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1 Proof of Lemma 9

Given a blob B with set of exit reticulations E and a subset E1 ⊆ E , we denote by
↑B,only E1 the set of nodes of B with all their descendant exit reticulations in E1:

↑B,only E1 = ↑E1 \ ↑(E \ E1) = V (B) \ ↑(E \ E1).

This notation extends the notation ↑only H for H ∈ E used in the proof of Lemma 10.
We shall actually prove a slightly more general result than Lemma 9:

Lemma 11. Let B be a blob, let E1 be a subset of its exit reticulations, and let I1 be the
set of its internal reticulations belonging to ↑B,only (E1). Then, for every independent
set of nodes V contained in ↑B,only (E1),

|V | ⩽
∑

Hi∈E1

degin Hi +
∑

Hi∈I1

(deginHi − 1).

Proof. Let I and E be the sets of internal and exit reticulations, respectively, of the
blob B. Let E1 = {H1, . . . ,Hl1} ⊆ E and I1 = I∩ ↑B,only (E1) = {Hl1+1, . . . ,Hl1+k1

}.
For each i = 1, . . . , l1+k1, let di = degin Hi. We shall prove that, for every independent
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subset V of ↑B,only E1,

|V | ⩽
l1∑
i=1

di +

l1+k1∑
i=l1+1

(di − 1)

by double induction on l1 = |E1| and kint = |I|. The case when l1 = 0 is obvious,
because then ↑B,only (E1) = ∅ and hence |V | = 0.

To prove the general inductive step from l1 − 1 to l1, we begin with the case when
kint = 0. So, let B be a blob without internal reticulations, let E be its set of exit
reticulations, and let E1 = {H1, . . . ,Hl1} ⊆ E with l1 ⩾ 1. Let us assume, as induction
hypothesis, that the thesis is true for all blobs B′ without internal reticulations and
for all subsets of exit reticulations E ′

1 of B′ of cardinality |E ′
1| = l1 − 1.

Take a node Hl1 ∈ E1, with parents u1, . . . , udl1
. For each i = 1, . . . , dl1 , let vi be

the lowest ancestor of ui that has some descendant (exit) reticulation other than Hl1 ;
see Figure 9. Concatenating each path vi⇝ ui with the corresponding arc (ui, Hl1),
we obtain dl1 different paths v1⇝Hl1 , . . . , vdl1

⇝Hl1 ending in Hl1 : observe that the
nodes v1, . . . , vdl1

need not be different, but each such path ends in a different arc
(ui, Hl1).

H1 H2

. . .
Hl1

. . .
Hi

. . .
Hl

v1 v2 . . . vdl1

u1
u2 . . .

udl1

E ′
1

E1

Fig. 8 A semibinary blob B without internal reticulations illustrating the inductive step for kint = 0
in the proof of Lemma 11. All arcs in it except those ending in Hl1 actually represent paths. An
independent set of nodes in ↑B,only (E1) is represented by filled circles, and the nodes and arcs that
are removed from B to B′ are represented in gray.

Let B′ be the directed graph obtained by removing from B the set of nodes
↑B,only Hl1 —that is, the reticulation Hl1 and the intermediate nodes of the paths
v1 ⇝ Hl1 , . . . , vdl1

⇝ Hl1— together with the arcs incident to them. The set of
exit reticulations of B′ is E ′ = E \ {Hl1}; take E ′

1 = {H1, . . . ,Hl1−1}. Since B did
not have internal reticulations, neither does B′. Then, by the induction hypothesis,
|V ′| ⩽

∑l1−1
i=1 di for every independent set V ′ ⊆↑B′,only (E ′

1).
Now, since V (B) = V (B′)⊔ ↑B,only Hl1 , we have that

↑B,only (E1) =↑B′,only (E
′
1)⊔ ↑B,only Hl1 .
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Therefore, any independent subset V ′ of ↑B′,only (E ′
1) can be enlarged to an independent

subset V of ↑B,only (E1) by adding at most dl1 nodes, one inside each path vi⇝Hl1 .
Conversely, if we remove from an independent set of nodes V in B its nodes that are
intermediate in the paths v1⇝Hl1 , . . . , vdl1

⇝Hl1 (and by the independence condition
each such path will contain at most one element of V and therefore we remove in this
way at most dl1 nodes), or the node Hl1 if it belongs to V (and then no intermediate
node in any path vi⇝Hl1 will belong to V ), we obtain an independent subset V ′ of B′.

Then, since |V ′| ⩽
∑l1−1

i=1 di, any independent subset of ↑B,only (E1) has cardinality
at most

∑l1−1
i=1 di + dl1 . This proves this inductive step when kint = 0.

Let us prove now, for any fixed l1 > 0, the inductive step from kint − 1 to kint. So,
assume that the thesis in the statement is true for all blobs B′ with kint − 1 internal
reticulations and subsets E ′

1 of exit reticulations of cardinality |E ′
1| ⩽ l1, and let B

be a blob with kint internal reticulations and E1 = {H1, . . . ,Hl1} a set of l1 ⩾ 1 exit
reticulations. Let I1 = I∩ ↑B,only (E1) = {Hl1+1, . . . ,Hl1+k1

}.
Let H be an internal reticulation with no reticulate proper ancestor and let

u1, . . . , ud be its parents. For each i = 1, . . . , d, let vi be the lowest ancestor of
ui with some path to an exit reticulation that does not contain H. Concatenating
each path vi ⇝ ui with the corresponding arc (ui, H), we obtain d different paths
v1⇝H, . . . , vd⇝H ending in H: as before, observe that the nodes v1, . . . , vd need not
be different, but each such path ends in a different arc (ui, H).

H1 H2

. . .
Hl1

. . .
Hj

. . .
Hl

HHi

u1 u2 . . .
ud

v1 v2 . . . vd

E1

Fig. 9 A semibinary blob B illustrating the inductive step from kint − 1 to kint in the proof of
Lemma 11. All arcs in it except those ending in H actually represent paths. An independent set of
nodes in ↑B,only (E1) is represented by filled circles. The nodes and arcs removed from N to N ′ are
represented in gray.

Let B′ be the directed graph obtained by removing the intermediate nodes in all
paths vi⇝H except for one path v1⇝H, together with the arcs incident to them;
if vi = ui, we simply remove the arc (ui, H). The blob B′ still has the same set of
exit reticulations E as B, but it has kint − 1 internal reticulations because H has
become an elementary tree node in B′. Moreover, if we denote by I ′

1 the set of internal
reticulations in ↑B′,only (E1), then I ′

1 = I1 if H /∈ I1 and I ′
1 = I1 \ {H} if H ∈ I1. If
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this last case happens, let us assume without any loss of generality that H = Hl1+k1

and hence that d = dl1+k1 .
Then, by the induction hypothesis, for every independent set V ′ ⊆↑B′,only (E1)

|V ′| ⩽

{∑l1
i=1 d1 +

∑l1+k1

i=l1+1(di − 1) if H /∈ I1∑l1
i=1 d1 +

∑l1+k1−1
i=l1+1 (di − 1) if H = Hl1+k1 ∈ I1

(16)

Now, notice that any independent set of nodes V ′ in B′ can be enlarged to an inde-
pendent set of nodes V in B by adding at most one node inside each one of the d− 1
removed paths vi⇝H. Conversely, if we remove from an independent subset V of B its
nodes that are intermediate in the d− 1 removed paths vi⇝H (and by the indepen-
dence condition each such path will contain at most one element of V and therefore we
are removing in this way at most d nodes from V ), we obtain an independent subset
V ′ of B′. Then:

• If H /∈↑B,only (E1), any maximal independent subset of ↑B′,only (E1) is also a max-
imal independent subset of ↑B,only (E1). Then, by Eqn. (16), for every maximal
independent set V ⊆↑B,only (E1)

|V | ⩽
l1∑
i=1

di +

l1+k1∑
i=l1+1

(di − 1).

.
• If H = Hl1+k1 ∈↑B,only (E1), any maximal independent subset of ↑B′,only (E1) can be

enlarged to a maximal independent subset of ↑B,only (E1) by adding at most dl1+k1−1
nodes. Then, by Eqn. (16),

|V | ⩽
l1∑
i=1

di +

l1+k1−1∑
i=l1+1

(di − 1) + (dl1+k1
− 1)

for every maximal independent set V ⊆↑B,only (E1).

This finishes the proof of the inductive step.

Returning to Lemma 9, if B is a semi-d-ary k-blob with l exit reticulations and
|E1| = l1, then each reticulation has in-degree at most d and |I1| ⩽ k − l, and then

|V | ⩽
∑

Hi∈E1

degin Hi +
∑

Hi∈I1

(deginHi − 1) ⩽ |E1| · d+ (k − |E |)(d− 1)

as states Lemma 9.

2 Proof of Corollary 2

We first prove a refinement of Lemma 10 for level-1 networks.
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Lemma 12. Let B be a semi-d-ary level-1 blob with exit reticulation H and let X, X ′

be two multisets of nodes of B with |X ′| < |X| satisfying the following two further
conditions:

(i) For each v ∈ V (B), if mX′(v) < mX(v), then mX(v) = 1 and mX′(v) = 0.
(ii) H ∈ X ∪X ′.

Then
↑X ∩ ↑X ′ ⊆ ↑τA,B(X) ∩ ↑τB,A(X

′) (17)
for some subsets A ⊆ SuppX \SuppX ′ and B ⊆ {H}∩ (SuppX ′ \SuppX) such that
either B = ∅ and |A| = 1, or B = {H} and 1 < |A| ⩽ d.

Proof. Using the same notations as in the proof of Lemma 10, observe that the Eqn. (6)
therein holds identically in this case, i.e.,

0 < |X| − |X ′| ⩽ |X̂| − |X̂ ′|. (18)

In addition, E = {H}. Now consider the following cases:
(a) If there exists some x ∈ X̂ with a proper descendant in X, then A = {x},

B = ∅ satisfy the required properties as proved in case (a) of Lemma 10.
(b) If H ∈ X and no x ∈ X̂ has any proper descendant in X, then X̂ = {H},

and then X̂ ′ = ∅ by Eqn. (18) and ↑X ′ = ↑(X \ {H}) because, since X̂ ′ = ∅, X ′ =

X \ X̂ = X \ {H}. Then, A = {H} and B = ∅ satisfy the required properties.
(c) If H /∈ X and no x ∈ X̂ has any proper descendant in X, then, on the one

hand, H belongs to SuppX ′ \ SuppX by condition (ii), and hence H ∈ X̂ ′, and, on
the other hand, X̂ is an independent set of at most d nodes (because there are at most
d different paths from the root to H).

For brevity, let X ′′ denote the full sub-multiset of X ′ supported on SuppX ′ \{H}.
By Eqn. (18),

|X̂| > |X̂ ′| ⩾ |SuppX ′| = |SuppX ′′|+ 1

and thus |X̂| ⩾ |SuppX ′′| + 2. Now, since B does not contain internal reticulations
and the nodes in X̂ are independent, each node in X ′′ has at most one ancestor in X̂.
This implies that |X̂ ∩ ↑X ′′| ⩽ |SuppX ′′| and hence

|SuppX ′′|+ 2 ⩽ |X̂| = |X̂ ∩ ↑X ′′|+ |X̂ \ ↑X ′′| ⩽ |SuppX ′′|+ |X̂ \ ↑X ′′|,

which implies |X̂ \ ↑X ′′| ⩾ 2.
Take then A = X̂ \ ↑X ′′ and B = {H}. As we have just seen, 2 ⩽ |A| ⩽ |X̂| ⩽ d.

Thus, A,B satisfy the required properties in the statement. As far as Eqn. (17) goes,
that is,

↑X ∩ ↑X ′ ⊆ ↑((X \A) ∪ {H}) ∩ ↑((X ′ \ {H}) ∪A),

observe that, since H is the only exit reticulation of B, ↑H = V (B) and hence ↑X ′ =
↑((X \A) ∪ {H}) = V (B). So, we actually must prove that

↑X ⊆ ↑(X ′ \ {H}) ∪ ↑A.
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We must consider two cases.

• If mX′(H) > 1, then H ∈ X ′ \ {H} and thus ↑(X ′ \ {H}) = V (B) and the desired
inclusion is obvious.

• If mX′(H) = 1, then X ′ \ {H} = X ′′, and in this case

↑X = ↑X̂ ∪ ↑(X \ X̂) = ↑(X̂ ∩ ↑X ′′) ∪ ↑(X̂ \ ↑X ′′) ∪ ↑(X ′ \ X̂ ′)

⊆ ↑X ′′ ∪ ↑A ∪ ↑(X ′ \ {H}) = ↑(X ′ \ {H}) ∪ ↑A

as desired.

This finishes the proof of case (c).

We can proceed now with the proof of Corollary 2. Arguing as in the proof of
Theorem 1, we can assume that N is at-most-bifurcating and in particular that no
node in N is the split node of more than one blob. Notice moreover that now each
blob has only one reticulation: its exit reticulation.

We follow the proof of Theorem 1 by induction on the number α of arcs of the
network. The base case α = 0 is again obvious, and thus we must only consider the
inductive step. So, let N be a semi-d-ary level-1 phylogenetic network on Σ with more
than one arc, and let X,X ′ ⊆ Σ with |X ′| < |X|. If |X| = 1 the exchange property is
trivially satisfied taking (A,B) = (X, ∅) ∈ S0, so we assume |X| ⩾ 2.

Arguing as in cases (a), (b) and (c.1) in the proof of Theorem 1, we can assume
that:

(i) The root r is the split node of a single, semi-d-ary blob B.
(ii) For every node v in B, if v has a child v outside B such that |X ∩ C(v)| >

|X ′ ∩ C(v)|, then |X ∩ C(v)| = 1 and |X ′ ∩ C(v)| = 0.
(iii) C(H) ∩ (X ∪X ′) ̸= ∅.
We use henceforth the same notations as in point (c.2) in the proof of that theorem.
The hypotheses of Lemma 12 are satisfied by B∗

X and B∗
X′ . Then, there exist two

sets BA,BB ⊆ V (B) such that BA ⊆ SuppB∗
X \ SuppB∗

X′ , BB ⊆ {H} ∩ (SuppB∗
X′ \

SuppB∗
X), |BB | = 0 and |BA| = 1, or |BB | = 1 < |BA| ⩽ d, and

↑B∗
X ∩ ↑B∗

X′ ⊆ ↑τBA,BB
(B∗

X) ∩ ↑τBB ,BA
(B∗

X′). (19)

Now take A =
⋃

v∈BA
(X ∩C(v̄)) and, if BB = {H}, choose any b ∈ X ′∩C(H) and

take B = {b}, while if BB = ∅, take B = ∅. Notice that if B = ∅, then |BA| = 1 and
hence |A| = 1, while, if |B| = 1, then H ∈ SuppB∗

X′\SuppB∗
X and hence X∩C(H) = ∅.

These sets satisfy |A| = |BA|, |B| = |BB | and thus (A,B) ∈ Sd. Now, arguing as
in the proof of Theorem 1, we have BA = B∗

A, BB = B∗
B , and

τBA,BB
(B∗

X) = B∗
τA,B(X) and SuppB∗

τA,B(X) = ((SuppB∗
X) \ BA) ∪ BB , (20)

τBB ,BA
(B∗

X′) = B∗
τB,A(X′) and SuppB∗

τB,A(X′) = SuppBX′\B ∪ BA

⊇ ((SuppB∗
X′) \ BB) ∪ BA (21)
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(where the inclusion in (21) is not an equality if BB = {H} and mB∗
X′ (H) = |X ′ ∩

C(H)| > 1 = mBB
(H)) and, still arguing as in the aforementioned proof,

rPSDN (X)− rPSDN (τA,B(X)) =

=
∑
v∈B∗

A

rPSDNv
(A)−

∑
v∈B∗

B

rPSDNv
(B) +

∑
e∈↑B∗

X

w(e)−
∑

e∈↑B∗
τA,B(X)

w(e).

Now, the difference between Eqn. (21) above and Eqn. (12) in the proof of Theorem
1 makes dealing with rPSDN (τB,A(X

′)) − rPSDN (X ′) different here from in the
aforementioned proof. In the current situation, we have that∑

v∈SuppB∗
τB,A(X′)

rPSDNv

(
τB,A(X

′)
)
=

=
∑

v∈SuppB∗
X′\B

rPSDNv

(
(X ′ \B) ∪A

)
+

∑
v∈BA

rPSDNv

(
(X ′ \B) ∪A

)
=

∑
v∈SuppB∗

X′\B

rPSDNv
(X ′ \B) +

∑
v∈BA

rPSDNv
(A)

(because, if v ∈ B∗
X′\B , then A ∩ C(v̄) = ∅, and if v ∈ BA, then X ′ ∩ C(v̄) = ∅);

∑
v∈SuppB∗

X′

rPSDNv
(X ′) =

∑
v∈(SuppB∗

X′ )\BB

rPSDNv
(X ′) +

∑
v∈BB

rPSDNv
(X ′)

⩽
∑

v∈(SuppB∗
X′ )\BB

rPSDNv
(X ′) +

∑
v∈BB

rPSDNv
(X ′ \B) +

∑
v∈BB

rPSDNv
(B)

(by the subadditivity of rPSD)

=
∑

v∈(SuppB∗
X′ )\BB

rPSDNv
(X ′ \B) +

∑
v∈BB

rPSDNv
(X ′ \B) +

∑
v∈BB

rPSDNv
(B)

(because, B ∩ C(v̄) = ∅ if v /∈ BB)

=
∑

v∈SuppB∗
X′\B

rPSDNv
(X ′ \B) +

∑
v∈BB

rPSDNv
(B);

and then

rPSDN (τB,A(X
′))− rPSDN (X ′)

=
∑

v∈SuppB∗
τB,A(X′)

rPSDNv
(τB,A(X

′))−
∑

v∈SuppB∗
X′

rPSDNv
(X ′) +

∑
e∈↑B∗

τB,A(X′)

w(e)−
∑

e∈↑B∗
X′

w(e)

⩾
∑

v∈SuppB∗
X′\B

rPSDNv
(X ′ \B) +

∑
v∈BA

rPSDNv
(A)
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−
∑

v∈SuppB∗
X′\B

rPSDNv
(X ′ \B)−

∑
v∈BB

rPSDNv
(B) + +

∑
e∈↑B∗

τB,A(X′)

w(e)−
∑

e∈↑B∗
X′

w(e).

=
∑
v∈BA

rPSDNv
(A)−

∑
v∈BB

rPSDNv
(B) +

∑
e∈↑B∗

τB,A(X′)

w(e)−
∑

e∈↑B∗
X′

w(e).

Then, as in Theorem 1, we conclude that

rPSDN (X)− rPSDN (τA,B(X)) ⩽ rPSDN (τB,A(X
′))− rPSDN (X ′)

if ∑
e∈↑B∗

X

w(e)−
∑

e∈↑B∗
τA,B(X)

w(e) ⩽
∑

e∈↑B∗
τB,A(X′)

w(e)−
∑

e∈↑B∗
X′

w(e),

and this last inequality is deduced from Eqn. (19) as in the proof of Theorem 1.

3 Proof of Proposition 8

To begin with, notice that

S2,3 = S0 ∪ {(A,B) ∈ P(Σ)2 : 1 ⩽ |B| < |A| < 6, |A| − |B| ⩽ 4},
S1,5 = S0 ∪ {(A,B) ∈ P(Σ)2 : 1 ⩽ |B| < |A| ⩽ 5}

and therefore S1,5 = S2,3. To simplify the notation, we shall abbreviate Opt-τ1,5,j =
Opt-τ2,3,j by simply Opt-τj . Observe that in both cases considered in the statement
j can go from 1 to 4.

Let Y be an optimal sequence of N and fix 1 < m ⩽ n. To ease the task of the
reader, we sketch the flow of the proof in Figure 10.

By Theorem 1,
(m,m− 1) ≺·Y (m− j1, m− 1 + j1) (22)

for some j1 ∈ {1, 2, 3, 4}.
(1) If j1 = 1, then, we conclude as in (1) in the proof of Proposition 6 that Ym ∈

Opt-τ1(Optm−1) and Ym−1 ∈ Opt-τ−1
1 (Optm).

(2) If j1 = 2, then (m− j1,m− 1 + j1) = (m− 2,m+ 1). Applying Theorem 1 again,

(m+ 1,m− 2) ≺·Y (m+ 1− j2,m− 2 + j2),

for some j2 ∈ {1, 2, 3, 4}.
(2.a) If j2 = 1 or j2 = 2, we conclude as in (2) in the proof of Proposition 6 that

Ym ∈ Opt-τ2(Optm−2) and Ym−1 ∈ Opt-τ−1
2 (Optm+1).

(2.b) When j2 = 3, we have (m+1,m−2) ≺·Y (m−2,m+1) and, as in (2.b) in the
proof of Proposition 6, we can only conclude that Ym+1 ∈ Opt-τ3(Optm−2)

and Ym−2 ∈ Opt-τ−1
3 (Optm+1).
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(m,m−1)



≺·Y1 (m − 1,m) ⇒ (a)

≺·Y2 {m + 1,m − 2}


≺·Y1,2 {m,m − 1} ⇒ (a)

≺·Y3 {m − 2,m + 1} ⇒ (b)

≺·Y4 {m − 3,m + 2}
{

≺·Y1,4 {m + 1,m − 2} ⇒ (b)

≺·Y2,3 {m,m − 1} ⇒ (a)

≺·Y3 {m + 2,m − 3}



≺·Y1 (m + 1,m − 2)


≺·Y1,2 {m,m − 1} ⇒ (a)

≺·Y3 {m − 2,m + 1} ⇒ (b)

≺·Y4 {m − 3,m + 2}
{

≺·Y1,4 {m + 1,m − 2} ⇒ (b)

≺·Y2,3 {m,m − 1} ⇒ (a)
≺·Y2,3 {m,m − 1} ⇒ (a)

≺·Y4 {m − 2,m + 1}


≺·Y1,2 {m,m − 1} ⇒ (a)

≺·Y3 {m − 2,m + 1} ⇒ (b)

≺·Y4 {m − 3,m + 2} ⇒ (a) or (b) as after
(m + 2,m − 3) ≺·Y1 {m + 1,m − 2}

≺·Y4 {m − 4,m + 3}
{

≺·Y1,2 {m + 2,m − 3} ⇒ (a) or (b) as after (m,m − 1) ≺·Y3 {m + 2,m − 3}
≺·Y3,4 {m,m − 1} ⇒ (a)

Fig. 10 Sketch of the proof of Proposition 8. To make the diagram shorter, we write (p, q) ≺·Yj1,j2
{p′, q′} to mean that (p, q) ≺·Yj1 {p′, q′} or (p, q) ≺·Yj2 {p′, q′}.

(2.c) When j2 = 4, we have (m+1,m−2) ≺·Y (m−3,m+2). Applying Theorem 1
again,

(m+ 2,m− 3) ≺·Y (m+ 2− j3,m− 3 + j3),

for some j3 ∈ {1, 2, 3, 4}. Now:
(2.c.i) If j3 = 1 or 4, {m+2−j3,m−3+j3} = {m+1,m−2} and, as in (2.b), we

conclude that Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1
3 (Optm+1).

(2.c.ii) If j3 = 2 or 3, {m+2− j3,m− 3+ j3} = {m,m− 1} and, as in (2.a), we
conclude that Ym ∈ Opt-τ2(Optm−2) and Ym−1 ∈ Opt-τ−1

2 (Optm+1).
(3) If j1 = 3, then (m− j1,m− 1 + j1) = (m− 3,m+ 2). Applying Theorem 1 again,

(m+ 2,m− 3) ≺·Y (m+ 2− j2,m− 3 + j2),

for some j2 ∈ {1, 2, 3, 4}.
(3.a) If j2 = 2 or 3, {m + 2 − j2,m − 3 + j2} = {m,m − 1}, closing the ≺·-chain

initiated with (22). Then, by Corollary 5, Ym ∈ Opt-τ3(Optm−3) and Ym−1 ∈
Opt-τ−1

3 (Optm+2).
(3.b) If j2 = 1 or 4, {m+2−j2,m−3+j2} = {m+1,m−2}. But now we can follow

as in case (2) and we conclude that one of the following situations must hold:
• Ym ∈ Opt-τ3(Optm−3) and Ym−1 ∈ Opt-τ−1

3 (Optm+2),
• Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1

3 (Optm+1).
(4) If j1 = 4, then (m− j1,m− 1 + j1) = (m− 4,m+ 3). Applying Theorem 1 again,

(m+ 3,m− 4) ≺·Y (m+ 3− j2,m− 4 + j2),

for some j2 ∈ {1, 2, 3, 4}.

9



(4.a) If j2 = 3 or 4, {m + 3 − j2,m − 4 + j2} = {m,m − 1}, closing the ≺·-chain
initiated with (22). Then, by Corollary 5, Ym ∈ Opt-τ4(Optm−4) and Ym−1 ∈
Opt-τ−1

4 (Optm+3).
(4.b) If j2 = 1, (m + 3,m − 4) ≺·Y (m + 2,m − 3) and we can follow as in (3),

obtaining that one of the following situations must hold:
• Ym ∈ Opt-τ4(Optm−4) and Ym−1 ∈ Opt-τ−1

4 (Optm+3),
• Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1

3 (Optm+1).
(4.c) If j2 = 2, (m + 3,m − 4) ≺·Y (m + 1,m − 2) and we can follow as in (2),

obtaining that one of the following situations must hold:
• Ym ∈ Opt-τ4(Optm−4) and Ym−1 ∈ Opt-τ−1

4 (Optm+3),
• Ym+1 ∈ Opt-τ3(Optm−2) and Ym−2 ∈ Opt-τ−1

3 (Optm+1).
Summarizing, we have two possibilities: either

Ym ∈
4⋃

j=1

Opt-τj(Optm−j) and Ym−1 ∈
4⋃

j=1

Opt-τ−1
j (Optm−1+j)

or
Ym+1 ∈ Opt-τ3(Optm−2) and Opt-τ3(Ym−2) ⊆ Optm+1.

By the arbitrary choice of Y and m, this concludes the proof.

4 Some examples

Example 4. Consider the phylogenetic networks in Figure 11: above, a semi-4-ary
level-1 network and below, a semibinary level-3 network.

In both cases we have the following optimal sets of leaves:

Opt0 : ∅
Opt1 : {z0}
Opt2 : {z0, z1}
Opt3 : {x12, x13, z0}
Opt4 : {x11, x12, x13, z0}
Opt5 : {x00, x01, x02, x03, z1}
Opt6 : {x00, x01, x02, x03, x12, x13}
Opt7 : {x00, x01, x02, x03, x11, x12, x13}
Opt8 : {x00, x01, x02, x03, x10, x11, x12, x13}
Opt9 : {x00, x01, x02, x03, x10, x11, x12, x13, z1}
Opt10 : {x00, x01, x02, x03, x10, x11, x12, x13, z0, z1}

In the case of the semi-4-ary level-1 network we have

Opt5 ⊈ Opt-τ1(Opt4) ∪Opt-τ2(Opt3) =
{
{x00, x01, x02, x03, x13}

}
.
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Fig. 11 The networks in Example 4.

However, for the level-3 network, Optm = Opt-τ1(Optm−1) and Optm = Opt-τ−1
1 (

Optm+1) for all 1 ⩽ m ⩽ n = 10 and 0 ⩽ m < n respectively. This should not
be surprising, because in Example 11 we showed that for this network (although with
different weights) we can always find an rPSD-improving pair (A,B) with |A|−|B| = 1,
hence the first case in the proof of Proposition 7 could always be chosen and prove that
Optm ⊆ Opt-τ1(Optm−1).

As we mention in Example 4, if some network has some Optm not included into⋃3
j=1 Opt-τk,d,j(Optm−j), then that network has two sets of leaves X,X ′ with m =

|X| = |X ′| + 1 and no rPSD-improving pairs (A,B) with |A| − |B| < 3. Otherwise,
if we could always find some rPSD-improving pair with |A| − |B| < 3, the proof of
Propositions 7 and 8 would never need to explore the cases j1 ∈ {3, 4} and thus obtain
a similar result to Proposition 6. In Example 5 we show a semi-5-ary network that
has X = {x00, . . . , x04, z1} and X ′ = {x10, . . . , x13, z0} with only rPSD-improving
pairs with |A| − |B| ⩾ 3, yet the obvious greedy algorithm would still work in this
network. In contrast, we have not found any semibinary level-3 network that has some
X,X ′ ⊆ Σ with |X| = |X ′|+1 and no rPSD-improving pair (A,B) with |A|− |B| = 1.
Example 5. The semi-5-ary level-1 network in Figure 12, analogous to the
semi-4-ary network from Example 4, similarly has {x00, . . . , x04, z1} ∈ Opt6 \⋃3

j=1 Opt-τj(Opt6−j) but still, for all 1 ⩽ m ⩽ n, Optm ⊆
⋃4

j=1 Opt-τj(Optm−j).
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Fig. 12 The network in Example 5.
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