An interchange property for the rooted Phylogenetic Subnet Diversity on phylogenetic networks. Supplementary Material

Tomás M. Coronado¹, Gabriel Riera¹, Francesc Rosselló¹

¹Dept. of Mathematics and Computer Science, University of the Balearic Islands, Palma, E-07122, Spain, and Balearic Islands Health Research Institute (IdISBa), Palma, E-07010, Spain

{t.martinez,gabriel.riera,cesc.rossello}@uib.eu.

1 Proof of Lemma 9

Given a blob \mathcal{B} with set of exit reticulations \mathscr{E} and a subset $\mathscr{E}_1 \subseteq \mathscr{E}$, we denote by $\uparrow_{\mathcal{B},only} \mathscr{E}_1$ the set of nodes of \mathcal{B} with all their descendant exit reticulations in \mathscr{E}_1 :

$$\uparrow_{\mathcal{B},only} \mathscr{E}_1 = \uparrow \mathscr{E}_1 \setminus \uparrow (\mathscr{E} \setminus \mathscr{E}_1) = V(\mathcal{B}) \setminus \uparrow (\mathscr{E} \setminus \mathscr{E}_1).$$

This notation extends the notation $\uparrow_{only} H$ for $H \in \mathscr{E}$ used in the proof of Lemma 10.

We shall actually prove a slightly more general result than Lemma 9: **Lemma 11.** Let \mathcal{B} be a blob, let \mathscr{E}_1 be a subset of its exit reticulations, and let \mathcal{I}_1 be the set of its internal reticulations belonging to $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$. Then, for every independent set of nodes V contained in $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$,

$$|V| \leqslant \sum_{H_i \in \mathscr{E}_1} \deg_{in} H_i + \sum_{H_i \in \mathcal{I}_1} (deg_{in} H_i - 1).$$

Proof. Let \mathcal{I} and \mathscr{E} be the sets of internal and exit reticulations, respectively, of the blob \mathcal{B} . Let $\mathscr{E}_1 = \{H_1, \ldots, H_{l_1}\} \subseteq \mathscr{E}$ and $\mathcal{I}_1 = \mathcal{I} \cap \uparrow_{\mathcal{B},only}(\mathscr{E}_1) = \{H_{l_1+1}, \ldots, H_{l_1+k_1}\}$. For each $i = 1, \ldots, l_1+k_1$, let $d_i = \deg_{in} H_i$. We shall prove that, for every independent

subset V of $\uparrow_{\mathcal{B},only} \mathscr{E}_1$,

$$|V| \leq \sum_{i=1}^{l_1} d_i + \sum_{i=l_1+1}^{l_1+k_1} (d_i - 1)$$

by double induction on $l_1 = |\mathscr{E}_1|$ and $k_{int} = |\mathcal{I}|$. The case when $l_1 = 0$ is obvious, because then $\uparrow_{\mathcal{B},only}(\mathscr{E}_1) = \emptyset$ and hence |V| = 0.

To prove the general inductive step from $l_1 - 1$ to l_1 , we begin with the case when $k_{int} = 0$. So, let \mathcal{B} be a blob without internal reticulations, let \mathscr{E} be its set of exit reticulations, and let $\mathscr{E}_1 = \{H_1, \ldots, H_{l_1}\} \subseteq \mathscr{E}$ with $l_1 \ge 1$. Let us assume, as induction hypothesis, that the thesis is true for all blobs \mathcal{B}' without internal reticulations and for all subsets of exit reticulations \mathscr{E}'_1 of \mathcal{B}' of cardinality $|\mathscr{E}'_1| = l_1 - 1$.

Take a node $H_{l_1} \in \mathscr{E}_1$, with parents $u_1, \ldots, u_{d_{l_1}}$. For each $i = 1, \ldots, d_{l_1}$, let v_i be the lowest ancestor of u_i that has some descendant (exit) reticulation other than H_{l_1} ; see Figure 9. Concatenating each path $v_i \rightsquigarrow u_i$ with the corresponding arc (u_i, H_{l_1}) , we obtain d_{l_1} different paths $v_1 \rightsquigarrow H_{l_1}, \ldots, v_{d_{l_1}} \rightsquigarrow H_{l_1}$ ending in H_{l_1} : observe that the nodes $v_1, \ldots, v_{d_{l_1}}$ need not be different, but each such path ends in a different arc (u_i, H_{l_1}) .

Fig. 8 A semibinary blob \mathcal{B} without internal reticulations illustrating the inductive step for $k_{int} = 0$ in the proof of Lemma 11. All arcs in it except those ending in H_{l_1} actually represent paths. An independent set of nodes in $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$ is represented by filled circles, and the nodes and arcs that are removed from \mathcal{B} to \mathcal{B}' are represented in gray.

Let \mathcal{B}' be the directed graph obtained by removing from \mathcal{B} the set of nodes $\uparrow_{\mathcal{B},only} H_{l_1}$ —that is, the reticulation H_{l_1} and the intermediate nodes of the paths $v_1 \rightsquigarrow H_{l_1}, \ldots, v_{d_{l_1}} \rightsquigarrow H_{l_1}$ — together with the arcs incident to them. The set of exit reticulations of \mathcal{B}' is $\mathscr{E}' = \mathscr{E} \setminus \{H_{l_1}\}$; take $\mathscr{E}'_1 = \{H_1, \ldots, H_{l_1-1}\}$. Since \mathcal{B} did not have internal reticulations, neither does \mathcal{B}' . Then, by the induction hypothesis, $|V'| \leq \sum_{i=1}^{l_1-1} d_i$ for every independent set $V' \subseteq \uparrow_{\mathcal{B}',only} (\mathscr{E}'_1)$.

Now, since $V(\mathcal{B}) = V(\mathcal{B}') \sqcup \uparrow_{\mathcal{B},only} H_{l_1}$, we have that

$$\uparrow_{\mathcal{B},only}(\mathscr{E}_1) = \uparrow_{\mathcal{B}',only}(\mathscr{E}_1') \sqcup \uparrow_{\mathcal{B},only} H_{l_1}.$$

Therefore, any independent subset V' of $\uparrow_{\mathcal{B}',only}(\mathscr{E}'_1)$ can be enlarged to an independent subset V of $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$ by adding at most d_{l_1} nodes, one inside each path $v_i \rightsquigarrow H_{l_1}$. Conversely, if we remove from an independent set of nodes V in \mathcal{B} its nodes that are intermediate in the paths $v_1 \rightsquigarrow H_{l_1}, \ldots, v_{d_{l_1}} \rightsquigarrow H_{l_1}$ (and by the independence condition each such path will contain at most one element of V and therefore we remove in this way at most d_{l_1} nodes), or the node H_{l_1} if it belongs to V (and then no intermediate node in any path $v_i \rightsquigarrow H_{l_1}$ will belong to V), we obtain an independent subset V' of \mathcal{B}' .

node in any path $v_i \rightsquigarrow H_{l_1}$ will belong to V), we obtain an independent subset V' of \mathcal{B}' . Then, since $|V'| \leq \sum_{i=1}^{l_1-1} d_i$, any independent subset of $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$ has cardinality at most $\sum_{i=1}^{l_1-1} d_i + d_{l_1}$. This proves this inductive step when $k_{int} = 0$.

Let us prove now, for any fixed $l_1 > 0$, the inductive step from $k_{int} - 1$ to k_{int} . So, assume that the thesis in the statement is true for all blobs \mathcal{B}' with $k_{int} - 1$ internal reticulations and subsets \mathscr{E}'_1 of exit reticulations of cardinality $|\mathscr{E}'_1| \leq l_1$, and let \mathcal{B} be a blob with k_{int} internal reticulations and $\mathscr{E}_1 = \{H_1, \ldots, H_{l_1}\}$ a set of $l_1 \geq 1$ exit reticulations. Let $\mathcal{I}_1 = \mathcal{I} \cap \uparrow_{\mathcal{B},only} (\mathscr{E}_1) = \{H_{l_1+1}, \ldots, H_{l_1+k_1}\}.$

Let H be an internal reticulation with no reticulate proper ancestor and let u_1, \ldots, u_d be its parents. For each $i = 1, \ldots, d$, let v_i be the lowest ancestor of u_i with some path to an exit reticulation that does not contain H. Concatenating each path $v_i \rightsquigarrow u_i$ with the corresponding arc (u_i, H) , we obtain d different paths $v_1 \leadsto H, \ldots, v_d \leadsto H$ ending in H: as before, observe that the nodes v_1, \ldots, v_d need not be different, but each such path ends in a different arc (u_i, H) .

Fig. 9 A semibinary blob \mathcal{B} illustrating the inductive step from $k_{int} - 1$ to k_{int} in the proof of Lemma 11. All arcs in it except those ending in H actually represent paths. An independent set of nodes in $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$ is represented by filled circles. The nodes and arcs removed from N to N' are represented in gray.

Let \mathcal{B}' be the directed graph obtained by removing the intermediate nodes in all paths $v_i \rightsquigarrow H$ except for one path $v_1 \rightsquigarrow H$, together with the arcs incident to them; if $v_i = u_i$, we simply remove the arc (u_i, H) . The blob \mathcal{B}' still has the same set of exit reticulations \mathscr{E} as \mathcal{B} , but it has $k_{int} - 1$ internal reticulations because H has become an elementary tree node in \mathcal{B}' . Moreover, if we denote by \mathcal{I}'_1 the set of internal reticulations in $\uparrow_{\mathcal{B}',only}(\mathscr{E}_1)$, then $\mathcal{I}'_1 = \mathcal{I}_1$ if $H \notin \mathcal{I}_1$ and $\mathcal{I}'_1 = \mathcal{I}_1 \setminus \{H\}$ if $H \in \mathcal{I}_1$. If this last case happens, let us assume without any loss of generality that $H = H_{l_1+k_1}$ and hence that $d = d_{l_1+k_1}$.

Then, by the induction hypothesis, for every independent set $V' \subseteq \uparrow_{\mathcal{B}',only}(\mathscr{E}_1)$

$$|V'| \leqslant \begin{cases} \sum_{i=1}^{l_1} d_1 + \sum_{i=l_1+1}^{l_1+k_1} (d_i - 1) & \text{if } H \notin \mathcal{I}_1 \\ \sum_{i=1}^{l_1} d_1 + \sum_{i=l_1+1}^{l_1+k_1-1} (d_i - 1) & \text{if } H = H_{l_1+k_1} \in \mathcal{I}_1 \end{cases}$$
(16)

Now, notice that any independent set of nodes V' in \mathcal{B}' can be enlarged to an independent set of nodes V in \mathcal{B} by adding at most one node inside each one of the d-1 removed paths $v_i \rightsquigarrow H$. Conversely, if we remove from an independent subset V of \mathcal{B} its nodes that are intermediate in the d-1 removed paths $v_i \rightsquigarrow H$ (and by the independence condition each such path will contain at most one element of V and therefore we are removing in this way at most d nodes from V), we obtain an independent subset V' of \mathcal{B}' . Then:

• If $H \notin \uparrow_{\mathcal{B},only}(\mathscr{E}_1)$, any maximal independent subset of $\uparrow_{\mathcal{B}',only}(\mathscr{E}_1)$ is also a maximal independent subset of $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$. Then, by Eqn. (16), for every maximal independent set $V \subseteq \uparrow_{\mathcal{B},only}(\mathscr{E}_1)$

$$|V| \leq \sum_{i=1}^{l_1} d_i + \sum_{i=l_1+1}^{l_1+k_1} (d_i - 1).$$

• If $H = H_{l_1+k_1} \in \uparrow_{\mathcal{B},only}(\mathscr{E}_1)$, any maximal independent subset of $\uparrow_{\mathcal{B}',only}(\mathscr{E}_1)$ can be enlarged to a maximal independent subset of $\uparrow_{\mathcal{B},only}(\mathscr{E}_1)$ by adding at most $d_{l_1+k_1}-1$ nodes. Then, by Eqn. (16),

$$|V| \leqslant \sum_{i=1}^{l_1} d_i + \sum_{i=l_1+1}^{l_1+k_1-1} (d_i - 1) + (d_{l_1+k_1} - 1)$$

for every maximal independent set $V \subseteq \uparrow_{\mathcal{B},only} (\mathscr{E}_1)$.

This finishes the proof of the inductive step.

Returning to Lemma 9, if
$$\mathcal{B}$$
 is a semi-*d*-ary *k*-blob with *l* exit reticulations and $|\mathscr{E}_1| = l_1$, then each reticulation has in-degree at most *d* and $|\mathcal{I}_1| \leq k - l$, and then

$$|V| \leq \sum_{H_i \in \mathscr{E}_1} \deg_{in} H_i + \sum_{H_i \in \mathcal{I}_1} (deg_{in} H_i - 1) \leq |\mathscr{E}_1| \cdot d + (k - |\mathscr{E}|)(d - 1)$$

as states Lemma 9.

2 Proof of Corollary 2

We first prove a refinement of Lemma 10 for level-1 networks.

Lemma 12. Let \mathcal{B} be a semi-d-ary level-1 blob with exit reticulation H and let X, X' be two multisets of nodes of \mathcal{B} with |X'| < |X| satisfying the following two further conditions:

(i) For each $v \in V(\mathcal{B})$, if $m_{X'}(v) < m_X(v)$, then $m_X(v) = 1$ and $m_{X'}(v) = 0$. (ii) $H \in X \cup X'$.

Then

$$\uparrow X \cap \uparrow X' \subseteq \uparrow \tau_{A,B}(X) \cap \uparrow \tau_{B,A}(X') \tag{17}$$

for some subsets $A \subseteq \text{Supp } X \setminus \text{Supp } X'$ and $B \subseteq \{H\} \cap (\text{Supp } X' \setminus \text{Supp } X)$ such that either $B = \emptyset$ and |A| = 1, or $B = \{H\}$ and $1 < |A| \leq d$.

Proof. Using the same notations as in the proof of Lemma 10, observe that the Eqn. (6) therein holds identically in this case, i.e.,

$$0 < |X| - |X'| \le |\hat{X}| - |\hat{X}'|.$$
(18)

In addition, $\mathscr{E} = \{H\}$. Now consider the following cases:

(a) If there exists some $x \in \widehat{X}$ with a proper descendant in X, then $A = \{x\}$, $B = \emptyset$ satisfy the required properties as proved in case (a) of Lemma 10.

(b) If $H \in X$ and no $x \in \hat{X}$ has any proper descendant in X, then $\hat{X} = \{H\}$, and then $\hat{X}' = \emptyset$ by Eqn. (18) and $\uparrow X' = \uparrow (X \setminus \{H\})$ because, since $\hat{X}' = \emptyset$, $X' = X \setminus \hat{X} = X \setminus \{H\}$. Then, $A = \{H\}$ and $B = \emptyset$ satisfy the required properties.

(c) If $H \notin X$ and no $x \in \widehat{X}$ has any proper descendant in X, then, on the one hand, H belongs to $\operatorname{Supp} X' \setminus \operatorname{Supp} X$ by condition *(ii)*, and hence $H \in \widehat{X}'$, and, on the other hand, \widehat{X} is an independent set of at most d nodes (because there are at most d different paths from the root to H).

For brevity, let X'' denote the full sub-multiset of X' supported on Supp $X' \setminus \{H\}$. By Eqn. (18),

$$|\widehat{X}| > |\widehat{X}'| \ge |\operatorname{Supp} X'| = |\operatorname{Supp} X''| + 1$$

and thus $|\hat{X}| \ge |\operatorname{Supp} X''| + 2$. Now, since \mathcal{B} does not contain internal reticulations and the nodes in \hat{X} are independent, each node in X'' has at most one ancestor in \hat{X} . This implies that $|\hat{X} \cap \uparrow X''| \le |\operatorname{Supp} X''|$ and hence

$$|\operatorname{Supp} X''| + 2 \leqslant |\widehat{X}| = |\widehat{X} \cap \uparrow X''| + |\widehat{X} \setminus \uparrow X''| \leqslant |\operatorname{Supp} X''| + |\widehat{X} \setminus \uparrow X''|,$$

which implies $|\widehat{X} \setminus \uparrow X''| \ge 2$.

Take then $A = \hat{X} \setminus \uparrow X''$ and $B = \{H\}$. As we have just seen, $2 \leq |A| \leq |\hat{X}| \leq d$. Thus, A, B satisfy the required properties in the statement. As far as Eqn. (17) goes, that is,

$$\uparrow X \cap \uparrow X' \subseteq \uparrow ((X \setminus A) \cup \{H\}) \cap \uparrow ((X' \setminus \{H\}) \cup A),$$

observe that, since H is the only exit reticulation of \mathcal{B} , $\uparrow H = V(\mathcal{B})$ and hence $\uparrow X' = \uparrow((X \setminus A) \cup \{H\}) = V(\mathcal{B})$. So, we actually must prove that

$$\uparrow X \subseteq \uparrow (X' \setminus \{H\}) \cup \uparrow A.$$

We must consider two cases.

- If $m_{X'}(H) > 1$, then $H \in X' \setminus \{H\}$ and thus $\uparrow(X' \setminus \{H\}) = V(\mathcal{B})$ and the desired inclusion is obvious.
- If $m_{X'}(H) = 1$, then $X' \setminus \{H\} = X''$, and in this case

$$\uparrow X = \uparrow \widehat{X} \cup \uparrow (X \setminus \widehat{X}) = \uparrow (\widehat{X} \cap \uparrow X'') \cup \uparrow (\widehat{X} \setminus \uparrow X'') \cup \uparrow (X' \setminus \widehat{X}')$$
$$\subseteq \uparrow X'' \cup \uparrow A \cup \uparrow (X' \setminus \{H\}) = \uparrow (X' \setminus \{H\}) \cup \uparrow A$$

as desired.

This finishes the proof of case (c).

We can proceed now with the proof of Corollary 2. Arguing as in the proof of Theorem 1, we can assume that N is at-most-bifurcating and in particular that no node in N is the split node of more than one blob. Notice moreover that now each blob has only one reticulation: its exit reticulation.

We follow the proof of Theorem 1 by induction on the number α of arcs of the network. The base case $\alpha = 0$ is again obvious, and thus we must only consider the inductive step. So, let N be a semi-d-ary level-1 phylogenetic network on Σ with more than one arc, and let $X, X' \subseteq \Sigma$ with |X'| < |X|. If |X| = 1 the exchange property is trivially satisfied taking $(A, B) = (X, \emptyset) \in \mathscr{S}_0$, so we assume $|X| \ge 2$.

Arguing as in cases (a), (b) and (c.1) in the proof of Theorem 1, we can assume that:

- (i) The root r is the split node of a single, semi-d-ary blob \mathcal{B} .
- (ii) For every node v in \mathcal{B} , if v has a child \overline{v} outside \mathcal{B} such that $|X \cap C(\overline{v})| > |X' \cap C(\overline{v})|$, then $|X \cap C(\overline{v})| = 1$ and $|X' \cap C(\overline{v})| = 0$.
- (iii) $C(H) \cap (X \cup X') \neq \emptyset$.

We use henceforth the same notations as in point (c.2) in the proof of that theorem. The hypotheses of Lemma 12 are satisfied by \mathcal{B}_X^* and $\mathcal{B}_{X'}^*$. Then, there exist two sets $\mathcal{B}_A, \mathcal{B}_B \subseteq V(\mathcal{B})$ such that $\mathcal{B}_A \subseteq \text{Supp } \mathcal{B}_X^* \setminus \text{Supp } \mathcal{B}_{X'}^*, \mathcal{B}_B \subseteq \{H\} \cap (\text{Supp } \mathcal{B}_{X'}^* \setminus \text{Supp } \mathcal{B}_X^*), |\mathcal{B}_B| = 0 \text{ and } |\mathcal{B}_A| = 1, \text{ or } |\mathcal{B}_B| = 1 < |\mathcal{B}_A| \leq d, \text{ and}$

$$\uparrow \mathcal{B}_X^* \cap \uparrow \mathcal{B}_{X'}^* \subseteq \uparrow \tau_{\mathcal{B}_A, \mathcal{B}_B}(\mathcal{B}_X^*) \cap \uparrow \tau_{\mathcal{B}_B, \mathcal{B}_A}(\mathcal{B}_{X'}^*).$$
(19)

Now take $A = \bigcup_{v \in \mathcal{B}_A} (X \cap C(\bar{v}))$ and, if $\mathcal{B}_B = \{H\}$, choose any $b \in X' \cap C(H)$ and take $B = \{b\}$, while if $\mathcal{B}_B = \emptyset$, take $B = \emptyset$. Notice that if $B = \emptyset$, then $|\mathcal{B}_A| = 1$ and hence |A| = 1, while, if |B| = 1, then $H \in \text{Supp } \mathcal{B}_{X'}^* \setminus \text{Supp } \mathcal{B}_X^*$ and hence $X \cap C(H) = \emptyset$.

These sets satisfy $|A| = |\mathcal{B}_A|$, $|B| = |\mathcal{B}_B|$ and thus $(A, B) \in \mathscr{S}_d$. Now, arguing as in the proof of Theorem 1, we have $\mathcal{B}_A = \mathcal{B}_A^*$, $\mathcal{B}_B = \mathcal{B}_B^*$, and

$$\tau_{\mathcal{B}_{A},\mathcal{B}_{B}}(\mathcal{B}_{X}^{*}) = \mathcal{B}_{\tau_{A,B}(X)}^{*} \text{ and } \operatorname{Supp} \mathcal{B}_{\tau_{A,B}(X)}^{*} = ((\operatorname{Supp} \mathcal{B}_{X}^{*}) \setminus \mathcal{B}_{A}) \cup \mathcal{B}_{B}, \qquad (20)$$

$$\tau_{\mathcal{B}_{B},\mathcal{B}_{A}}(\mathcal{B}_{X'}^{*}) = \mathcal{B}_{\tau_{B,A}(X')}^{*} \text{ and } \operatorname{Supp} \mathcal{B}_{\tau_{B,A}(X')}^{*} = \operatorname{Supp} \mathcal{B}_{X'\setminus B} \cup \mathcal{B}_{A}$$

$$\supseteq ((\operatorname{Supp} \mathcal{B}_{X'}^{*}) \setminus \mathcal{B}_{B}) \cup \mathcal{B}_{A} \qquad (21)$$

(where the inclusion in (21) is not an equality if $\mathcal{B}_B = \{H\}$ and $m_{\mathcal{B}_{X'}^*}(H) = |X' \cap C(H)| > 1 = m_{\mathcal{B}_B}(H)$) and, still arguing as in the aforementioned proof,

$$\operatorname{rPSD}_{N}(X) - \operatorname{rPSD}_{N}(\tau_{A,B}(X)) =$$

=
$$\sum_{v \in \mathcal{B}_{A}^{*}} \operatorname{rPSD}_{\overline{N}_{v}}(A) - \sum_{v \in \mathcal{B}_{B}^{*}} \operatorname{rPSD}_{\overline{N}_{v}}(B) + \sum_{e \in \uparrow \mathcal{B}_{X}^{*}} w(e) - \sum_{e \in \uparrow \mathcal{B}_{\tau_{A,B}}^{*}(X)} w(e).$$

Now, the difference between Eqn. (21) above and Eqn. (12) in the proof of Theorem 1 makes dealing with $\operatorname{rPSD}_N(\tau_{B,A}(X')) - \operatorname{rPSD}_N(X')$ different here from in the aforementioned proof. In the current situation, we have that

$$\sum_{v \in \text{Supp } \mathcal{B}^*_{\mathcal{T}_{B,A}(X')}} \operatorname{rPSD}_{\overline{N}_v} (\tau_{B,A}(X')) =$$

$$= \sum_{v \in \text{Supp } \mathcal{B}^*_{X' \setminus B}} \operatorname{rPSD}_{\overline{N}_v} ((X' \setminus B) \cup A) + \sum_{v \in \mathcal{B}_A} \operatorname{rPSD}_{\overline{N}_v} ((X' \setminus B) \cup A)$$

$$= \sum_{v \in \text{Supp } \mathcal{B}^*_{X' \setminus B}} \operatorname{rPSD}_{\overline{N}_v} (X' \setminus B) + \sum_{v \in \mathcal{B}_A} \operatorname{rPSD}_{\overline{N}_v} (A)$$

(because, if $v \in \mathcal{B}^*_{X' \setminus B}$, then $A \cap C(\bar{v}) = \emptyset$, and if $v \in \mathcal{B}_A$, then $X' \cap C(\bar{v}) = \emptyset$);

$$\sum_{v \in \text{Supp } \mathcal{B}_{X'}^*} \operatorname{rPSD}_{\overline{N}_v}(X') = \sum_{v \in (\text{Supp } \mathcal{B}_{X'}^*) \setminus \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(X') + \sum_{v \in \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(X')$$
$$\leqslant \sum_{v \in (\text{Supp } \mathcal{B}_{X'}^*) \setminus \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(X') + \sum_{v \in \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(X' \setminus B) + \sum_{v \in \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(B)$$
(by the subadditivity of rPSD)

(by the subadditivity of rPSD)

$$= \sum_{v \in (\text{Supp } \mathcal{B}^*_{X'}) \setminus \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(X' \setminus B) + \sum_{v \in \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(X' \setminus B) + \sum_{v \in \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(B)$$

(because, $B \cap C(\overline{v}) = \emptyset$ if $v \notin \mathcal{B}_B$)
$$= \sum_{v \in \text{Supp } \mathcal{B}^*_{X' \setminus B}} \operatorname{rPSD}_{\overline{N}_v}(X' \setminus B) + \sum_{v \in \mathcal{B}_B} \operatorname{rPSD}_{\overline{N}_v}(B);$$

and then

$$rPSD_{N}(\tau_{B,A}(X')) - rPSD_{N}(X')$$

$$= \sum_{v \in Supp \mathcal{B}^{*}_{\tau_{B,A}(X')}} rPSD_{\overline{N}_{v}}(\tau_{B,A}(X')) - \sum_{v \in Supp \mathcal{B}^{*}_{X'}} rPSD_{\overline{N}_{v}}(X') + \sum_{e \in \uparrow \mathcal{B}^{*}_{\tau_{B,A}(X')}} w(e) - \sum_{e \in \uparrow \mathcal{B}^{*}_{X'}} w(e)$$

$$\geq \sum_{v \in Supp \mathcal{B}^{*}_{X' \setminus B}} rPSD_{\overline{N}_{v}}(X' \setminus B) + \sum_{v \in \mathcal{B}_{A}} rPSD_{\overline{N}_{v}}(A)$$

$$\begin{split} & -\sum_{v\in \operatorname{Supp}\mathcal{B}^*_{X'\setminus B}}\operatorname{rPSD}_{\overline{N}_v}(X'\setminus B) - \sum_{v\in \mathcal{B}_B}\operatorname{rPSD}_{\overline{N}_v}(B) + +\sum_{e\in \uparrow \mathcal{B}^*_{\tau_{B,A}(X')}} w(e) - \sum_{e\in \uparrow \mathcal{B}^*_{X'}} w(e) \\ & = \sum_{v\in \mathcal{B}_A}\operatorname{rPSD}_{\overline{N}_v}(A) - \sum_{v\in \mathcal{B}_B}\operatorname{rPSD}_{\overline{N}_v}(B) + \sum_{e\in \uparrow \mathcal{B}^*_{\tau_{B,A}(X')}} w(e) - \sum_{e\in \uparrow \mathcal{B}^*_{X'}} w(e). \end{split}$$

Then, as in Theorem 1, we conclude that

$$\operatorname{rPSD}_N(X) - \operatorname{rPSD}_N(\tau_{A,B}(X)) \leqslant \operatorname{rPSD}_N(\tau_{B,A}(X')) - \operatorname{rPSD}_N(X')$$

if

$$\sum_{e \in \uparrow \mathcal{B}^*_X} w(e) - \sum_{e \in \uparrow \mathcal{B}^*_{\tau_{A,B}(X)}} w(e) \leqslant \sum_{e \in \uparrow \mathcal{B}^*_{\tau_{B,A}(X')}} w(e) - \sum_{e \in \uparrow \mathcal{B}^*_{X'}} w(e)$$

and this last inequality is deduced from Eqn. (19) as in the proof of Theorem 1.

3 Proof of Proposition 8

To begin with, notice that

$$\begin{aligned} \mathscr{S}_{2,3} &= \mathscr{S}_0 \cup \{ (A,B) \in \mathcal{P}(\Sigma)^2 : 1 \leqslant |B| < |A| < 6, \ |A| - |B| \leqslant 4 \}, \\ \mathscr{S}_{1,5} &= \mathscr{S}_0 \cup \{ (A,B) \in \mathcal{P}(\Sigma)^2 : 1 \leqslant |B| < |A| \leqslant 5 \} \end{aligned}$$

and therefore $\mathscr{S}_{1,5} = \mathscr{S}_{2,3}$. To simplify the notation, we shall abbreviate Opt- $\tau_{1,5,j} =$ Opt- $\tau_{2,3,j}$ by simply Opt- τ_j . Observe that in both cases considered in the statement j can go from 1 to 4.

Let Y be an optimal sequence of N and fix $1 < m \leq n$. To ease the task of the reader, we sketch the flow of the proof in Figure 10.

By Theorem 1,

$$(m, m-1) \prec^{Y} (m-j_1, m-1+j_1)$$
 (22)

for some $j_1 \in \{1, 2, 3, 4\}$.

- (1) If $j_1 = 1$, then, we conclude as in (1) in the proof of Proposition 6 that $Y_m \in$ Opt- $\tau_1(\text{Opt}_{m-1})$ and $Y_{m-1} \in \text{Opt}-\tau_1^{-1}(\text{Opt}_m)$. (2) If $j_1 = 2$, then $(m - j_1, m - 1 + j_1) = (m - 2, m + 1)$. Applying Theorem 1 again,

$$(m+1, m-2) \prec^{Y} (m+1-j_2, m-2+j_2),$$

for some $j_2 \in \{1, 2, 3, 4\}$.

- (2.a) If $j_2 = 1$ or $j_2 = 2$, we conclude as in (2) in the proof of Proposition 6 that $Y_m \in \operatorname{Opt} \tau_2(\operatorname{Opt}_{m-2})$ and $Y_{m-1} \in \operatorname{Opt} \tau_2^{-1}(\operatorname{Opt}_{m+1})$. (2.b) When $j_2 = 3$, we have $(m+1, m-2) \prec^Y (m-2, m+1)$ and, as in (2.b) in the
- proof of Proposition 6, we can only conclude that $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \operatorname{Opt} \tau_3^{-1}(\operatorname{Opt}_{m+1})$.

Fig. 10 Sketch of the proof of Proposition 8. To make the diagram shorter, we write $(p,q) \prec_{j_1,j_2}^{Y}$ $\{p',q'\} \text{ to mean that } (p,q) \prec^Y_{j_1} \{p',q'\} \text{ or } (p,q) \prec^Y_{j_2} \{p',q'\}.$

(2.c) When $j_2 = 4$, we have $(m+1, m-2) \prec^Y (m-3, m+2)$. Applying Theorem 1 again,

$$(m+2,m-3) \prec^{Y} (m+2-j_3,m-3+j_3),$$

for some $j_3 \in \{1, 2, 3, 4\}$. Now:

- (2.c.i) If $j_3 = 1$ or 4, $\{m+2-j_3, m-3+j_3\} = \{m+1, m-2\}$ and, as in (2.b), we conclude that $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+1})$. (2.c.ii) If $j_3 = 2$ or 3, $\{m+2-j_3, m-3+j_3\} = \{m, m-1\}$ and, as in (2.a), we
- conclude that $Y_m \in \text{Opt-}\tau_2(\text{Opt}_{m-2})$ and $Y_{m-1} \in \text{Opt-}\tau_2^{-1}(\text{Opt}_{m+1})$. (3) If $j_1 = 3$, then $(m j_1, m 1 + j_1) = (m 3, m + 2)$. Applying Theorem 1 again,

$$(m+2, m-3) \prec^{Y} (m+2-j_2, m-3+j_2),$$

for some $j_2 \in \{1, 2, 3, 4\}$.

- (3.a) If $j_2 = 2$ or 3, $\{m + 2 j_2, m 3 + j_2\} = \{m, m 1\}$, closing the \prec -chain initiated with (22). Then, by Corollary 5, $Y_m \in \text{Opt} - \tau_3(\text{Opt}_{m-3})$ and $Y_{m-1} \in$ $\operatorname{Opt-}\tau_3^{-1}(\operatorname{Opt}_{m+2}).$
- (3.b) If $j_2 = 1$ or 4, $\{m+2-j_2, m-3+j_2\} = \{m+1, m-2\}$. But now we can follow as in case (2) and we conclude that one of the following situations must hold: • $Y_m \in \operatorname{Opt} \tau_3(\operatorname{Opt}_{m-3})$ and $Y_{m-1} \in \operatorname{Opt} \tau_3^{-1}(\operatorname{Opt}_{m+2})$,
- $Y_{m+1} \in \text{Opt-}\tau_3(\text{Opt}_{m-2})$ and $Y_{m-2} \in \text{Opt-}\tau_3^{-1}(\text{Opt}_{m+1})$. (4) If $j_1 = 4$, then $(m j_1, m 1 + j_1) = (m 4, m + 3)$. Applying Theorem 1 again,

$$(m+3, m-4) \prec^{Y} (m+3-j_2, m-4+j_2),$$

for some $j_2 \in \{1, 2, 3, 4\}$.

- (4.a) If $j_2 = 3$ or 4, $\{m + 3 j_2, m 4 + j_2\} = \{m, m 1\}$, closing the \prec -chain initiated with (22). Then, by Corollary 5, $Y_m \in \text{Opt-}\tau_4(\text{Opt}_{m-4})$ and $Y_{m-1} \in \text{Opt-}\tau_4^{-1}(\text{Opt}_{m+3})$.
- (4.b) If $j_2 = 1$, $(m+3, m-4) \prec^Y (m+2, m-3)$ and we can follow as in (3), obtaining that one of the following situations must hold:
 - $Y_m \in \operatorname{Opt-}\tau_4(\operatorname{Opt}_{m-4})$ and $Y_{m-1} \in \operatorname{Opt-}\tau_4^{-1}(\operatorname{Opt}_{m+3})$,
 - $Y_{m+1} \in \operatorname{Opt} \tau_3(\operatorname{Opt}_{m-2})$ and $Y_{m-2} \in \operatorname{Opt} \tau_3^{-1}(\operatorname{Opt}_{m+1})$.
- (4.c) If $j_2 = 2$, $(m + 3, m 4) \prec^Y (m + 1, m 2)$ and we can follow as in (2), obtaining that one of the following situations must hold:
 - $Y_m \in \operatorname{Opt-}\tau_4(\operatorname{Opt}_{m-4})$ and $Y_{m-1} \in \operatorname{Opt-}\tau_4^{-1}(\operatorname{Opt}_{m+3})$,
 - $Y_{m+1} \in \operatorname{Opt} \tau_3(\operatorname{Opt}_{m-2})$ and $Y_{m-2} \in \operatorname{Opt} \tau_3^{-1}(\operatorname{Opt}_{m+1})$.

Summarizing, we have two possibilities: either

$$Y_m \in \bigcup_{j=1}^4 \operatorname{Opt-}\tau_j(\operatorname{Opt}_{m-j}) \text{ and } Y_{m-1} \in \bigcup_{j=1}^4 \operatorname{Opt-}\tau_j^{-1}(\operatorname{Opt}_{m-1+j})$$

or

$$Y_{m+1} \in \operatorname{Opt}_{\tau_3}(\operatorname{Opt}_{m-2})$$
 and $\operatorname{Opt}_{\tau_3}(Y_{m-2}) \subseteq \operatorname{Opt}_{m+1}$

By the arbitrary choice of Y and m, this concludes the proof.

4 Some examples

Example 4. Consider the phylogenetic networks in Figure 11: above, a semi-4-ary level-1 network and below, a semibinary level-3 network.

In both cases we have the following optimal sets of leaves:

 $\begin{array}{l} \operatorname{Opt}_{0}: \emptyset \\\\ \operatorname{Opt}_{1}: \{z_{0}\} \\\\ \operatorname{Opt}_{2}: \{z_{0}, z_{1}\} \\\\ \operatorname{Opt}_{3}: \{x_{12}, x_{13}, z_{0}\} \\\\ \operatorname{Opt}_{4}: \{x_{11}, x_{12}, x_{13}, z_{0}\} \\\\ \operatorname{Opt}_{5}: \{x_{00}, x_{01}, x_{02}, x_{03}, z_{1}\} \\\\ \operatorname{Opt}_{6}: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{12}, x_{13}\} \\\\ \operatorname{Opt}_{7}: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{11}, x_{12}, x_{13}\} \\\\ \operatorname{Opt}_{8}: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}\} \\\\ \operatorname{Opt}_{9}: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}, z_{1}\} \\\\ \operatorname{Opt}_{10}: \{x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}, z_{0}, z_{1}\} \end{array}$

In the case of the semi-4-ary level-1 network we have

 $Opt_5 \nsubseteq Opt - \tau_1(Opt_4) \cup Opt - \tau_2(Opt_3) = \{ \{x_{00}, x_{01}, x_{02}, x_{03}, x_{13} \} \}.$

Fig. 11 The networks in Example 4.

However, for the level-3 network, $\operatorname{Opt}_m = \operatorname{Opt} \tau_1(\operatorname{Opt}_{m-1})$ and $\operatorname{Opt}_m = \operatorname{Opt} \tau_1^{-1}(\operatorname{Opt}_{m+1})$ for all $1 \leq m \leq n = 10$ and $0 \leq m < n$ respectively. This should not be surprising, because in Example 11 we showed that for this network (although with different weights) we can always find an rPSD-improving pair (A, B) with |A| - |B| = 1, hence the first case in the proof of Proposition 7 could always be chosen and prove that $\operatorname{Opt}_m \subseteq \operatorname{Opt} \tau_1(\operatorname{Opt}_{m-1})$.

As we mention in Example 4, if some network has some Opt_m not included into $\bigcup_{j=1}^3 \operatorname{Opt} \tau_{k,d,j}(\operatorname{Opt}_{m-j})$, then that network has two sets of leaves X, X' with m = |X| = |X'| + 1 and no rPSD-improving pairs (A, B) with |A| - |B| < 3. Otherwise, if we could always find some rPSD-improving pair with |A| - |B| < 3, the proof of Propositions 7 and 8 would never need to explore the cases $j_1 \in \{3, 4\}$ and thus obtain a similar result to Proposition 6. In Example 5 we show a semi-5-ary network that has $X = \{x_{00}, \ldots, x_{04}, z_1\}$ and $X' = \{x_{10}, \ldots, x_{13}, z_0\}$ with only rPSD-improving pairs with $|A| - |B| \ge 3$, yet the obvious greedy algorithm would still work in this network. In contrast, we have not found any semibinary level-3 network that has some $X, X' \subseteq \Sigma$ with |X| = |X'| + 1 and no rPSD-improving pair (A, B) with |A| - |B| = 1. **Example 5.** The semi-5-ary level-1 network in Figure 12, analogous to the semi-4-ary network from Example 4, similarly has $\{x_{00}, \ldots, x_{04}, z_1\} \in \operatorname{Opt}_6 \setminus \bigcup_{j=1}^3 \operatorname{Opt} \tau_j(\operatorname{Opt}_{6-j})$ but still, for all $1 \le m \le n$, $\operatorname{Opt}_m \subseteq \bigcup_{j=1}^4 \operatorname{Opt} \tau_j(\operatorname{Opt}_{m-j})$.

Fig. 12 The network in Example 5.