
A Appendix

A.1 Methods details

A.1.1 Pre-processing details

To generate our open source pre-processed training data, we use the following procedure: we use
OpenMM [34] to fix the PDB files, add missing residues and substitute non-canonical residues for
their canonical counterparts; we use the reduce program [35] to add hydrogens; we take partial
charges from the AMBER99sb force field [36]; we use BioPython to compute SASA [28]. Both
preprocessings procedures keep atoms belonging to non-protein residues and ions, unlike RaSP [2].
Notably, our PyRosetta preprocessings does not replace non-canonical residues.

A.1.2 Fine-tuning details

To greatly speed-up convergence, as a first step of fine-tuning we rescale the weight matrix and bias
vector of the network’s output layer so the mean and variance of the output logits become the same as
that of the training scores. This step requires one initial pass through the training data to get the
mean and variance, but it makes the model outputs immediately be in the same distribution as the
scores, thus avoiding epochs of fine-tuning just devoted to rescaling the model outputs. We provide
easy-to-use code to fine-tune our pre-trained models on arbitrary mutation effect data. Importantly, as
we want to produce models using the convention that higher predicted mutation scores correspond to
higher fitness, but we fine-tune on ∆∆G values which - since they are energy values - follow the
reverse convention (lower ∆∆G means a more stable structure), our code fits the negative of Eq. 2 to
the target values (wild-type score minus mutant score). In practice, to use the fine-tuning code, just
make sure that lower means higher fitness, which can be done by simply flipping the sign of all the
target values.

A.1.3 Use of ESMFold

We use the ESM Metagenomic Atlas API to fold each sequence individually (https://esmatlas.
com/resources?action=fold).

A.1.4 Use of RaSP and Stability-Oracle datasets

RaSP. We use the RaSP data as provided on their github page (https://github.com/
KULL-Centre/_2022_ML-ddG-Blaabjerg). The only difference we apply is in the Fermi
transform. Since RaSP uses stability changes (∆∆G) computed with Rosetta, which are known
to be accurate only in the [-7, 1] range, they pass them through a Fermi transform before training,
which effectively "plateaus" outside the [-7, 1] range. We also use the Fermi transform, with the
only difference that we center it so that 0 maps to zero. This is necessary since HERMES’ utput
space parameterization is such that the predicted stability change to the same amino-acid is zero
(∆∆Gaai→aai

= 0, which is true of real ∆∆G also, but it is not true of the un-centered Fermi
transform. Thus the equation we use is:

F (∆∆G) =
1

1 + e−β(∆∆G−α)
− 1

1 + eβα
(S1)

Stability-Oracle. The main issue with the data provided by the authors in their github page (https:
//github.com/danny305/StabilityOracle/tree/master) is that the residue-numbers they
provide do not align with the residue numbers in the original PDB files, but instead align with some
post-processed representation of the structure which, at the time of writing this, is opaque and does
not allow us to easily retrieve the original residue-numbers. Thus, we manually modified the datasets’
csv files to have residue numbers match those found in the PDB files, and provide them in our
repository.
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A.1.5 SKEMPI

After filtering duplicate experiments, the dataset includes: 5,713 ∆∆Gbinding values across 331
structures, of which 4,106 are single-point mutations across 308 structures. Further filtering for
mutations that belong to structures with at least 10 mutations in the dataset, 116 structures remain
with 5,025 total mutations; By restricting to only single-point mutations, we arrive at 93 structures
and 3,485 mutations. We consider both “Per Structure" and “Overall" correlations. For multi-point
mutations, we use an additive model and neglect epistasis.

The SKEMPI dataset conveniently provides information that helps in making train-test
splits without data-leakage. Specifically, each mutation is provided with two pieces
of information “hold-out type" and “hold-out proteins". Verbatim from their website
(https://life.bsc.es/pid/skempi2/info/faq_and_help):

“5) The hold-out type. Some of the complexes are classified as protease-inhibitor (Pr/PI),
antibody-antigen (AB/AG) or pMHC-TCR (TCR/pMHC). This classification was introduced to aid
in the cross-validation of empirical models trained using the data in the SKEMPI database, so that
proteins of a similar type can be simultaneously held out during a cross-validation.

6) The hold-out proteins. This column contains the PDB identifiers (in column 1) and/or
hold-out types (column 5) for all the protein complexes which may be excluded from the training
when cross-validating an empirical model trained on this data, so as to avoid contaminating the
training set with information pertaining to the binding site being evaluated."

For the Easy split, we do not consider this information at all, and just split at random. For
the Medium split, we simply make sure that, if a mutation is in a given split, then all of its “hold-out
proteins" are in the same split as well, but not necessarily all of the proteins of the same “hold-out
type"; these seem to mostly include closely-related proteins, or even the same exact protein bound to
a different target. For the Hard split instead, we make sure that, if a mutation is in a given split, then
all of the proteins of the same “hold-out type" are in the same split as well. This is overkill in practice,
since for instance it precludes the use of any antibody-antigen data to predict on antibody-antigen
complexes; it provides, however, a great test of generalization ability. We note that sometimes there
are are proteins with multiple “hold-out types"; in these cases, we randomly chose one type for the
protein.

A.2 Baselines

H-CNN [20]. We mention H-CNN because HERMES is effectively built on top of it, with HERMES
0.00and HERMES 0.50being directly comparable to it - except for the improved speed of HERMES’
forward pass, which we tested by re-implementing the H-CNN architecture in our code. H-CNN is
only trained on masked amino-acid prediction - our pre-training task. Its authors showed that H-CNN
learned a model akin to a physical potential, and able to predict mutation effects of stability and
binding via eq. 2, albeit only on two systems.

Stability-Oracle [22]. Similar to HERMES, Stability-Oracle is trained in two steps: first a
graph attention model is pre-trained to predict masked amino-acids from their local atomic
environment (i.e. “neighborhood"). The model regressing over mutation effects is then constructed
and trained as follows. For a site on a structure, the masked neighborhood’s embedding h is
extracted from the pre-trained graph attention model. This embedding is concatenated with
embeddings of the “from" and “to" amino-acids separately, and the two inputs are individually fed to
a transformer network, yielding the two amino-acid specific embeddings eaafrom and eaato . These are
then substracted, and (eaato − eaafrom) is fed to a final 2-layer MLP that outputs a scalar representing
∆∆Gaafrom→to. Interesingly, up to right before the MLP, the output symmetries are not yet broken,
because each eaai is computed independently of any other amino-acid. The symmetries only get
broken in the MLP: in fact, if the MLP were a linear layer with no bias, the symmetries would be
respected. To make their model respect the symmetries, the authors train with data augmentation of
reversibility and permutation.

RaSP [2]. Similar to HERMES, RaSP is trained in two steps: first, a neural network -
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specifically a 3DCNN - is pre-trained to predict masked amino-acids from their local atomic
environment (i.e. “neighborhood"). Then, a small fully-connected neural network with a single
output is trained to regress over mutation effects, using as input neighborhoods’ embeddings from
the 3DCNN, the one-hot encodings of wildtype and mutant amino-acids, and the wildtype and
mutant amino-acids’ frequencies in the pre-training data. RaSP is fine-tuned on the stability effect
of mutations ∆∆G, computationally determined with Rosetta [27], which we also use to fine-tune
HERMES. We do not reproduce results of RaSP in this work, and instead show the values reported in
the paper.

ProteinMPNN [37]. ProteinMPNN is a tool for protein inverse-folding. The tool is most
commonly used to sample amino-acid sequences conditioned on a protein’s backbone structure, and
optionally a partial sequence. As ProteinMPNN also outputs probability distributions of amino-acids
for the sites that are to be designed, it can also be used to infer mutation effects by computing the
log-likelihood ratio presented in eq. 1. Like for HERMES, we consider ProteinMPNN models trained
with two noise levels: 0.02 Å(virtually no noise) and 0.30 Å. We provide scripts to infer mutation
effects built upon a public fork of the ProteinMPNN repository.

ESM-1v [19]. This is the Protein Language Model (PLM) of the ESM family trained specifically
for improved zero-shot predictions of mutation effects. As the training objective is predicting
amino-acids that have been masked from the sequence, mutation effects are also predicted using
the log-likelihood ratio (eq. 1). To our knowledge, this is the strongest representative of PLMs for
inferring mutation effects. We show a mix of previously-reported scores, and scores computed using
their codebase. For our in-house ESM-1V predictions, wildtype sequences were obtained from the
corresponding PDB file and verified against the European Bioinformatics Institute’s PDBe database
via their REST API [38]. Mutation effect predictions were computed with ESM’s built-in wildtype
marginal method; we attempted using the masked marginal method but ran into several errors, so we
stuck to wildtype marginal as it was more reliable, and also had very similar performances in the few
instances in which both methods worked.

DeepSequence [18]. This is a state-of-the-art model for inferring mutation effects from
sequence alone. It uses a variational auto-encoder of full protein sequences to and infers mutation
effects via eq. 1. We only show previously-reported scores.

A.3 Extended Results

A.3.1 Wildtype amino-acid classification

In Table S1 we show Classification Accuracy of HERMES models, when predicting the amino-acid
identity of the masked residue at the center of a neighborhood. Adding noise during training, as
well as fine-tuning over stability effects, reduces the model’s predictions of the wild-type. Models
that were not pre-trained on amino-acid classification, and only trained on stability effects, predict
the wildtype only barely more than random. As seen in Figure 3, the models’ bias in predicting the
wildtype most commonly found in nature.

A.3.2 Results on predicting Deep Mutational Scanning assays

We evaluate model performance on 27 out of the 41 Deep Mutational Scanning (DMS) studies
collected by [18] and considered by [19]. To simplify the analysis, we consider only the 37 studies
containing single-point mutations only. For these, only the proteins’ sequences were available to us a
priori. Starting from the sequences, we augmented the dataset with both experimental structures that
we identified in the RCSB website 1 and AlphaFold2 structures, either from the AlphaFold database 2,
or folded using the AlphaFold2 [39] google colab with default parameters. Keeping only studies
with at least one high-quality structure, we were left with 25 studies, many of which with only the
AlphaFold-generated structure. Some proteins have multiple experimental structures, as in each
structure they are bound to different a different and it was not obvious from the study of origin which
ligand was more appropriate. We provide structures and detailed notes for each study on our github
repository.

1https://www.rcsb.org/
2https://alphafold.ebi.ac.uk/
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Figure S1: Pearson correlation of predictions against RaSP’s test set of Rosetta-computed
stability effects for 10 proteins [2] Each dot is a protein; the horizontal bar is the mean. HERMES
models achieve better Pearson correlation using the same training data. We observe that centering the
Fermi transform (Eq. S1) provided a slight boost in performance.

In Figures S7 and S8 we show absolute Pearson and Spearman correlations between model
predictions and expreiments for the 27 studies, selected as described above. We use absolute values
for simplicity, as assays may have either positive or negative sign associated with higher fitness.
Patterns are similar to those we found for the stability effect of mutations ∆∆G: training with noise
improves pre-trained-only models, and so does pre-processing with PyRosetta. Models fine-tuned
on stability effects see their performance improved. However, the best structure-based model
(HERMES 0.00 + Ros 0.50 + FT with mean Pearson r of 0.40) still performs significantly worse, on
average, compared to the state-of-the-art sequence-based models (DeepSequence [18] with 0.50, and
ESM-1v [19] with 0.47).

Table S1: Performance of HERMES models on wildtype amino-acid classification on 40 CASP12
test proteins. As expected, models trained with noise have worse Accuracy. Interestingly, models
fine-tuned on stability ∆∆G values retain part of their accuracy, whereas models that are only trained
for stability prediction have almost no predictive power of the wildtype amino-acid. Differences
between using the Pyrosetta and Biopython pipelines are negligible.

Model Pyrosetta Accuracy Biopython Accuracy
HERMES 0.00 0.73 0.75
HERMES 0.50 0.64 0.65

HERMES 0.00 + Ros 0.41 0.40
HERMES 0.50 + Ros 0.38 0.37
HERMES 0.00 + cDNA117k 0.47 0.45
HERMES 0.50 + cDNA117k 0.39 0.38
HERMES 0.00 + cDNA117k train ESMFold 0.46 0.49
HERMES 0.50 + cDNA117k train ESMFold 0.40 0.40

HERMES Untr. 0.00 + cDNA117k 0.09 -
HERMES Untr. 0.50 + cDNA117k 0.08 -
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Table S2: Results on predicting single-point mutation effects on protein-protein binding in
SKEMPI. Results above the double-line are taken from [21]; see their paper for a detail introduction
of each model being compared ([40, 41, 42, 43, 44, 45]). The HERMES models most comparable - in
terms of training procedure - to the models reported by [21] are the models trained on the Easy split:
for it, we use 3-fold cross-validation on datasets split by PDB structure without further restrictions.
However, we do not know which exact PDBs are in the splits for [21] and could not recover them
from their codebase.

Method Per-Struct. Per-Struct. Overall Overall
Pearson Spearman Pearson Spearman

ESM-1v 0.0422 0.0273 0.1914 0.1572
PSSM 0.1215 0.1229 0.1224 0.0997
MSA Transf. 0.1415 0.1293 0.1755 0.1749
Tranception 0.1912 0.1816 0.1871 0.1987

Rosetta 0.3284 0.2988 0.3113 0.3468
FoldX 0.3908 0.3640 0.3560 0.3511

DDGPred 0.3711 0.3427 0.6515 0.4390
End-to-End 0.3818 0.3426 0.6605 0.4594

B-factor 0.1884 0.1661 0.1748 0.2054
ESM-IF 0.2308 0.2090 0.2957 0.2866
MIF-∆logit 0.1616 0.1231 0.2548 0.1927
MIF-Net. 0.3952 0.3479 0.6667 0.4802

RDE-Linear 0.3192 0.2837 0.3796 0.3394
RDE-Net. 0.4687 0.4333 0.6421 0.5271

ProteinMPNN 0.02 0.2813 0.2824 0.3307 0.3153
ProteinMPNN 0.30 0.2702 0.2549 0.3344 0.2893
HERMES 0.00 0.3064 0.2866 0.2854 0.2721
HERMES 0.50 0.3168 0.3075 0.2910 0.2863

HERMES 0.00 + Ros 0.3453 0.3072 0.4011 0.3522
HERMES 0.50 + Ros 0.3357 0.3069 0.3713 0.3276
HERMES 0.00 + cDNA117k 0.3467 0.3307 0.3802 0.3419
HERMES 0.50 + cDNA117k 0.3046 0.2943 0.3443 0.2881
HERMES 0.00 + cDNA117k train ESMFold 0.3405 0.3350 0.3957 0.3375
HERMES 0.50 + cDNA117k train ESMFold 0.3093 0.2939 0.3643 0.3079

HERMES 0.00 + Skempi Easy 0.4707 0.4331 0.5781 0.4761
HERMES 0.50 + Skempi Easy 0.4296 0.3892 0.5120 0.4203
HERMES 0.00 + Skempi Medium 0.4716 0.4302 0.5762 0.4655
HERMES 0.50 + Skempi Medium 0.4074 0.3676 0.4966 0.4029
HERMES 0.00 + Skempi Hard 0.4353 0.3979 0.3954 0.3802
HERMES 0.50 + Skempi Hard 0.3988 0.3592 0.3280 0.3216
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Figure S2: Pearson correlation of predictions against RaSP’s test set of experimental stability
effects for 8 proteins [2]. Each dot is a protein; the horizontal bar is the mean. Zero-shot HERMES
models perform similarly to ProteinMPNN models, with noise consistently improving performance.
Zero-shot HERMES models using the Biopython pipeline are slightly worse. Differences between
noise level and pre-processing pipeline become insignificant after fine-tuning. Notably, HERMES
models achieve better Pearson correlation than RaSP using the same training data.
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Figure S3: Pearsonr correlation of several models’ predictions and experimental stability effects,
from the T2837 dataset and its subsets. This is effectively a replica of a figure in [22]. Results of all
models other than HERMES were taken from [22]. We label the correlations on “reverse" mutations
as approximate because predictions were made with conditioning only on the wildtype structures.
As discussed in the Methods section, HERMES respects approximate permutational anti-symmetry
(i.e. “forward" and “reverse" mutations are anti-symmetric) by design, without the need for data
augmentation.
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Figure S6: Pearson correlation on SKEMPI multi-point mutations..
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27 DMS studies from (Riesselman et al. 2018)

Figure S7: Pearson correlation of models’ predictions against DMS experimental assays
from [18]. Each point is a study (single protein), and horizontal bars are mean values. Fine-
tuning HERMES models on stability ∆∆G values improves performance, but it does not enable
them to reach the levels of state-of-the-art sequence-based models DeepSequence and ESM-1v.
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27 DMS studies from (Riesselman et al. 2018)

Figure S8: Spearman correlation of models’ predictions against DMS experimental assays
from [18]. Each point is a study (single protein), and horizontal bars are mean values. Fine-tuning
HERMES models on stability ∆∆G values improves performance, but it does not enable them to
reach the levels of state-of-the-art sequence-based models DeepSequence and ESM-1v.
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