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Supplemental materials 

 

S1. Fairness metrics definition 

Several performance metrics are used to quantify the fairness of the iPsRS, which are 

detailed as below. The fundamental fairness metrics are predictive parity, predictive 

equality (false positive rate [FPR] balance), equalized odds, conditional use accuracy 

equality, treatment equality, equality of opportunity (false negative rate [FNR] balance)1, 

and overall accuracy equality.  To well explain the metrics, we define sensitive attributes 

(e.g., race-ethnicity: White [NHW] as the reference group, and Black [NHB] or Hispanic 

as protected groups) as 𝐺, the actual outcome as 𝑌 (hospitalization = 1 or not = 0), and 

the predicted outcome as 𝑑 (hospitalization = 1 or not = 0). 

Predictive parity: both protected and privileged groups have equal positive predictive 

value (PPV) – the probability of a subject with positive predictive value truly belonging to 

the positive class. 

• In our case, the probability of NHW or NHB/Hispanic predicted to be hospitalized 

(i.e., predicted to be positive) actually having the outcome should be the same. 

o P	(𝑌	 = 	1	|	𝑑	 = 	1, 𝐺	 = 	NHW) 	= 	P	(𝑌	 = 	1	|	𝑑	 = 	1, 𝐺	 = 	NHB) 

Predictive equality (a.k.a., false positive error rate balance): both protected and 

privileged groups have an equal FPR – the probability of a subject in the negative class 

having a positive predictive value. 

• In our case, the probability of NHW or NHB/Hispanic predicted to be hospitalized 

(i.e., predicted to be positive) actually do not have the disease should be the same. 

P	(𝑑	 = 	1	|	𝑌	 = 	0, 𝐺	 = 	NHW) 	= 	P	(𝑑	 = 	1	|	𝑌	 = 	0, 𝐺	 = 	NHB)	
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Equalized odds (a.k.a. conditional procedure accuracy equality and disparate 

mistreatment): protected and privileged groups have equal true positive rate (TPR) and 

equal FPR. 

• In our case, the probability of an individual that (a) does not have the hospitalization 

label but is incorrectly predicted to be hospitalized; and (b) does have the 

hospitalization outcome but is incorrectly predicted to not be hospitalized, should 

be the same between NHW vs. NHB/Hispanic. 

o (P(𝑌	 = 	1|𝑑	 = 	1, 𝐺	 = 	NHW) 	= 	P(𝑌	 = 	1|𝑑	 = 	1, 𝐺	 = 	NHB	)) 	∧ 	(P(𝑌	 =
	0|𝑑	 = 	1, 𝐺	 = 	NHW) 	= 	P(𝑌	 = 	0|𝑑	 = 	1, 𝐺	 = 	NHB	))	

 

Conditional use accuracy equality: protected and privileged groups equal PPV and 

Negative Predictive Value (NPV) – the probability of subjects with positive predictive value 

truly belonging to the positive class and the probability of subjects with negative predictive 

value truly belonging to the negative class. 

• In our case, the probability of a subject predicted to be hospitalized to actually have 

the outcome, and the probability of a subject predicted to not be hospitalized to 

actually not have the hospitalization outcome, should be the same between NHW 

vs. NHB/Hispanic. 

o (P(𝑌	 = 	1|𝑑	 = 	1, 𝐺	 = 	NHW) 	= 	P(𝑌	 = 	1|𝑑	 = 	1, 𝐺	 = 	NHB	)) 	∧ 	(P(𝑌	 =
	0|𝑑	 = 	0, 𝐺	 = 	NHW) 	= 	P(𝑌	 = 	0|𝑑	 = 	0, 𝐺	 = 	NHB	))	

 

Treatment equality: both protected and privileged groups have an equal ratio of false 

negatives (FN) and false positives (FP). 

• In our example, the ratio of FP to FN is the same for NHW and NHB/Hispanic. 

o FN/FP	(NHW) 	= 	FN/FP	(NHB)	
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Equality of opportunity (a.k.a., false negative error rate balance): both protected and 

privileged groups have equal FNR – the probability of a subject in a positive class having 

a negative predictive value. 

• In our case, the probability of an individual that has the hospitalization outcome but 

incorrectly predicted to not be hospitalized, should be the same between NHW vs. 

NHB/Hispanic. 

o P	(𝑑	 = 	0	|	𝑌	 = 	1, 𝐺	 = 	NHW) 	= 	P	(𝑑	 = 	0	|	𝑌	 = 	1, 𝐺	 = 	NHB) 

 

Overall accuracy equality: both protected and privileged groups have equal prediction 

accuracy – the probability of a subject from either a positive or negative class being 

assigned to its respective class.W 

• In our case, the probability of a subject with the disease being correctly predicted 

to have the hospitalization outcome and a subject without the disease to be 

correctly predicted to not be hospitalized is the same for NHW vs. NHB/Hispanic. 

o P	(𝑑	 = 	𝑌, 𝐺	 = 	NHW) 	= 	P	(𝑑	 = 	𝑌, 𝐺	 = 	NHB) 
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S2. Fairness Optimization Techniques 

Three bias mitigation techniques are adopted to optimize the algorithmic fairness of the 

proposed iPsRS, including Disparate Impact Remover2 (DIR), Adversarial Debiasing3 

(ADB), and Calibrated Equalized Odds Postprocessing4 (CEP) approaches.  We first 

defined the notations used to explain each method, where 𝐷 is the raw dataset, 𝐺 is the 

sensitive variable (e.g., the White and Black groups), 𝑋 is the remaining input variables, 

and 𝑌 is the output class.  

 

DIR is a preprocessing method to transform the original dataset 𝐷 into a new dataset 𝐷6 =

(𝐺, 𝑋7, 𝑌) that has no disparate impact. The underlying mechanism is to adjust the 

remaining input variables 𝑋 to 𝑋7 to increase the 𝐺 group fairness while preserving rank-

ordering within groups.   

 

ADB is an in-processing method that learns a classification model by simultaneously 

optimizing prediction accuracy and reducing the model’s ability to detect sensitive 

attributes 𝐺 from the results.  This method does not adjust the input data and output 

results. 

 
CEP is a post-processing method that calibrates the classification model’s score outputs, 

which is a model-agnostic method. This method searches for an optimal probability cut 

point that changes output classes to achieve an equalized odd objective.   
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S3. Individual-level SDoH 

We used SODA (i.e., SOcial DeterminAnts)5, a two-stage NLP extracting SDoH pipeline, 

including (1) concept extraction to identify SDoH concepts and attributes and (2) relation 

extraction to link the attribute to the targeted SDoH concepts, to extract individual-level 

SDoH from unstructured EHR data that cover a broad spectrum of social (e.g., food 

insecurity), behavioral (e.g., physical activities), and psychological (e.g., stress) 

information essential to T2D care and outcomes.   

 

S4. Contextual-level SDoH 

Supplementary Data 1 presents information on the sources of data at the contextual-level, 

the period during which the data was collected, and the corresponding spatial and 

temporal scales.  The data included 43 food access measures at the census tract level, 

obtained from the USDA's Food Access Research Atlas6 for the years 2015 and 2019.  

Walkability was evaluated using the National Walkability Index, developed by the US 

Environmental Protection Agency7, on a scale of 1 to 20 for each census block group.  

The assessment showed that 1 is the least walkable, while 20 is the most walkable.  Data 

on vacant land measures at the census-tract level from 2015 to 2019 were obtained from 

the US Department of Housing and Urban Development8, combined with administrative 

data from the US Postal Service, and a total of 18 measures available across all years 

were included.  The neighborhood deprivation index (NDI), a socioeconomic status 

measure, was obtained at the census block group level from the 2015 to 2019 American 

Community Survey (ACS).  It provided information on income, education, employment, 

and housing quality of a neighborhood, allowing ranking by socioeconomic disadvantage9.  
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Additionally, ten social capital measures were created based on the North American 

Industry Classification System (NACIS) codes10 using the Census Business Pattern data 

at the 5-digit ZIP code tabulation area (ZCTA5) level.  Eight county-level annual measures 

of crime and safety were also obtained from the Uniform Crime Reporting Program from 

2015 to 2019.11  Overall, the analysis included 114 social determinants of health (SDoH) 

measures. 

 

S5. Ablation study 

In the initial trial, we presented the results in Supplementary Data 2 which compares the 

effectiveness of different combinations of three sampling techniques (ROS, RUS, MCC), 

two machine learning methodologies (linear models and XGBoost), and three feature sets 

(Full SDoH, Individual-level SDoH, and Contextual-level SDoH).  Among all combinations, 

the best performance was achieved by RUS with the linear model (ridge regression) on 

Full SDoH, with an AUROC score of 0.7220.  Upon examining the table, it can be seen 

that RUS produced satisfactory results in comparison to the other sampling methods.  

The linear models demonstrated comparable prediction capability with XGBoost in these 

experiments.  Individual-level SDoH demonstrated promising prediction capability 

regarding features, but the optimal model is obtained by combining both contextual-level 

and individual-level SDoH.  Based on the conclusion that RUS with full SDoH can deliver 

the best performance in this study, we will only present the results based on RUS with full 

SDoH in the following sections.  To enhance expression conciseness, we select ridge 

regression over linear models in the subsequent sections due to its superior performance 

within the linear model family after hyperparameter tuning.  The detailed results can be 
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found in the Supplementary Data 5 and the finetuned parameters of the models in 

Supplementary Data 8. 

 

After obtaining initial results, we proceeded to investigate the standard errors and 

confidence intervals of the proposed models by removing various sensitive features. We 

conducted 100 bootstrapping experiments on the testing set within the modeling set and 

computed the mean and standard deviation to assess the models.  Supplementary Data 

3 displays the outcomes obtained by utilizing RUS on different models while utilizing full 

SDoH features. We observed that removing different sensitive features such as age, sex, 

and race did not have an impact on the model performance (both XGBoost and ridge 

regression), as evidenced by an AUROC ranging between 0.709 to 0.7237, Recall 

ranging from 0.6959 to 0.7123, and Specificity ranging from 0.6141 to 0.6295. Moreover, 

the standard deviation of each experiment was less than 0.04, indicating that the model 

performance remained consistent during bootstrapping testing. 

 

In addition, we applied the models to an external cohort generated from the All of Us Hub 

followed by our study design. As this database does not contain contextual-level SDoH 

and personal location information (e.g., ZIP code), we cannot link the contextual-level 

SDoH to this dataset. Hence, we tested the model trained on individual-level SDoH, and 

the results are shown in Figure S1.  We can see that both the XGBoost and linear models 

(with random over-sampling and random under-sampling) deliver comparable 

performance (AUC >= 0.7). 
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(a) XGBoost model with Random Over 

Sampling 
 

(b) XGBoost model with Random Under 
Sampling 

  
(c) Linear model with Random Over 

Sampling 
(d) Linear model with Random Under 

Sampling 
Figure S1 Model performance assessment of XGBoost and ridge regression on an external dataset (All of 
Us Research Hub). 
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Figure S2 SHAP values from the ridge regression.  We removed the features with an “unknown” category. 
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(a) Combination of insurance type and smoking status 

 

(b) Combination of housing stability and aggrevated assault rate 

 

(c) Combination of insurance type and motor theft rate 

 

(d) Combination of housing stability and smoking status 

Figure S3 Combinational SHAP (combined 2 features) values from sensitivity analysis (Using the top 15 features from the original XGBoost to 
build a prediction model).  We dichotomized the continuous contextual-level SDoH, such as the robbery and motor theft rates, based on the online 
crime data explorer provided by the Federal Bureau of Investigation12. 
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(a) Combination of insurance type, smoking status, and motor theft 

rate 

 

(b) Combination of housing stability, robbery rate, and motor theft 

rate 

 
Figure S4 Combinational SHAP (combined 3 features) values from sensitivity analysis (Using the top 15 features from the original XGBoost to 
build a prediction model).  We dichotomized the continuous contextual-level SDoH, such as the robbery and motor theft rates, based on the online 
crime data explorer provided by the Federal Bureau of Investigation12. 
 

Figures S3 and S4 show the combinational SHAP value analysis for the XGBoost model. We can see that the results deliver 

some reasonable explanation, for example, insurance type (Medicare) and smoking positively contribute to the increased 

risk of hospitalization.  
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Causal graph by different subgroups 

 

Figure S5 Causal graph generated by MGM-PC-Stable on the NHW group in the independent testing set. 

 

Figure S6 Causal graph generated by MGM-PC-Stable on the NHB group in the independent testing set. 
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Figure S7 Causal graph generated by MGM-PC-Stable on the Hispanic group in the independent testing 
set. 
 

Figures S5 – S7 show the causal graphs generated by MGM-PC-Stable on different 

subgroups, with nodes lacking connections removed from each graph.  In Figures S5 and 

S6, the causal graph for the NHW and NHB groups indicate that aggravated assault rate 

is a factor influencing hospitalization.  However, in Figure S7, there is no causal link found 

between the hospitalization to any other features in the Hispanic group.  This observation 

suggests that the NHW and NHB groups are affected by contextual-level SDoH (e.g., 

aggravated assault rate).  Furthermore, it is important to note that the causal links in the 

Hispanic group are less pronounced compared to the other two groups, primarily due to 

the significantly smaller sample size of the Hispanic group. 
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