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Supplementary Figure 1. Global miRNA expression response in SGA patients vs. controls
across gestation timepoints. Principal Component Analysis (PCA) plots illustrating the overall
mMiRNA expression patterns in Small-for-Gestational-Age (SGA) patients (triangles) compared to
control (healthy) patients (circles) at three gestation timepoints: A (blue), B (yellow), and C (green).
Panels a) to c) display PCA plots for all miRNAs, while panels d) to f) focus on miRNAs with
statistical significance (p < 0.05). The distinct clustering indicates differential miRNA expression
profiles between SGA and control groups at each timepoint.
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Supplementary Figure 2. Global miRNA expression in irradiated mice vs. sham controls.
Principal Component Analysis (PCA) plots depict overall miRNA expression patterns in mice
exposed to different radiation doses: 0.5 Gy GCR (red), 1 Gy SPE (yellow), and 5 Gy gamma
(blue), compared to 0 Gy sham controls (black). Panels (a-¢) present PCA plots for all miRNAs,
while panels (d-f) focus on miRNAs with statistical significance (p < 0.05). Distinct clustering
signifies differential miRNA expression profiles between irradiated and 0 Gy sham groups
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Supplementary Figure 3. Global miRNA pathway analysis on Hallmark pathways. Gene set
analysis of miRNAs on Hallmark pathways in Small for Gestational Age (SGA) and simulated
spaceflight pathways compared to control. SGA human miRNA regulation is compared to control
both time-independently and at different timepoints (left). Space radiation miRNAs with and
without simulated microgravity are compared to Sham (right). The x-axis represents a coefficient
term indicating pathway inhibition (negative value) or activation (positive value). The point size
indicates the degree of significance, denoted by False Discovery Rate (FDR). Only significant
values (FDR < 0.25) are displayed.
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Supplementary Figure 4. Global miRNA pathway analysis on MitoPathways. Gene set
analysis of miRNAs on MitoPathways in Small for Gestational Age (SGA) and simulated
spaceflight pathways compared to control. SGA human miRNA regulation is compared to control
both time-independently and at different timepoints (left). Space radiation miRNAs with and
without simulated microgravity are compared to Sham (right). The x-axis represents a coefficient
term indicating pathway inhibition (negative value) or activation (positive value). The point size
indicates the degree of significance, denoted by False Discovery Rate (FDR). Only significant
values (FDR < 0.25) are displayed.
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Supplementary Figure 5. Common Global miRNA pathway analysis on Hallmark pathways.
Scatter plot of the common significant gene sets (FDR < 0.25) analysis of miRNAs on Hallmark
pathways in Small for Gestational Age (SGA) vs. Controls (y-axis) compared to a) Hindlimb
Unloading (HU) vs. Normal Loaded (NL), b) all GCR conditions vs. Sham NL, ¢) all SPE
conditions vs. Sham NL, and d) all gamma conditions vs Sham NL.
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Supplementary Figure 6. Common Global miRNA pathway analysis on MitoPathways.
Scatter plot of the common significant gene sets (FDR < 0.25) analysis of miRNAs on
MitoPathways in Small for Gestational Age (SGA) vs. Controls (y-axis) compared to a) Hindlimb
Unloading (HU) vs. Normal Loaded (NL), b) all GCR conditions vs. Sham NL, ¢) all SPE
conditions vs. Sham NL, and d) all gamma conditions vs Sham NL.
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Supplementary Figure 7. Pathways similar to the 13 miRNA gene target pathways from Fig.
4 from analysis on blood samples from C57BL/6 mice 14 days post exposure to 50 cGy
simplified GCR simulated irradiation. This lollipop plot represents fast Gene Set Enrichment
Analysis (fGSEA) of differential gene expression (DGE) data from blood samples of 24-week-old
male and female C57BL/6 mice. The mice were exposed to 50 cGy of simplified GCR simulated
irradiation, and blood samples were collected 14 days post-exposure for RNA sequencing. fGSEA
was performed using the Hallmark, Reactome, and MitoCarta pathway databases. The plot
highlights pathways similar to those identified in the functional pathway analysis of the 13 miRNAs
in Figure 4, showing that similar pathways are dysregulated in female and male mice 14 days
after exposure to simulated space radiation. The x-axis represents the Normalized Enrichment
Score (NES), with negative values (shades of blue) indicating pathway inhibition and positive
values (shades of red) indicating pathway activation. Point size reflects the degree of significance,
denoted by the False Discovery Rate (FDR). Only significant values (FDR < 0.05) are displayed.
The complete list of pathway analyses is available in Supplementary Data 1.
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Supplementary Figure 8. Pathway analysis with Ingenuity Pathway Analysis (IPA) on the
45 gene targets shared by 10 or more of the 13 miRNAs. a) Canonical Pathway analysis by
IPA software showing the top enriched network based on 45 gene targets shared by 10 or more
of the 13 miRNAs in this study. The —log(p-value) (Fisher's Exact Test) is displayed with the
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Supplementary Figure 9. Pathways similar to the 45 gene target pathways from Fig. 5 from
analysis on blood samples from C57BL/6 mice 14 days post exposure to 50 cGy simplified
GCR simulated irradiation. This lollipop plot represents fast Gene Set Enrichment Analysis
(FGSEA) of differential gene expression (DGE) data from blood samples of 24-week-old male and
female C57BL/6 mice. The mice were exposed to 50 cGy of simplified GCR simulated irradiation,
and blood samples were collected 14 days post-exposure for RNA sequencing. fGSEA was
performed using the Hallmark and Reactome pathway databases. The plot highlights pathways
similar to those identified for the 45 gene targets for the 13 miRNAs in Figure 5, showing that
similar pathways are dysregulated in female and male mice 14 days after exposure to simulated
space radiation. The x-axis represents the Normalized Enrichment Score (NES), with negative
values (shades of blue) indicating pathway inhibition and positive values (shades of red) indicating
pathway activation. Point size reflects the degree of significance, denoted by the False Discovery
Rate (FDR). Only significant values (FDR < 0.05) are displayed. The complete list of pathway
analyses is available in Supplementary Data 1.
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Supplementary Figure 10. The impact of the 13 miRNAs and top 45 gene targets on other
tissues exposed to the space environment. a) Heatmap displaying the log.(fold change) values
for the 13 key miRNAs on heart, liver, and soleus muscle from mice exposed to simulated
spaceflight experiments 24 hours after irradiation. For the heatmap, log.(Fold-Change) is color-
coded, with red shades indicating upregulated genes and blue shades indicating downregulated
genes. Significance is denoted by * p-value < 0.05. b) The miRNAs present from the 13 miRNAs
in the NASA Twins Study data for CD4 cells, CD8 cells, CD19 cells, lymphocyte depleted cells
(LD) and unsorted PBMCs (CPT) comparing before flight, during flight, after flight, and ground
controls (i.e. Twin on Earth). The values shown are the miRNA expression values normalized
across each miRNA. c) Bar plot displaying the 13 miRNAs significantly either increased (brick
red) or decreased (blue) in expression in the liver, heart, and soleus muscle from mice exposed
to the space environment 24 hours after irradiation. d) Top 45 gene targets for the 13 miRNAs
across various tissues from mice exposed to the microgravity environment of the International
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Space Station (ISS). Analysis was conducted on the top 45 genes using 35 distinct datasets from
NASA's Open Science Data Repository (OSDR), encompassing mice flown to the ISS at varying
ages, durations in space, and sexes. The heatmap visually represents the log.(fold-change)
values for the genes, with upregulated genes depicted in shades of red and downregulated genes
in shades of blue. Of note, the majority of the mice included in the analysis were female.
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Supplementary Figure 11. Sex-specific cumulative plots illustrate the impact on the top 45
gene targets of 13 specific miRNAs in Inspiration 4 (I14) astronaut data, derived from
scRNA-sequence analysis of whole blood. Cumulative plots for the different cell types from the
the 14 astronaut scRNA-seq data, comparing 1 day after return to Earth (R1) (red line), 45 days
after return to Earth (R45) (orange line), and 82 days after return to Earth (R82) (gold line) to pre-
flight levels. The x-axis represents log.(fold-change) values for the comparisons, while the "no-
site" line serves as a baseline for genes without targets to the 13 miRNAs. Various shades of grey
in the no-site lines correspond to specific comparisons, as indicated in the figure legend. The top
cumulative plots are specifically for the female astronauts, while the bottom cumulative plots are
specifically for the male astronauts
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Supplementary Figure 12. Pathways similar to the 13 miRNA gene target pathways from
Fig. 4 from analysis on the Inspiration4 (I14) female astronauts. This lollipop plot represents
fast Gene Set Enrichment Analysis (fGSEA) of differential gene expression (DGE) data from
scRNA-seq data on the blood samples of the female 14 astronauts comparing immediate post-
flight (1 day after return to Earth) vs preflight (circles) and long-term post-flight (45 and 84 days
after returning to Earth) vs preflight (triangles). fGSEA was performed using the Hallmark,
Reactome, and MitoCarta pathway databases. The plot highlights pathways similar to those
identified in the functional pathway analysis of the 13 miRNAs in Figure 4, showing that similar
pathways are dysregulated in female astronauts after returning to Earth. The x-axis represents
the Normalized Enrichment Score (NES), with negative values (shades of blue) indicating
pathway inhibition and positive values (shades of red) indicating pathway activation. Point size
reflects the degree of significance, denoted by the False Discovery Rate (FDR). Only significant
values (FDR < 0.001) are displayed. The complete list of pathway analyses is available in
Supplementary Data 3.
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Supplementary Figure 13. Pathways similar to the 13 miRNA gene target pathways from
Fig. 4 from analysis on the Inspiration4 (I14) male astronauts. This lollipop plot represents fast
Gene Set Enrichment Analysis (fGSEA) of differential gene expression (DGE) data from scRNA-
seq data on the blood samples of the male 14 astronauts comparing immediate post-flight (1 day
after return to Earth) vs preflight (circles) and long-term post-flight (45 and 84 days after returning
to Earth) vs preflight (triangles). fGSEA was performed using the Hallmark, Reactome, and
MitoCarta pathway databases. The plot highlights pathways similar to those identified in the
functional pathway analysis of the 13 miRNAs in Figure 4, showing that similar pathways are
dysregulated in female astronauts after returning to Earth. The x-axis represents the Normalized
Enrichment Score (NES), with negative values (shades of blue) indicating pathway inhibition and
positive values (shades of red) indicating pathway activation. Point size reflects the degree of
significance, denoted by the False Discovery Rate (FDR). Only significant values (FDR < 0.001)
are displayed. The complete list of pathway analyses is available in Supplementary Data 3.
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Supplementary Figure 14. Pathways similar to the 45 gene target pathways from Fig. 5 from
analysis on the Inspiration4 (14) female astronauts. This lollipop plot represents fast Gene Set
Enrichment Analysis (fGSEA) of differential gene expression (DGE) data from scRNA-seq data
on the blood samples of the female 14 astronauts comparing immediate post-flight (1 day after
return to Earth) vs preflight (circles) and long-term post-flight (45 and 84 days after returning to
Earth) vs preflight (triangles). fGSEA was performed using the Hallmark and Reactome pathway
databases. The plot highlights pathways similar to those identified for the 45 gene targets for the
13 miRNAs in Figure 5, showing that similar pathways are dysregulated in female astronauts
after returning to Earth. The x-axis represents the Normalized Enrichment Score (NES), with
negative values (shades of blue) indicating pathway inhibition and positive values (shades of red)
indicating pathway activation. Point size reflects the degree of significance, denoted by the False
Discovery Rate (FDR). Only significant values (FDR < 0.001) are displayed. The complete list of
pathway analyses is available in Supplementary Data 3.
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Supplementary Figure 15. Pathways similar to the 45 gene target pathways from Fig. 5 from
analysis on the Inspiration4 (I14) male astronauts. This lollipop plot represents fast Gene Set
Enrichment Analysis (fGSEA) of differential gene expression (DGE) data from scRNA-seq data
on the blood samples of the male 14 astronauts comparing immediate post-flight (1 day after return
to Earth) vs preflight (circles) and long-term post-flight (45 and 84 days after returning to Earth)
vs preflight (triangles). f{GSEA was performed using the Hallmark and Reactome pathway
databases. The plot highlights pathways similar to those identified for the 45 gene targets for the
13 miRNAs in Figure 5, showing that similar pathways are dysregulated in female astronauts
after returning to Earth. The x-axis represents the Normalized Enrichment Score (NES), with
negative values (shades of blue) indicating pathway inhibition and positive values (shades of red)
indicating pathway activation. Point size reflects the degree of significance, denoted by the False
Discovery Rate (FDR). Only significant values (FDR < 0.001) are displayed. The complete list of
pathway analyses is available in Supplementary Data 3.
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Small Molecule Drug Predictions for Targeting Spaceflight/SGA miRNA Signature
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Supplementary Figure 16. Predicted small molecule drugs for SGA-associated spaceflight
miRNA signature. Upset plot revealing specific predicted small molecule drugs that target the
miRNA signature associated with Small-for-Gestational-Age (SGA) in spaceflight. The drug
names and details can be found in Supplementary Data 4.
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miRNA Pollution Diet Exercise
hsa-miR-22-3p 1 1 (HFD) 23 14
hsa-miR-29¢-3p ~ 1 (HFD) ® 1°
let-7b-5p 178 1 (KD) ® 1°
hsa-miR-27b-3p 110 1t (HFD) " 16
hsa-miR-29b-3p 112 - 1°
hsa-miR-106b-5p 11 | (dairy) " L
hsa-miR-23a-3p 116 1 (sodium) "7 1
hsa-miR-130a-3p |1 1 (LFD) % L
hsa-miR-148a-3p | 2 - L

hsa-miR-24-3p | B 1 (HFD) * | 188
hsa-miR-378a-3p - 1 (HF, magnesium) %27 1
hsa-miR-192-5p 128 | (HFD) % L%
hsa-miR-146b-5p 13 | (HFD) " | %

Supplementary Table 1. Influence of environmental factors on the 13 miRNAs. Expression

of

the 13 miRNAs under the influence of pollution, diet and exercise: 1 overexpressed, | less

expressed. We indicate for the diet: HFD (high-fat diet), LFD (low-fat diet), KD (ketogenic diet)

an

d HF (high-fructose diet).
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Pathways/health risks

miRNAs Expression of miRNA present in pregnant vs | References
non-pregnant
1 early pregnancy decidua, | .
hsa-miR-22-3p healthy pregnancy vs early pregnancy demdug 12
and menstrual endometria
nonpregnant
1 pregnant women with | COL4A1 and adhesive
hsa-miR-29¢-3p complications leading to capacity leading to 34
miscarriage infertility
| neonatal encephalopathy,
1 in Obese with Gestational
hsa-let-7b-5p Diabetes Mellitus (GDM), 1 | 1 apoptotic Hippo pathway &7
pregnant women with
preterm birth
1 pregnancy resulting in fetal | Targets APLN, EGFR, and
hsa-miR-27b-3p growth restriction, 1 early FGF and involved in 89
onset preeclampsia hypoxia
1 pregnant women
hsa-miR-29b-3p | developing GDM, 1 pregnant Glucose 7,10
women with preterm birth
1 pregnant women who
developed severe
hsa-miR-106b-5p preeclampsia, 1 maternal Cancer, cell cycle, TGF- B 711,12
asthma during pregnancy, t pathway
pregnant women with
preterm birth
. 1 pregnant women with Targets Tbr1/Wnt 71
hsa-miR-23a-3p preterm birth pathways "
1 pregnant women with
hsa-miR-130a-3p preterm premature rupture of Altgred collagen and 714
membranes vs healthy matrix metalloprotease
pregnant women
1 pregnant women with
hsa-miR-148a-3p qomplications leading to | TNF/IL1-0 levels and | 15
miscarriage and early- and Treg
late-onset pre-eclampsia
I pregnant women with met;-b(c;):?c Br%?:ter]svéae)s/’ cell
hsa-miR-24-3p severe preeclamptic P o 16
. cycle, MAP kinase
pregnancies signaling pathway
hsa-miR-378a-3p | ' Nealthy pregnancy vs N/A 2
nonpregnant
Type 2 diabetes, inhibits
hsa-miR-192-5p poregnarlt women epithelial transform.ation, 17.18
eveloping GDM suppresses uterine
receptivity
1 early pregnancy decidua, | | early pregnancy decidua
pregnant women with and menstrual 11519

hsa-miR-146b-5p

complications leading to
miscarriage

endometria, regulates
inflammatory responses
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Supplementary Table 2. The impact of the 13 miRNAs in pregnant women. A general
literature review of the expression of these 13 miRNAs in the circulation of pregnant women. The
expression levels are indicated with 1 for upregulated and | for downregulated. The pathways
that the miRNAs are involved with during pregnancy are also indicated.
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