Supplementary Table 1. AI model's performance relative to the gold standard in the initial image quality screening process.

		Standard			
		Qualified	Unqualified	Sum	
Algorithm	Qualified	195	5	200	
	Unqualified	0	200	200	
	Sum	195	205	400	

The concordance of each expert with the gold standard showed the following rates: 99.5% for Expert 1, 99.75% for Expert 2, and 99.75% for Expert 3. The kappa between the algorithm and gold standard was 0.975.

Variable	Coefficient	Standard Error	z-Value	P-value	95% Confidence Interval
Intercept	-3.3439	0.044	-76.388	< 0.001*	(-3.430, -3.258)
C(Male)	0.4167	0.046	9.115	< 0.001*	(0.327, 0.506)
Age_z	0.225	0.026	8.547	< 0.001*	(0.173, 0.277)
Diabetes	0.3919	0.051	7.613	< 0.001*	(0.291, 0.493)
Hypertension	1.4287	0.053	27.063	< 0.001*	(1.325, 1.532)
Cerebrovascular Disease	0.4536	0.067	6.78	< 0.001*	(0.323, 0.585)
Coronary Heart Disease	-0.0784	0.072	-1.094	0.274	(-0.219, 0.062)
Dyslipidemia	-0.0111	0.056	-0.2	0.842	(-0.120, 0.098)

Supplementary Table 2. Multivariate logistic regression to analyze the demographic effects on the target variable CKD

* indicates P < 0.05

The result showed that sex, age, diabetes, hypertension, and cerebrovascular disease have

statistically significant associations with the prediction of CKD.

Subgroup	AUC	Delta	Z	р
All	0.8603	/	/	/
Male	0.8523	0.0081	0.2766	0.7821
Female	0.8685	-0.0081	-0.2358	0.8136
Age < 30	0.9637	-0.1034	-1.8337	0.0667
Age >= 30	0.8288	0.0315	1.1866	0.2354
Age < 70	0.8606	-0.0003	-0.0108	0.9914
Age >= 70	0.8440	0.0163	0.3468	0.7288
Diabetes	0.7592	0.1011	3.0218	0.0025*
Without Diabetes	0.8853	-0.0249	-0.8400	0.4009
Hypertension	0.8362	0.0241	0.8077	0.4193
Without Hypertension	0.8063	0.0540	1.5411	0.1233
CVD	0.6876	0.1727	3.4315	0.0006*
Without CVD	0.8675	-0.0072	-0.2754	0.7830
CHD	0.8175	0.0428	0.6967	0.4860
Without CHD	0.8620	-0.0017	-0.0662	0.9472
Dyslipidemia	0.8587	0.0017	0.0449	0.9642
Without Dyslipidemia	0.8558	0.0046	0.1643	0.8695

Supplementary Table 3. Stratified comparisons on various subgroups that might impact the overall model performance.

AUC = Area under the receiver operating characteristic curve.

In the subgroup of diabetes and cerebrovascular disease, the model's AUC value showed a statistically significant difference (P < 0.05) compared to the overall sample, suggesting that the two diseases may affect the model's predictive performance.

Supplementary table 4. The AUCs of UWF-CKDS trained with original

	Internal test	Multi-center test
Unmatched dataset	0.86	0.81
Age Matched dataset	0.79	0.68
PSM dataset	0.81	0.70

unmatched dataset, age matched dataset, and PSM dataset.

AUC = Area under the receiver operating characteristic curve. PSM = Propensity score matching.

Supplementary Table 5. Performance comparison between different AI

Archite ctures	Internal precisi on	Intern al recall	Intern al F1	Inter nal AUC	Multi center precision	Multi center recall	Multi center F1	Multi center AUC
Efficien tnetB3	0.235	0.771	0.360	0.860	0.217	0.860	0.347	0.818
Resnet5 0	0.187	0.786	0.303	0.810	0.186	0.850	0.305	0.776
Vit	0.186	0.836	0.304	0.816	0.173	0.879	0.290	0.761

algorithms for training UWF-CKDS.

AUC = Area under the receiver operating characteristic curve.

Supplementary Figure 1. Confusion matrix for both the internal test set and external test set.

Based on the analysis of the confusion matrix, the classification model demonstrated a higher sensitivity and a relatively lower specificity. Given the objectives of early and large-scale screening and detection of CKD, reducing false negatives, sensitivity is deemed to be of greater importance than specificity within the context of our study.

Supplementary Note 1. List of 23 participated hospitals across China

- 1. Peking Union Medical College Hospital (PUMCH), Beijing
- 2. Beijing Tsinghua Changgung Hospital, Beijing
- 3. Beijing Tiantan Hospital, Beijing
- 4. Eye Hospital of Shandong First Medical University, Shandong Province
- 5. Tonghua Eye Hospital of Jilin Province, Jilin Province
- 6. Guangdong Provincial People's Hospital, Guangdong Province
- 7. Guizhou Provincial People's Hospital, Guizhou Province
- 8. Hunan Provincial People's Hospital, Hunan Province
- 9. The Fourth People's Hospital of Shenyang, Liaoning Province
- 10. The Affiliated Hospital of Chengde Medical University, Hebei Province
- 11. The Second Affiliated Hospital of Hebei North University, Hebei Province
- 12. Xi'an NO. 1 Hospital, Shanxi Province

- 13. The First Affiliated Hospital of Kunming Medical University, Yunnan Province
- 14. Renmin Hospital of Wuhan University, Hubei Province
- 15. The First Hospital of China Medical University, Liaoning Province
- 16. Bayinguoleng people's Hospital, Xinjiang Province
- The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region
- 18. Hainan Hospital of PLA General Hospital, Hainan Province
- The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province
- 20. The First Affiliated Hospital of Zhengzhou University, Henan Province
- 21. Fujian Medical University Union Hospital, Fujian Province
- 22. The First Affiliated Hospital of Shanxi Medical University, Shanxi Province
- 23. The Affiliated Hospital of Southwest Medical University, Sichuan Province