lacA-PTetO-gfp containing an erythromycin	3
	resistance cassette	
mFabT ^{eryR} -igfp	mFabT with the integrated pG1-lacA-PTetO-gfp containing an erythromycin	This study
	resistance cassette	
Escherichia coli		
Stellar TM	F-, endA1, supE44, thi-1, recA1, gyrA96, phoA, Φ 80d lacZ Δ M15, Δ (lacZYA – argF) U169, Δ (mrr – hsdRMS –mcrBC), Δ mcrA, λ -	Clontech
Plasmids		
pG1	thermosensitive broad-host-range vector	4
pG1-∆ <i>fabT</i>	pG1- $\Delta f abT$ construct for fabT deletion in S. pyogenes	This study
pG1-lacAPTetO-gfp	pG1-lacA-Perm-gfp with the Erm promoter replaced by the tetO tetR Pxyl	3
	promoter of pTCV_TetO. Can be integrated in S. pyogenes genome for	
	anhydrotetracycline inducible gfp expression	

Supplementary Table 7. Strains and plasmids used in this study.

1. Longo, M. et al. Complete Genome Sequence of Streptococcus pyogenes emm28 Clinical Isolate M28PF1, Responsible for a Puerperal Fever. Genome Announc 3, doi:10.1128/genomeA.00750-15 (2015).

2. Lambert, C. et al. A *Streptococcus pyogenes* DegV protein regulates the membrane lipid content and limits the formation of extracellular vesicles. PLoS One 18, e0284402, doi:10.1371/journal.pone.0284402 (2023).

3. Weckel, A. et al. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 131, doi:10.1172/JCI130746 (2021).

4. Biswas, I., Gruss, A., Ehrlich, S. D. & Maguin, E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175, 3628-3635, doi:10.1128/jb.175.11.3628-3635.1993 (1993).

Supplementary Table 8. Primers used in this study for cloning, clone verifications, PCR, and qRT-PCR experiments.

Primer name	Sequence	Used for
P47	CGCCAGGGTTTTCCCAGTCACGAC	Plasmid construction for $\Lambda fabT$ strain
RP48	AGCGGATAACAATTTCACACAGGA	Plasmid construction for <i>AfabT</i> strain
ermB-F	GAGTGTGTTGATAGTGCAGT	Plasmid construction for AfabT strain
ermB-R	TAGGCGCTAGGGACCTCTTTA	Plasmid construction for AfabT strain
FabTavF	GATATTTTCAACCGGGCGTGGACTAGGGAATCTAC	Plasmid construction for AfabT strain
FabTavR2	CCATGATTACGAATTCGCACCATCTGTGTGTAAT	Plasmid construction for <i>AfabT</i> strain
FabTamR	CCGGTTGAAAATATCAACTAAGTATT	Plasmid construction for AfabT strain
FabTamF2	CGACTCTAGAGGATCCGCCAAAACCAGTCATCCTT	Plasmid construction for $\Delta fabT$ strain
PFabTamEco	ATATAGAATTCGGCAGAGCTTGCTATTCAAGA	PCR overlapping $fabM$ and $fabT$
PFabTavBam	ATAGGATCCGCAAGATCATCTACAACATCA	PCR overlapping fabM and fabT
fabH acpP Am	GGGACAGATTAGGTTAGATGGT	PCR overlapping fabH and acnA
fabH_acpP_Av	GCGTTACTTCTTCTGTCTCCTT	PCR overlapping fabH and acnA
acpP fabK Am	GGTGACCTTGTTGCTTA	PCR overlapping <i>acpA</i> and <i>fabK</i>
acpP fabK Av	CCATTCCTCCTTGAAAA	PCR overlapping <i>acpA</i> and <i>fabK</i>
fabZ accC Am	GCAGCAAGTGGAACATTAA	PCR overlapping fabZ and accC
fabZ accC Av	CACCACGATTAGCAATTAA	PCR overlapping fabZ and accC
accD-end	GCGTTACCAACGCTTTCGTAAA	PCR overlapping <i>accD</i> and <i>serS</i>
serS-end	GGCGAAACCGTCATTTCACCT	PCR overlapping <i>accD</i> and <i>serS</i>
FabT-222	GGTCTGGCAAAGCTTTTTCA	Identification of spontaneous $fabT$ mutants
FabTavComp	GGCGTTCTGCTATTCCTGTT	Identification of spontaneous $fabT$ mutants
rofA-Am	GGCGTTAAATTGTCGAAGATACTGC	aRT-PCR of M28 Spv0184 coding for RofA
rofA-Av	CCTACTGGCTATTTTGTTGACAGAA	qRT-PCR of M28 Spv0184 coding for RofA
0371-Am	GCCGATTTCTGATCTACCCCTT	gRT-PCR of M28 Spv0371
0371-Av	GCCCTTACCTTTGGAGTGATGA	gRT-PCR of M28 Spv0371
0853 Am	GCCAACATGGTTTTTCCGAA	qRT-PCR of M28 Spy0853
0853 Av	GGGATAACCAAGTCAATCTT	gRT-PCR of M28 Spy0853
1136-Am	CCGGATATGCAAGAATATTCCTT	qRT-PCR of M28 Spy1136
1136-Av	CCCGTAGCGGTCAAATAATTGGT	gRT-PCR of M28 Spy1136
R28-Am	GGGCGCAATTACCTTTACTGCAAA	qRT-PCR of M28 Spy1336 coding for R28
R28-Av	CCGTTTGGTCCTTACCTTTTGGTT	qRT-PCR of M28 Spy1336 coding for R28
1434-Am	CCCTACAGATTGGCACAGAAAT	qRT-PCR of M28 Spy1434 coding for FakB3
1434-Av	GGGCTTGGACAGCTAGATGT	qRT-PCR of M28 Spy1434 coding for FakB3
1562-Am	GCACGTTTAGATACATGACAATTGG	qRT-PCR of M28 Spy1562 coding for UspA
1562-Av	GCTCTCACGATCAACAGATCAAT	qRT-PCR of M28 Spy1562 coding for UspA
norA-Am	GTGGCCATCACAGTAATAAACTTT	qRT-PCR of M28 Spy1563 coding for NorA
norA-Av	CCCTGTTGCCAATCCTGCCT	qRT-PCR of M28 Spy1563 coding for NorA
1638-Am	GCCAGCTTTCATCTTTTTCAAAAGG	qRT-PCR of M28_Spy1638 coding for FakB4
1638-Av	GGGCAGAAGATCATGATATTGTC	qRT-PCR of M28 Spy1638 coding for FakB4
ska-Am	CCGTCCATCTGTCAACAACAGCCA	qRT-PCR of M28 Spy1672 coding for Ska
ska-Av	CCTCCATGAGCAGGTTGTGATGTT	qRT-PCR of M28 Spy1672 coding for Ska
csp-Am	GGCTGCATGCTATCTACGGCA	qRT-PCR of M28 Spy1699 coding for Cell Surface protein
csp-Av	GCCGCTATTCCATTCGCAAACT	qRT-PCR of M28 Spy1699 coding for Cell Surface protein
scpA-Am	GGGGGTTCTACGGCTTGTTC	qRT-PCR of M28 Spy1700 coding for ScpA
scpA-Av	GCGCTCATGTCTACGAGCAT	qRT-PCR of M28 Spy1700 coding for ScpA
sfbX-Am	GGGGCTTGAAACTCGGTGTT	qRT-PCR of M28 Spy1715 coding for SfbX
sfbX-Av	GGCCAAGTCTGGGACCCACT	qRT-PCR of M28_Spy1715 coding for SfbX
sof-Am	GGGGTGAGGCTGGAGTAGTG	qRT-PCR of M28_Spy1716 coding for SOF
sof-Av	GCAGCTGGGAGCGGAGCTA	qRT-PCR of M28_Spy1716 coding for SOF
gyrA1	GCCATGAGTGTCATTGTGGC	qRT-PCR of gyrA
gyrA2	GGCGATAACTCCACCACTGA	qRT-PCR of gyrA