An interchange property for the rooted Phylogenetic Subnet Diversity on phylogenetic networks. Supplementary Material

Tomás M. Coronado¹, Gabriel Riera¹, Francesc Rosselló¹

¹Dept. of Mathematics and Computer Science, University of the Balearic Islands, Palma, E-07122, Spain, and Balearic Islands Health Research Institute (IdISBa), Palma, E-07010, Spain

{t.martinez,gabriel.riera,cesc.rossello}@uib.eu.

1 Proof of Lemma 9

Given a blob B with set of exit reticulations \mathscr{E} and a subset $\mathscr{E}_1 \subseteq \mathscr{E}$, we denote by \hat{B}_{L} , $\hat{\mathcal{E}}_1$ the set of nodes of $\hat{\mathcal{B}}$ with all their descendant exit reticulations in \mathcal{E}_1 :

$$
\hat{\mathcal{B}}, \text{only } \mathscr{E}_1 = \hat{\mathcal{B}}_1 \setminus \hat{\mathcal{C}} \mathscr{C} \setminus \mathscr{E}_1) = V(\mathcal{B}) \setminus \hat{\mathcal{C}} \mathscr{C} \setminus \mathscr{E}_1).
$$

This notation extends the notation $\uparrow_{only} H$ for $H \in \mathscr{E}$ used in the proof of Lemma 10.

We shall actually prove a slightly more general result than Lemma 9: **Lemma 11.** Let \mathcal{B} be a blob, let \mathcal{E}_1 be a subset of its exit reticulations, and let \mathcal{I}_1 be the set of its internal reticulations belonging to $\gamma_{\mathcal{B},\text{only}}(\mathscr{E}_1)$. Then, for every independent set of nodes V contained in $\mathfrak{f}_{\mathcal{B},\text{only}}(\mathscr{E}_1)$,

$$
|V| \leqslant \sum_{H_i \in \mathcal{E}_1} \deg_{in} H_i + \sum_{H_i \in \mathcal{I}_1} (deg_{in} H_i - 1).
$$

Proof. Let $\mathcal I$ and $\mathcal E$ be the sets of internal and exit reticulations, respectively, of the blob B. Let $\mathscr{E}_1 = \{H_1, \ldots, H_{l_1}\} \subseteq \mathscr{E}$ and $\mathcal{I}_1 = \mathcal{I} \cap \uparrow_{\mathcal{B}, \text{only}} (\mathscr{E}_1) = \{H_{l_1+1}, \ldots, H_{l_1+k_1}\}.$ For each $i = 1, ..., l_1+k_1$, let $d_i = \deg_{in} H_i$. We shall prove that, for every independent

subset V of $\mathfrak{f}_{\mathcal{B},\text{only}}\mathscr{E}_1$,

$$
|V| \leqslant \sum_{i=1}^{l_1} d_i + \sum_{i=l_1+1}^{l_1+k_1} (d_i - 1)
$$

by double induction on $l_1 = |\mathscr{E}_1|$ and $k_{int} = |\mathcal{I}|$. The case when $l_1 = 0$ is obvious, because then $\hat{\mathcal{B}}_{\text{conly}}(\mathscr{E}_1) = \emptyset$ and hence $|V| = 0$.

To prove the general inductive step from $l_1 - 1$ to l_1 , we begin with the case when $k_{int} = 0$. So, let B be a blob without internal reticulations, let $\mathscr E$ be its set of exit reticulations, and let $\mathscr{E}_1 = \{H_1, \ldots, H_{l_1}\} \subseteq \mathscr{E}$ with $l_1 \geq 1$. Let us assume, as induction hypothesis, that the thesis is true for all blobs \mathcal{B}' without internal reticulations and for all subsets of exit reticulations \mathscr{E}'_1 of \mathcal{B}' of cardinality $|\mathscr{E}'_1| = l_1 - 1$.

Take a node $H_{l_1} \in \mathscr{E}_1$, with parents $u_1, \ldots, u_{d_{l_1}}$. For each $i = 1, \ldots, d_{l_1}$, let v_i be the lowest ancestor of u_i that has some descendant (exit) reticulation other than H_{l_1} ; see Figure [9.](#page-2-0) Concatenating each path $v_i \rightsquigarrow u_i$ with the corresponding arc $(u_i, H_{l_1}),$ we obtain d_{l_1} different paths $v_1 \leadsto H_{l_1}, \ldots, v_{d_{l_1}} \leadsto H_{l_1}$ ending in H_{l_1} : observe that the nodes $v_1, \ldots, v_{d_{l_1}}$ need not be different, but each such path ends in a different arc $(u_i, H_{l_1}).$

Fig. 8 A semibinary blob B without internal reticulations illustrating the inductive step for $k_{int} = 0$ in the proof of Lemma [11.](#page-0-0) All arcs in it except those ending in H_{l_1} actually represent paths. An independent set of nodes in $\hat{}_{\mathcal{B},\text{only}}(\mathscr{E}_1)$ is represented by filled circles, and the nodes and arcs that are removed from β to β' are represented in gray.

Let \mathcal{B}' be the directed graph obtained by removing from \mathcal{B} the set of nodes $\gamma_{\mathcal{B}, \text{only}} H_{l_1}$ —that is, the reticulation H_{l_1} and the intermediate nodes of the paths $v_1 \leadsto H_{l_1}, \ldots, v_{d_{l_1}} \leadsto H_{l_1}$ together with the arcs incident to them. The set of exit reticulations of \mathcal{B}' is $\mathcal{E}' = \mathcal{E} \setminus \{H_{l_1}\};$ take $\mathcal{E}'_1 = \{H_1, \ldots, H_{l_1-1}\}.$ Since \mathcal{B} did not have internal reticulations, neither does \mathcal{B}' . Then, by the induction hypothesis, $|V'| \leq \sum_{i=1}^{l_1-1} d_i$ for every independent set $V' \subseteq \gamma_{\mathcal{B}',\text{only}}(\mathscr{E}'_1)$.

Now, since $V(\mathcal{B}) = V(\mathcal{B}') \sqcup \mathcal{B}_{\mathcal{B}, \text{only}} H_{l_1}$, we have that

$$
\hat{\mathbf{B}}, only \left(\mathscr{E}_1\right) = \hat{\mathbf{B}}', only \left(\mathscr{E}_1'\right) \sqcup \hat{\mathbf{B}}, only \left(\mathscr{H}_1\right).
$$

Therefore, any independent subset V' of $\gamma_{\mathcal{B}',\text{only}}(\mathscr{E}'_1)$ can be enlarged to an independent subset V of $\uparrow_{\mathcal{B}, \text{only}} (\mathscr{E}_1)$ by adding at most d_{l_1} nodes, one inside each path $v_i \leadsto H_{l_1}$. Conversely, if we remove from an independent set of nodes V in $\mathcal B$ its nodes that are intermediate in the paths $v_1 \rightarrow H_{l_1}, \ldots, v_{d_{l_1}} \rightarrow H_{l_1}$ (and by the independence condition each such path will contain at most one element of V and therefore we remove in this way at most d_{l_1} nodes), or the node H_{l_1} if it belongs to V (and then no intermediate node in any path $v_i \sim H_{l_1}$ will belong to V), we obtain an independent subset V' of \mathcal{B}' .

Then, since $|V'| \leq \sum_{i=1}^{l_1-1} d_i$, any independent subset of $\hat{B}_{\text{conv}}(\mathscr{E}_1)$ has cardinality at most $\sum_{i=1}^{l_1-1} d_i + d_{l_1}$. This proves this inductive step when $k_{int} = 0$.

Let us prove now, for any fixed $l_1 > 0$, the inductive step from $k_{int} - 1$ to k_{int} . So, assume that the thesis in the statement is true for all blobs \mathcal{B}' with $k_{int} - 1$ internal reticulations and subsets \mathscr{E}'_1 of exit reticulations of cardinality $|\mathscr{E}'_1| \leq l_1$, and let B be a blob with k_{int} internal reticulations and $\mathscr{E}_1 = \{H_1, \ldots, H_{l_1}\}\$ a set of $l_1 \geq 1$ exit reticulations. Let $\mathcal{I}_1 = \mathcal{I} \cap \uparrow_{\mathcal{B}, \text{only}} (\mathscr{E}_1) = \{H_{l_1+1}, \ldots, H_{l_1+k_1}\}.$

Let H be an internal reticulation with no reticulate proper ancestor and let u_1, \ldots, u_d be its parents. For each $i = 1, \ldots, d$, let v_i be the lowest ancestor of u_i with some path to an exit reticulation that does not contain H. Concatenating each path $v_i \leadsto u_i$ with the corresponding arc (u_i, H) , we obtain d different paths $v_1 \rightarrow H, \ldots, v_d \rightarrow H$ ending in H: as before, observe that the nodes v_1, \ldots, v_d need not be different, but each such path ends in a different arc (u_i, H) .

Fig. 9 A semibinary blob B illustrating the inductive step from $k_{int} - 1$ to k_{int} in the proof of Lemma [11.](#page-0-0) All arcs in it except those ending in H actually represent paths. An independent set of nodes in $\uparrow_{\mathcal{B},\text{only}}(\mathcal{E}_1)$ is represented by filled circles. The nodes and arcs removed from N to N' are represented in gray.

Let \mathcal{B}' be the directed graph obtained by removing the intermediate nodes in all paths $v_i \rightsquigarrow H$ except for one path $v_1 \rightsquigarrow H$, together with the arcs incident to them; if $v_i = u_i$, we simply remove the arc (u_i, H) . The blob \mathcal{B}' still has the same set of exit reticulations $\mathscr E$ as $\mathcal B$, but it has $k_{int} - 1$ internal reticulations because H has become an elementary tree node in \mathcal{B}' . Moreover, if we denote by \mathcal{I}'_1 the set of internal reticulations in $\uparrow_{\mathcal{B}',\text{only}}(\mathscr{E}_1)$, then $\mathcal{I}'_1 = \mathcal{I}_1$ if $H \notin \mathcal{I}_1$ and $\mathcal{I}'_1 = \mathcal{I}_1 \setminus \{H\}$ if $H \in \mathcal{I}_1$. If

this last case happens, let us assume without any loss of generality that $H = H_{l_1+k_1}$ and hence that $d = d_{l_1+k_1}$.

Then, by the induction hypothesis, for every independent set $V' \subseteq \uparrow_{\mathcal{B}',\text{only}} (\mathscr{E}_1)$

$$
|V'| \leqslant \begin{cases} \sum_{i=1}^{l_1} d_1 + \sum_{i=l_1+1}^{l_1+k_1} (d_i - 1) & \text{if } H \notin \mathcal{I}_1 \\ \sum_{i=1}^{l_1} d_1 + \sum_{i=l_1+1}^{l_1+k_1-1} (d_i - 1) & \text{if } H = H_{l_1+k_1} \in \mathcal{I}_1 \end{cases}
$$
(16)

Now, notice that any independent set of nodes V' in \mathcal{B}' can be enlarged to an independent set of nodes V in B by adding at most one node inside each one of the $d-1$ removed paths $v_i \sim H$. Conversely, if we remove from an independent subset V of B its nodes that are intermediate in the $d-1$ removed paths $v_i \sim H$ (and by the independence condition each such path will contain at most one element of V and therefore we are removing in this way at most d nodes from V), we obtain an independent subset V' of \mathcal{B}' . Then:

• If $H \notin \uparrow_{\mathcal{B}, \text{only}} (\mathscr{E}_1)$, any maximal independent subset of $\uparrow_{\mathcal{B}', \text{only}} (\mathscr{E}_1)$ is also a maximal independent subset of $\uparrow_{\mathcal{B}, only}$ (\mathcal{E}_1). Then, by Eqn. [\(16\)](#page-3-0), for every maximal independent set $V \subseteq \uparrow_{\mathcal{B}, \text{only}} (\mathscr{E}_1)$

$$
|V| \leqslant \sum_{i=1}^{l_1} d_i + \sum_{i=l_1+1}^{l_1+k_1} (d_i - 1).
$$

• If $H = H_{l_1 + k_1} \in \mathcal{B}_{\text{conv}}(\mathscr{E}_1)$, any maximal independent subset of $\mathcal{B}_{\text{conv}}(\mathscr{E}_1)$ can be enlarged to a maximal independent subset of $\gamma_{\mathcal{B}, only}(\mathscr{E}_1)$ by adding at most $d_{l_1+k_1}-1$ nodes. Then, by Eqn. [\(16\)](#page-3-0),

$$
|V| \leqslant \sum_{i=1}^{l_1} d_i + \sum_{i=l_1+1}^{l_1+k_1-1} (d_i - 1) + (d_{l_1+k_1} - 1)
$$

for every maximal independent set $V \subseteq \uparrow_{\mathcal{B}, \text{only}} (\mathscr{E}_1)$.

This finishes the proof of the inductive step.

Returning to Lemma [9,](#page-0-1) if β is a semi-d-ary k-blob with l exit reticulations and $|\mathscr{E}_1| = l_1$, then each reticulation has in-degree at most d and $|\mathcal{I}_1| \leq k - l$, and then

 \Box

$$
|V| \leqslant \sum_{H_i \in \mathcal{E}_1} \deg_{in} H_i + \sum_{H_i \in \mathcal{I}_1} (deg_{in} H_i - 1) \leqslant |\mathcal{E}_1| \cdot d + (k - |\mathcal{E}|)(d - 1)
$$

as states Lemma [9.](#page-0-1)

.

2 Proof of Corollary [2](#page-0-1)

We first prove a refinement of Lemma 10 for level-1 networks.

Lemma 12. Let β be a semi-d-ary level-1 blob with exit reticulation H and let X, X' be two multisets of nodes of \mathcal{B} with $|X'| < |X|$ satisfying the following two further conditions:

(i) For each $v \in V(\mathcal{B})$, if $m_{X'}(v) < m_X(v)$, then $m_X(v) = 1$ and $m_{X'}(v) = 0$. (ii) $H \in X \cup X'$.

Then

$$
\uparrow X \cap \uparrow X' \subseteq \uparrow \tau_{A,B}(X) \cap \uparrow \tau_{B,A}(X') \tag{17}
$$

for some subsets $A \subseteq \text{Supp } X'$ and $B \subseteq \{H\} \cap (\text{Supp } X' \setminus \text{Supp } X)$ such that either $B = \emptyset$ and $|A| = 1$, or $B = \{H\}$ and $1 < |A| \leq d$.

Proof. Using the same notations as in the proof of Lemma [10,](#page-0-1) observe that the Eqn. (6) therein holds identically in this case, i.e.,

$$
0 < |X| - |X'| \le |\hat{X}| - |\hat{X}'|.
$$
 (18)

In addition, $\mathscr{E} = \{H\}$. Now consider the following cases:

(a) If there exists some $x \in \widehat{X}$ with a proper descendant in X, then $A = \{x\}$, $B = \emptyset$ satisfy the required properties as proved in case (a) of Lemma [10.](#page-0-1)

(b) If $H \in X$ and no $x \in \hat{X}$ has any proper descendant in X, then $\hat{X} = \{H\}$, and then $\hat{X}' = \emptyset$ by Eqn. [\(18\)](#page-4-0) and $\uparrow X' = \uparrow (X \setminus \{H\})$ because, since $\hat{X}' = \emptyset$, $X' = \emptyset$ $X \setminus \widehat{X} = X \setminus \{H\}.$ Then, $A = \{H\}$ and $B = \emptyset$ satisfy the required properties.

(c) If $H \notin X$ and no $x \in \hat{X}$ has any proper descendant in X, then, on the one hand, H belongs to Supp $X' \setminus \text{Supp } X$ by condition (ii), and hence $H \in \hat{X}'$, and, on the other hand, \hat{X} is an independent set of at most d nodes (because there are at most d different paths from the root to H).

For brevity, let X'' denote the full sub-multiset of X' supported on Supp $X' \setminus \{H\}$. By Eqn. [\(18\)](#page-4-0),

$$
|\widehat{X}| > |\widehat{X}'| \ge |\text{Supp } X'| = |\text{Supp } X''| + 1
$$

and thus $|\widehat{X}| \geq |\text{Supp } X''| + 2$. Now, since B does not contain internal reticulations and the nodes in \hat{X} are independent, each node in X'' has at most one ancestor in \hat{X} . This implies that $|\widehat{X} \cap \uparrow X''| \leq | \operatorname{Supp} X'' |$ and hence

$$
|\text{Supp } X''| + 2 \leqslant |\widehat{X}| = |\widehat{X} \cap \uparrow X''| + |\widehat{X} \setminus \uparrow X''| \leqslant |\text{Supp } X''| + |\widehat{X} \setminus \uparrow X''|,
$$

which implies $|\widehat{X} \setminus \uparrow X''| \geq 2$.

Take then $A = \hat{X} \setminus \uparrow X''$ and $B = \{H\}$. As we have just seen, $2 \leq |A| \leq |\hat{X}| \leq d$. Thus, A, B satisfy the required properties in the statement. As far as Eqn. [\(17\)](#page-4-1) goes, that is,

$$
\uparrow X \cap \uparrow X' \subseteq \uparrow ((X \setminus A) \cup \{H\}) \cap \uparrow ((X' \setminus \{H\}) \cup A),
$$

observe that, since H is the only exit reticulation of $\mathcal{B}, \uparrow H = V(\mathcal{B})$ and hence $\uparrow X' =$ $\uparrow ((X \setminus A) \cup \{H\}) = V(B)$. So, we actually must prove that

$$
\uparrow X \subseteq \uparrow (X' \setminus \{H\}) \cup \uparrow A.
$$

$$
\overline{5}
$$

We must consider two cases.

- If $m_{X'}(H) > 1$, then $H \in X' \setminus \{H\}$ and thus $\uparrow (X' \setminus \{H\}) = V(\mathcal{B})$ and the desired inclusion is obvious.
- If $m_{X'}(H) = 1$, then $X' \setminus \{H\} = X''$, and in this case

$$
\uparrow X = \uparrow \hat{X} \cup \uparrow (X \setminus \hat{X}) = \uparrow (\hat{X} \cap \uparrow X'') \cup \uparrow (\hat{X} \setminus \uparrow X'') \cup \uparrow (X' \setminus \hat{X}')
$$

\n
$$
\subseteq \uparrow X'' \cup \uparrow A \cup \uparrow (X' \setminus \{H\}) = \uparrow (X' \setminus \{H\}) \cup \uparrow A
$$

as desired.

This finishes the proof of case (c).

 \Box

We can proceed now with the proof of Corollary [2.](#page-0-1) Arguing as in the proof of Theorem [1,](#page-0-1) we can assume that N is at-most-bifurcating and in particular that no node in N is the split node of more than one blob. Notice moreover that now each blob has only one reticulation: its exit reticulation.

We follow the proof of Theorem [1](#page-0-1) by induction on the number α of arcs of the network. The base case $\alpha = 0$ is again obvious, and thus we must only consider the inductive step. So, let N be a semi-d-ary level-1 phylogenetic network on Σ with more than one arc, and let $X, X' \subseteq \Sigma$ with $|X'| < |X|$. If $|X| = 1$ the exchange property is trivially satisfied taking $(A, B) = (X, \emptyset) \in \mathscr{S}_0$, so we assume $|X| \geq 2$.

Arguing as in cases (a), (b) and (c.1) in the proof of Theorem [1,](#page-0-1) we can assume that:

- (i) The root r is the split node of a single, semi-d-ary blob \mathcal{B} .
- (ii) For every node v in B, if v has a child \overline{v} outside B such that $|X \cap C(\overline{v})| >$ $|X' \cap C(\overline{v})|$, then $|X \cap C(\overline{v})| = 1$ and $|X' \cap C(\overline{v})| = 0$.
- (iii) $C(H) \cap (X \cup X') \neq \emptyset$.

We use henceforth the same notations as in point $(c.2)$ in the proof of that theorem. The hypotheses of Lemma [12](#page-4-2) are satisfied by \mathcal{B}_X^* and $\mathcal{B}_{X'}^*$. Then, there exist two sets $\mathcal{B}_A, \mathcal{B}_B \subseteq V(\mathcal{B})$ such that $\mathcal{B}_A \subseteq \text{Supp }\mathcal{B}_X^* \setminus \text{Supp }\mathcal{B}_{X'}^*$, $\mathcal{B}_B \subseteq \{H\} \cap (\text{Supp }\mathcal{B}_{X'}^* \setminus \mathcal{B}_{X'}$ Supp \mathcal{B}_{X}^{*}), $|\mathcal{B}_{B}| = 0$ and $|\mathcal{B}_{A}| = 1$, or $|\mathcal{B}_{B}| = 1 < |\mathcal{B}_{A}| \leq d$, and

$$
\uparrow \mathcal{B}_{X}^{*} \cap \uparrow \mathcal{B}_{X'}^{*} \subseteq \uparrow \tau_{\mathcal{B}_{A},\mathcal{B}_{B}}(\mathcal{B}_{X}^{*}) \cap \uparrow \tau_{\mathcal{B}_{B},\mathcal{B}_{A}}(\mathcal{B}_{X'}^{*}).
$$
\n(19)

Now take $A = \bigcup_{v \in \mathcal{B}_A} (X \cap C(\overline{v}))$ and, if $\mathcal{B}_B = \{H\}$, choose any $b \in X' \cap C(H)$ and take $B = \{b\}$, while if $\mathcal{B}_B = \emptyset$, take $B = \emptyset$. Notice that if $B = \emptyset$, then $|\mathcal{B}_A| = 1$ and hence $|A| = 1$, while, if $|B| = 1$, then $H \in \text{Supp } \mathcal{B}_{X'}^* \backslash \text{Supp } \mathcal{B}_X^*$ and hence $X \cap C(H) = \emptyset$.

These sets satisfy $|A| = |\mathcal{B}_A|, |B| = |\mathcal{B}_B|$ and thus $(A, B) \in \mathscr{S}_d$. Now, arguing as in the proof of Theorem [1,](#page-0-1) we have $\mathcal{B}_A = \mathcal{B}_A^*$, $\mathcal{B}_B = \mathcal{B}_B^*$, and

$$
\tau_{\mathcal{B}_A,\mathcal{B}_B}(\mathcal{B}_X^*) = \mathcal{B}_{\tau_{A,B}(X)}^* \text{ and } \operatorname{Supp} \mathcal{B}_{\tau_{A,B}(X)}^* = ((\operatorname{Supp} \mathcal{B}_X^*) \setminus \mathcal{B}_A) \cup \mathcal{B}_B, \qquad (20)
$$

$$
\tau_{\mathcal{B}_B,\mathcal{B}_A}(\mathcal{B}_{X'}^*) = \mathcal{B}_{\tau_{B,A}(X')}^* \text{ and } \operatorname{Supp} \mathcal{B}_{\tau_{B,A}(X')}^* = \operatorname{Supp} \mathcal{B}_{X' \setminus B} \cup \mathcal{B}_A
$$

$$
\supseteq ((\operatorname{Supp} \mathcal{B}_{X'}^*) \setminus \mathcal{B}_B) \cup \mathcal{B}_A \qquad (21)
$$

(where the inclusion in [\(21\)](#page-5-0) is not an equality if $\mathcal{B}_B = \{H\}$ and $m_{\mathcal{B}_{X'}^*}(H) = |X' \cap \mathcal{B}_{X'}|$ $|C(H)| > 1 = m_{\mathcal{B}_B}(H)$ and, still arguing as in the aforementioned proof,

$$
rPSD_N(X) - rPSD_N(\tau_{A,B}(X)) =
$$

=
$$
\sum_{v \in \mathcal{B}_A^*} rPSD_{\overline{N}_v}(A) - \sum_{v \in \mathcal{B}_B^*} rPSD_{\overline{N}_v}(B) + \sum_{e \in \uparrow \mathcal{B}_X^*} w(e) - \sum_{e \in \uparrow \mathcal{B}_{\tau_{A,B}(X)}^*} w(e).
$$

Now, the difference between Eqn. [\(21\)](#page-5-0) above and Eqn. [\(12\)](#page-0-1) in the proof of Theorem [1](#page-0-1) makes dealing with $rPSD_N(\tau_{B,A}(X'))$ – $rPSD_N(X')$ different here from in the aforementioned proof. In the current situation, we have that

$$
\sum_{v \in \text{Supp } B_{\tau_{B,A}(X')}^*} \text{rPSD}_{\overline{N}_v} (\tau_{B,A}(X')) =
$$
\n
$$
= \sum_{v \in \text{Supp } B_{X'\setminus B}^*} \text{rPSD}_{\overline{N}_v} ((X' \setminus B) \cup A) + \sum_{v \in B_A} \text{rPSD}_{\overline{N}_v} ((X' \setminus B) \cup A)
$$
\n
$$
= \sum_{v \in \text{Supp } B_{X'\setminus B}^*} \text{rPSD}_{\overline{N}_v} (X' \setminus B) + \sum_{v \in B_A} \text{rPSD}_{\overline{N}_v} (A)
$$

(because, if $v \in \mathcal{B}_{X' \setminus B}^*$, then $A \cap C(\overline{v}) = \emptyset$, and if $v \in \mathcal{B}_A$, then $X' \cap C(\overline{v}) = \emptyset$);

$$
\sum_{v \in \text{Supp } B_{X'}^*} \text{rPSD}_{\overline{N}_v}(X') = \sum_{v \in (\text{Supp } B_{X'}^*) \backslash \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(X') + \sum_{v \in \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(X')
$$
\n
$$
\leqslant \sum_{v \in (\text{Supp } B_{X'}^*) \backslash \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(X') + \sum_{v \in \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(X' \backslash B) + \sum_{v \in \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(B)
$$
\n(by the subadditivity of rPSD)

\n
$$
= \sum_{v \in (\text{Supp } B_{X'}^*) \backslash \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(X' \backslash B) + \sum_{v \in \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(X' \backslash B) + \sum_{v \in \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(B)
$$
\n(because, $B \cap C(\overline{v}) = \emptyset$ if $v \notin \mathcal{B}_B$)

$$
=\hspace*{-1ex}\sum_{v\in \operatorname{Supp} \mathcal{B}_{X'\setminus B}^*}\operatorname{rPSD}_{\overline{N}_v}(X'\setminus B)+\sum_{v\in \mathcal{B}_B}\operatorname{rPSD}_{\overline{N}_v}(B);
$$

and then

$$
\begin{split} \text{rPSD}_{N}(\tau_{B,A}(X')) &= \text{rPSD}_{N}(X')\\ &= \sum_{v \in \text{Supp } B_{\tau_{B,A}(X')}^*} \text{rPSD}_{\overline{N}_v}(\tau_{B,A}(X')) - \sum_{v \in \text{Supp } B_{X'}^*} \text{rPSD}_{\overline{N}_v}(X') + \sum_{e \in \uparrow B_{\tau_{B,A}(X')}^*} w(e) - \sum_{e \in \uparrow B_{X'}^*} w(e) \\ &\geqslant \sum_{v \in \text{Supp } B_{X'\setminus B}^*} \text{rPSD}_{\overline{N}_v}(X' \setminus B) + \sum_{v \in B_A} \text{rPSD}_{\overline{N}_v}(A) \end{split}
$$

$$
\mathbf{7}
$$

$$
- \sum_{v \in \text{Supp } B^*_{X' \backslash B}} \text{rPSD}_{\overline{N}_v}(X' \setminus B) - \sum_{v \in \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(B) + \sum_{e \in \uparrow B^*_{\tau_{B, A}(X')}} w(e) - \sum_{e \in \uparrow B^*_{X'}} w(e).
$$

=
$$
\sum_{v \in \mathcal{B}_A} \text{rPSD}_{\overline{N}_v}(A) - \sum_{v \in \mathcal{B}_B} \text{rPSD}_{\overline{N}_v}(B) + \sum_{e \in \uparrow B^*_{\tau_{B, A}(X')}} w(e) - \sum_{e \in \uparrow B^*_{X'}} w(e).
$$

Then, as in Theorem [1,](#page-0-1) we conclude that

$$
\mathrm{rPSD}_N(X) - \mathrm{rPSD}_N(\tau_{A,B}(X)) \leqslant \mathrm{rPSD}_N(\tau_{B,A}(X')) - \mathrm{rPSD}_N(X')
$$

if

$$
\sum_{e \in \uparrow \mathcal{B}^*_{X}} \hspace{-0.3cm} w(e) - \hspace{-0.3cm} \sum_{e \in \uparrow \mathcal{B}^*_{\tau_{A,B}(X)}} \hspace{-0.3cm} w(e) \leqslant \hspace{-0.3cm} \sum_{e \in \uparrow \mathcal{B}^*_{\tau_{B,A}(X')}} \hspace{-0.3cm} w(e) - \hspace{-0.3cm} \sum_{e \in \uparrow \mathcal{B}^*_{X'}} \hspace{-0.3cm} w(e),
$$

and this last inequality is deduced from Eqn. [\(19\)](#page-5-1) as in the proof of Theorem [1.](#page-0-1)

3 Proof of Proposition [8](#page-0-1)

To begin with, notice that

$$
\mathscr{S}_{2,3} = \mathscr{S}_0 \cup \{(A, B) \in \mathcal{P}(\Sigma)^2 : 1 \leq |B| < |A| < 6, \ |A| - |B| \leq 4\},
$$
\n
$$
\mathscr{S}_{1,5} = \mathscr{S}_0 \cup \{(A, B) \in \mathcal{P}(\Sigma)^2 : 1 \leq |B| < |A| \leq 5\}
$$

and therefore $\mathscr{S}_{1,5} = \mathscr{S}_{2,3}$. To simplify the notation, we shall abbreviate Opt- $\tau_{1,5,j} =$ Opt- $\tau_{2,3,j}$ by simply Opt- τ_j . Observe that in both cases considered in the statement j can go from 1 to 4.

Let Y be an optimal sequence of N and fix $1 \lt m \leq n$. To ease the task of the reader, we sketch the flow of the proof in Figure [10.](#page-8-0)

By Theorem [1,](#page-0-1)

$$
(m, m-1) \prec^{Y} (m-j_1, m-1+j_1)
$$
 (22)

for some $j_1 \in \{1, 2, 3, 4\}.$

- (1) If $j_1 = 1$, then, we conclude as in (1) in the proof of Proposition [6](#page-0-1) that $Y_m \in$ $\text{Opt-}\tau_1(\text{Opt}_{m-1})$ and $Y_{m-1} \in \text{Opt-}\tau_1^{-1}(\text{Opt}_m)$.
- (2) If $j_1 = 2$ $j_1 = 2$ $j_1 = 2$, then $(m j_1, m 1 + j_1) = (m 2, m + 1)$. Applying Theorem 1 again,

$$
(m+1, m-2) \prec^{Y} (m+1-j_2, m-2+j_2),
$$

for some $j_2 \in \{1, 2, 3, 4\}.$

- (2.a) If $j_2 = 1$ or $j_2 = 2$, we conclude as in (2) in the proof of Proposition [6](#page-0-1) that $Y_m \in \text{Opt-}\tau_2(\text{Opt}_{m-2})$ and $Y_{m-1} \in \text{Opt-}\tau_2^{-1}(\text{Opt}_{m+1})$.
- (2.b) When $j_2 = 3$, we have $(m+1, m-2) \prec^{Y} (m-2, m+1)$ and, as in (2.b) in the proof of Proposition [6,](#page-0-1) we can only conclude that $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+1}).$

$$
\begin{cases}\n\prec_{1}^{Y} (m-1, m) \Rightarrow (a) \\
\prec_{2}^{Y} \{m+1, m-2\} \begin{cases}\n\prec_{1,2}^{Y} \{m, m-1\} \Rightarrow (b) \\
\prec_{3}^{Y} \{m-2, m+1\} \Rightarrow (b) \\
\prec_{4}^{Y} \{m-3, m+2\} \begin{cases}\n\prec_{1,4}^{Y} \{m+1, m-2\} \Rightarrow (b) \\
\prec_{2,3}^{Y} \{m, m-1\} \Rightarrow (a) \\
\prec_{3}^{Y} \{m, m-1\} \Rightarrow (b)\n\end{cases} \\
(m, m-1)\n\end{cases}
$$
\n
$$
(m, m-1)\n\begin{cases}\n\prec_{1,2}^{Y} \{m+1, m-2\} \begin{cases}\n\prec_{1,4}^{Y} \{m, m-1\} \Rightarrow (b) \\
\prec_{3}^{Y} \{m-2, m+1\} \Rightarrow (b) \\
\prec_{4}^{Y} \{m-3, m+2\} \begin{cases}\n\prec_{1,4}^{Y} \{m+1, m-2\} \Rightarrow (b) \\
\prec_{2,3}^{Y} \{m, m-1\} \Rightarrow (a) \\
\prec_{3}^{Y} \{m, m-1\} \Rightarrow (a) \\
\prec_{4}^{Y} \{m-2, m+1\} \begin{cases}\n\prec_{1,2}^{Y} \{m, m-1\} \Rightarrow (a) \\
\prec_{2}^{Y} \{m, m-1\} \Rightarrow (b) \\
\prec_{4}^{Y} \{m-3, m+2\} \Rightarrow (b) \\
\prec_{4}^{Y} \{m-3, m+2\} \Rightarrow (b) \\
\prec_{4}^{Y} \{m-3, m+2\} \Rightarrow (a) \text{ or (b) as after } \\
(m+2, m-3) \prec_{1}^{Y} \{m+1, m-2\} \\
\prec_{4}^{Y} \{m-4, m+3\} \begin{cases}\n\prec_{1,2}^{Y} \{m+2, m-3\} \Rightarrow (a) \text{ or (b) as after } (m, m-1) \prec_{3}^{Y} \{m+2, m-3\} \\
\prec_{4}^{Y} \{m, m-1\} \Rightarrow (a)\n\end{cases}\n\end{cases}
$$

Fig. 10 Sketch of the proof of Proposition [8.](#page-0-1) To make the diagram shorter, we write $(p,q) \prec_{j_1,j_2}^{Y} q_j$ ${p', q'}$ to mean that $(p, q) \prec_{j_1}^Y \{p', q'\}$ or $(p, q) \prec_{j_2}^Y \{p', q'\}.$

(2.c) When $j_2 = 4$, we have $(m+1, m-2) \prec^Y (m-3, m+2)$ $(m+1, m-2) \prec^Y (m-3, m+2)$ $(m+1, m-2) \prec^Y (m-3, m+2)$. Applying Theorem 1 again,

$$
(m+2, m-3) \prec^{Y} (m+2-j_3, m-3+j_3),
$$

for some $j_3 \in \{1, 2, 3, 4\}$. Now:

- (2.c.i) If $j_3 = 1$ or 4, $\{m+2-j_3, m-3+j_3\} = \{m+1, m-2\}$ and, as in (2.b), we conclude that $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+1})$.
- (2.c.ii) If $j_3 = 2$ or 3, $\{m+2-j_3, m-3+j_3\} = \{m, m-1\}$ and, as in (2.a), we conclude that $Y_m \in \text{Opt-}\tau_2(\text{Opt}_{m-2})$ and $Y_{m-1} \in \text{Opt-}\tau_2^{-1}(\text{Opt}_{m+1})$.
- (3) If $j_1 = 3$ $j_1 = 3$ $j_1 = 3$, then $(m j_1, m 1 + j_1) = (m 3, m + 2)$. Applying Theorem 1 again,

$$
(m+2, m-3) \prec^{Y} (m+2-j_2, m-3+j_2),
$$

for some $j_2 \in \{1, 2, 3, 4\}.$

- (3.a) If $j_2 = 2$ or 3, $\{m + 2 j_2, m 3 + j_2\} = \{m, m 1\}$, closing the \prec -chain initiated with [\(22\)](#page-7-0). Then, by Corollary [5,](#page-0-1) $Y_m \in \text{Opt-}\tau_3(\text{Opt}_{m-3})$ and $Y_{m-1} \in$ $Opt-\tau_3^{-1}(Opt_{m+2}).$
- (3.b) If $j_2 = 1$ or 4, $\{m+2-j_2, m-3+j_2\} = \{m+1, m-2\}$. But now we can follow as in case (2) and we conclude that one of the following situations must hold: • $Y_m \in \text{Opt-}\tau_3(\text{Opt}_{m-3})$ and $Y_{m-1} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+2}),$
	- $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+1})$.
- (4) If $j_1 = 4$ $j_1 = 4$ $j_1 = 4$, then $(m j_1, m 1 + j_1) = (m 4, m + 3)$. Applying Theorem 1 again,

$$
(m+3, m-4) \prec^{Y} (m+3-j_2, m-4+j_2),
$$

for some $j_2 \in \{1, 2, 3, 4\}.$

9

- (4.a) If $j_2 = 3$ or 4, $\{m+3-j_2, m-4+j_2\} = \{m, m-1\}$, closing the \prec -chain initiated with [\(22\)](#page-7-0). Then, by Corollary [5,](#page-0-1) $Y_m \in \text{Opt-}\tau_4(\text{Opt}_{m-4})$ and $Y_{m-1} \in$ $Opt-\tau_4^{-1}(Opt_{m+3}).$
- (4.b) If $j_2 = 1$, $(m+3, m-4) \prec^{Y} (m+2, m-3)$ and we can follow as in (3), obtaining that one of the following situations must hold:
	- $Y_m \in \text{Opt-}\tau_4(\text{Opt}_{m-4})$ and $Y_{m-1} \in \text{Opt-}\tau_4^{-1}(\text{Opt}_{m+3}),$
	- $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+1})$.
- (4.c) If $j_2 = 2$, $(m+3, m-4) \prec^{Y} (m+1, m-2)$ and we can follow as in (2), obtaining that one of the following situations must hold:
	- $Y_m \in \text{Opt-}\tau_4(\text{Opt}_{m-4})$ and $Y_{m-1} \in \text{Opt-}\tau_4^{-1}(\text{Opt}_{m+3}),$
	- $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+1})$.

Summarizing, we have two possibilities: either

$$
Y_m \in \bigcup_{j=1}^4 \text{Opt-}\tau_j(\text{Opt}_{m-j}) \text{ and } Y_{m-1} \in \bigcup_{j=1}^4 \text{Opt-}\tau_j^{-1}(\text{Opt}_{m-1+j})
$$

or

$$
Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})
$$
 and $\text{Opt-}\tau_3(Y_{m-2}) \subseteq \text{Opt}_{m+1}$.

By the arbitrary choice of Y and m , this concludes the proof.

4 Some examples

Example 4. Consider the phylogenetic networks in Figure [11:](#page-10-0) above, a semi-4-ary level-1 network and below, a semibinary level-3 network.

In both cases we have the following optimal sets of leaves:

 $\mathrm{Opt}_0\colon \emptyset$ $Opt_1: \{z_0\}$ $Opt_2: \{z_0, z_1\}$ $Opt_3: \{x_{12}, x_{13}, z_0\}$ $Opt_4: \{x_{11}, x_{12}, x_{13}, z_0\}$ $Opt_5: \{x_{00}, x_{01}, x_{02}, x_{03}, z_1\}$ $Opt_6: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{12}, x_{13}\}$ $Opt_7: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{11}, x_{12}, x_{13}\}$ $\mathrm{Opt}_8\colon \{x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}\}$ $\mathrm{Opt}_9: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}, z_1\}$ Opt_{10} : ${x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}, z_0, z_1}$

In the case of the semi-4-ary level-1 network we have

 $Opt_5 \nsubseteq Opt-\tau_1(Opt_4) \cup Opt-\tau_2(Opt_3) = \{\{x_{00}, x_{01}, x_{02}, x_{03}, x_{13}\}\}.$

Fig. 11 The networks in Example [4.](#page-9-0)

However, for the level-3 network, $\mathrm{Opt}_m = \mathrm{Opt} \text{-} \tau_1(\mathrm{Opt}_{m-1})$ and $\mathrm{Opt}_m = \mathrm{Opt} \text{-} \tau_1^{-1}(\tau)$ Opt_{m+1}) for all $1 \leq m \leq n = 10$ and $0 \leq m \leq n$ respectively. This should not be surprising, because in Example [11](#page-10-0) we showed that for this network (although with different weights) we can always find an rPSD-improving pair (A, B) with $|A| - |B| = 1$, hence the first case in the proof of Proposition [7](#page-0-1) could always be chosen and prove that $\mathrm{Opt}_m \subseteq \mathrm{Opt}\text{-}\tau_1(\mathrm{Opt}_{m-1}).$

As we mention in Example [4,](#page-9-0) if some network has some Opt_m not included into $\bigcup_{j=1}^{3} \text{Opt-}\tau_{k,d,j}(\text{Opt}_{m-j}),$ then that network has two sets of leaves X, X' with $m =$ $|\vec{X}| = |X'| + 1$ and no rPSD-improving pairs (A, B) with $|A| - |B| < 3$. Otherwise, if we could always find some rPSD-improving pair with $|A| - |B| < 3$, the proof of Propositions [7](#page-0-1) and [8](#page-0-1) would never need to explore the cases $j_1 \in \{3, 4\}$ and thus obtain a similar result to Proposition [6.](#page-0-1) In Example [5](#page-10-1) we show a semi-5-ary network that has $X = \{x_{00}, \ldots, x_{04}, z_1\}$ and $X' = \{x_{10}, \ldots, x_{13}, z_0\}$ with only rPSD-improving pairs with $|A| - |B| \ge 3$, yet the obvious greedy algorithm would still work in this network. In contrast, we have not found any semibinary level-3 network that has some $X, X' \subseteq \Sigma$ with $|X| = |X'| + 1$ and no rPSD-improving pair (A, B) with $|A| - |B| = 1$. Example 5. The semi-5-ary level-1 network in Figure [12,](#page-11-0) analogous to the semi-4-ary network from Example [4,](#page-9-0) similarly has $\{x_{00}, \ldots, x_{04}, z_1\} \in \mathrm{Opt}_6 \setminus$ $\bigcup_{j=1}^3 \text{Opt-}\tau_j(\text{Opt}_{6-j})$ but still, for all $1 \leqslant m \leqslant n$, $\text{Opt}_{m} \subseteq \bigcup_{j=1}^4 \text{Opt-}\tau_j(\text{Opt}_{m-j}).$

Fig. 12 The network in Example [5.](#page-10-1)