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S1. Linear Kinetic Theory Prediction of Velocity-Space Signatures of Ion Cyclotron Damp-9

ing10

Here we present an explanation of the velocity-space signatures for ion cyclotron damping of11

an Alfvén/ion cyclotron wave using the self-consistently determined wave eigenfunction using12

the PLUME linear Vlasov-Maxwell dispersion relation solver [s1], which predicts the complex13

eigenfrequency ω + iγ given the wavevector and plasma parameters. We choose a fiducial case14

of a fully ionized, hydrogenic plasma with isotropic Maxwellian ion and electron velocity dis-15

tributions and plasma parameters βi = 1, Ti/Te = 1, vti/c = 10−4, and mi/me = 1836. In16

Fig. S1, for the Alfvén/ion cyclotron wave with wavevector k = k⊥ê⊥1 + k∥ê∥, we present (a)17

the normalized real wave frequency ω/Ωi (black) compared to an analytical approximation (red18

dashed) inspired by the cold plasma ion cyclotron wave dispersion relation [s2, s3],19
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with a correction for the phase speed of the Alfvén wave due to pressure anisotropy vA∗ relative20

to the standard Alfvén speed21

vA∗

vA
=

[
1 +

∑
s

β∥s

2

(
T⊥s

T∥s
− 1

)]1/2

. (S2)

Note that, at large scales where k∥di ≪ 1, a temperature anisotropy with T⊥s/T∥s > 1 increases22

the wave phase velocity and T⊥s/T∥s < 1 decreases the phase velocity relative to the Alfvén23

velocity vA in an isotropic pressure plasma. Here di = c/ωpi = vA/Ωi is the usual definition24

of the ion inertial length, where c is the speed of light, ωpi =
√

niq2i /(ϵ0mi) is the ion plasma25

frequency, and Ωi = qiB0/mi is the ion cyclotron frequency. We see that the analytical ap-26

proximation for the frequency is accurate up to k∥di ≲ 0.3, where the damping is weak with27

−γ/ω < 0.1.28

In Fig. S1(b), we plot the normalized total collisionless damping rate −γ/ω (black dashed)29

for k⊥di = 10−2 over a range 10−2 ≤ k∥di ≤ 10. In addition, we also show in (b) the total nor-30

malized ion damping rate γi/ω (thin red) and total normalized electron damping rate γe/ω (thin31

blue) are plotted, showing clearly that the total damping rate for this ion cyclotron wave (ICW)32

is dominated by the ions. Furthermore, the contributions to the collisionless damping on the33

ions are calculated separately, showing at k∥di ≲ 0.2 nearly equal contributions from ion Lan-34

dau damping γi,LD (red short dashed) and ion transit-time damping γi,TTD (red long dashed);35

at k∥di ≳ 0.2, ion cyclotron damping γi,CD (green dashed) becomes the dominant collisionless36
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Figure S1: Frequency and damping rate of Alfvén/ion cyclotron wave. In a Maxwellian
plasma with βi = 1, Ti/Te = 1, vti/c = 10−4, and mi/me = 1836, we plot (a) the nor-
malized frequency ω/Ωi (black) and the analytical approxmation by eq. (S1) (red dashed) and
(b) normalized total collisionless damping rate γ/ω (black dashed) for k⊥di = 10−2 over a
range 10−2 ≤ k∥di ≤ 10. Separate contributions to the total collisionless damping rate γ/ω
(black dashed) are shown: total ion damping γi (thin red); total electron damping rate γe (thin
blue); ion Landau damping γi,LD (red short dashed); ion transit-time damping γi,TTD (red long
dashed); and ion cyclotron damping γi,CD (green dashed).

damping mechanism. Significant damping rates with −γ/ω ≳ 0.1 occur for k∥di ≳ 0.4, where37

ion cyclotron damping dominates.38

To predict the velocity-space signatures of ion cyclotron damping in the perpendicular ve-39

locity space (v⊥1, v⊥2), we employ the analytical model given by (6) and (7) in the manuscript40

with the complex phase and amplitude relationships for the perpendicular components of the41

electric field and ion fluid velocity derived directly from the linear eigenfunctions calculated by42

the PLUME solver. For this calculation, we choose a wave amplitude given by E⊥1/(vAB0) =43
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0.3. In Fig. S2, we plot the perpendicular velocity-space signatures CE⊥1
(v⊥1, v⊥2) (left col-44

umn) and CE⊥2
(v⊥1, v⊥2) (right column) for the ICW from Fig. S1 with k∥di = 0.4 (top row),45

k∥di = 0.8 (middle row), and k∥di = 1.2 (bottom row). Note that these predicted velocity-46

space signatures are time-averaged over one full period of the ICW, thus they contain the net47

effect of the work done by the perpendicular electric field on the ions. In all cases, we observe48

quadrupolar signatures dominated by energy transfer to the ions (red), with an increasing skew49

to the quadrupolar pattern with increasing k∥di, which arises from the phase shift between the50

perpendicular electric field and the perpendicular ion bulk velocity decreasing from nearly out-51

of-phase with δ1 = δ2 = −0.49π at k∥di = 0.4 to more in-phase with δ1 = δ2 = −0.27π at52

k∥di = 1.2. All cases have ϕ = −0.5π. It is worth noting that the quantitative skew in the pat-53

tern provides a potential means to determine the parallel wavenumber of the ICW undergoing54

damping.55

To understand why ion cyclotron damping creates the quadrupolar pattern in perpendic-56

ular velocity space (v⊥1, v⊥2), it is necessary to look at the instantaneous work done by the57

perpendicular electric field over the full ICW period T . In Fig. S3, we plot the instantaneous58

field-particle correlation for CE⊥1
(v⊥1, v⊥2) for the k∥di = 0.8 case at eight different, equally59

spaced phases of the wave, parameterized by t/T = ωt/2π. In each panel, we plot the mean60

perpendicular bulk velocity (star) and a circle of radius one thermal velocity ∆v⊥/vti = 1 to61

indicate the ion distribution at that time throughout its circularly polarized orbit. Each case62

yields a bipolar signature of energization by the E⊥1 component of the electric field. Averaging63

over the full 2π phase of the ion cyclotron period leads to the quadrupolar signature seen in64

Fig. S2(c), where the energization of the ions is dominated by positive (red) transfer to the ions65

in the second and fourth quadrants of that plot.66

Note that the total energization of the ions by the perpendicular electric field over perpen-67

dicular velocity space is given by the sum of CE⊥(v⊥1, v⊥2) = CE⊥1
+ CE⊥2

, leading to the68

total ion energization pattern in perpendicular velocity space (v⊥1, v⊥2) shown in Fig. S4(a) for69

the k∥di = 0.8 case. If the full factor of v2 in the electric field term of Eq. (1) is used in the70

definition of the perpendicular field-particle correlation, given by71

C
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(S3)
we obtain the perpendicular field-particle correlation in Fig. S4(b). This alternative version in72

panel (b) corresponds to an intuitive expectation for ion cyclotron damping in which ions with73

v⊥/vti < 1 are accelerated to a perpendicular velocity with v⊥/vti > 1, generating the red74

circular pattern with a blue center. Note, however, that, when integrated over velocity space, the75
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Figure S2: Velocity-space signatures of ion cyclotron damping. The perpendicular velocity-
space signatures CE⊥1(v⊥1, v⊥2) (left column) and CE⊥2(v⊥1, v⊥2) (right column) for the ion
cyclotron wave from Fig. S1 with k∥di = 0.4 (a,b), k∥di = 0.8 (c,d), and k∥di = 1.2 (e,f).
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Figure S3: Instantaneous correlation by phase. The instantaneous field-particle correlation
CE⊥1(v⊥1, v⊥2) in perpendicular velocity space at 8 equally spaced phases of ion cyclotron
wave ωt/2π. The summed effect over the full 2π phase of the ion cyclotron wave yields the
quadrupolar signature seen in Fig. S2(c).

net rate of ion energization is exactly the same in both panels (a) and (b) because, for example,76

the v2⊥2 contribution to v2 yields zero when the correlation is integrated over v⊥1.77

It is worthwhile noting here that if the ion velocity distribution is separated into the sum78

of a steady equilibrium and a time-varying perturbation, fi(v, t) = fi0(v) + δfi(v, t), then the79

velocity-space signature of the perpendicular field-particle correlation using the full ion veloc-80

ity distribution fi(v, t) is exactly the same as that using the perturbed ion velocity distribution81

δfi(v, t) as long as (i) the correlation is taken over an integral number of wave periods and (ii)82

the damping rate is weak −γ/ω ≪ 1 so that the oscillating energy transfer of the undamped83

wave motion cancels out between the first and second halves of the wave period. Thus, observa-84

tional field-particle correlations using the full ion velocity distribution fi(v, t) can be compared85

directly to the predictions from field-particle correlation calculations that use the perturbed ion86

velocity distribution δfi(v, t).87

88

S2. Ion Cyclotron Wave Modes Driven Unstable by the Alfvén/Ion Cyclotron Instability89

In the investigation of the source of the ICW observed to damp in the MMS measurements,90

it is worthwhile to determine what are the typical wave vectors of the modes that may be91
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Figure S4: Total perpendicular velocity-space signature. (a) CE⊥(v⊥1, v⊥2) using the com-
ponent field-particle correlation defined in Eq. (2) and (b) C(v2)

E⊥
(r0,v) using the full v2 factor

in the correlation definition in eq. (S3).

driven unstable by the ion temperature anisotropy. Using the PLUME linear Vlasov-Maxwell92

dispersion relation solver [s1], we compute the growth or damping rates of wave modes over93

the normalized wavevector1 range 10−2 ≤ k⊥ρ⊥i ≤ 10 and 10−2 ≤ k∥ρ⊥i ≤ 10, where94

ρ⊥i = v⊥ti/Ωi = di(T⊥i/T∥i)
1/2β

1/2
∥i and the perpendicular ion thermal velocity is given by95

v2⊥ti = 2T⊥i/mi. We model a fully ionized, hydrogenic plasma with bi-Maxwellian veloc-96

ity distributions and mass ratio mi/me = 1836, and we compute the dimensionless plasma97

parameters using the MMS measurements during the interval: β∥i = 0.383, T∥i/T∥e = 6.84,98

T⊥i/T∥i = 2.43, T⊥e/T∥e = 0.973, and v∥ti/c = 7.34 × 10−4, where the parallel ion thermal99

velocity is given by v2∥ti = 2T∥i/mi. For the Alfvén/ion cyclotron wave mode, the resulting nor-100

malized growth rates γ/Ωi are plotted linearly in the left panel of Fig. S5 and the normalized101

damping rates −γ/Ωi are plotted logarithmically in the right panel. It is clear that the measured102

ion temperature anisotropy leads to unstable growth of the ICWs with 0.3 ≲ k∥ρ⊥i ≲ 1.0 and103

k⊥ < k∥; for the most rapidly growing modes, the unstable wave vectors are predominantly104

1Note that the ion thermal Larmor radius ρ⊥i is the natural length scale to normalize k⊥, and we choose to
normalize k∥ by the same characteristic length so the wavevector anisotropy k∥/k⊥ of a wave mode is immediately
evident from the plot. Choosing a parallel wavevector normalization of k∥di would include scalings of T⊥i/T∥i
and β∥i between the horizontal and vertical axes.
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Figure S5: Growth and Damping Rates for Alfvén/ion cyclotron wave. (a) Linearly plotted
normalized growth γ/Ωi and (b) logarithmically plotted normalized damping rates log(−γ/Ωi)
for the Alfvén/ion cyclotron wave mode as a function of (k∥ρ⊥i, k⊥ρ⊥i) for the anisotropic
temperatures measured in the MMS interval under investigation.

parallel with k⊥ ≪ k∥.105

The direct measurements by MMS in the interval under investigation show a net loss of wave106

energy to the ions (see Fig. 4c), manifesting collisionless damping of the measured ICWs rather107

than unstable growth. In kinetic theory, the real frequency of a wave mode is typically a function108

of the lowest order moments of the distribution (density, bulk velocity, and temperature), but the109

collisionless growth or damping rates can be a sensitive function of the slope of the distribution110

function at a resonant velocity [s4]. Furthermore, as shown by the contours of the ion velocity111

distribution in Fig. 2g being fit by circular contours about a parallel wave phase velocity vph =112

0.7vA, the ion velocity distributions in the magnetosheath plasma may not be well approximated113

by the idealized bi-Maxwellian form assumed in the PLUME solver, leading to a difference in114

the resulting collisionless damping or growth rates. To determine the ion cyclotron damping115

rates for plasma parameters similar to the MMS interval studied here, we also compute the116

frequencies and damping rates using the PLUME solver by taking the ion temperatures to be117

isotropic, T⊥i/T∥i = 1, with all of the other parameters held fixed.118

In Fig. 6a of the manuscript, we plot a comparison of the normalized ICW frequencies119

ω/Ωi for the isotropic (dotted) and anisotropic (dashed) ion temperature cases vs. k∥di; it is120

clear that the temperature anisotropy leads to only a relatively small (less than a factor of two)121

quantitative change in the wave frequency at k∥di > 0.3. This supports the notion that the122

real frequency of the wave mode is less sensitive to the details of the velocity distribution.123
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In Fig. 6b of the manuscript, we plot the normalized damping rate −γ/ω for the isotropic case124

with T⊥i/T∥i = 1 (dotted) and the normalized damping rate −γ/ω (blue dashed) and normalized125

growth rate γ/ω (red dashed) for the anisotropic case with T⊥i/T∥i = 2.43. The damped regions126

for both cases show a similar qualitative behavior. Over the narrow parallel wavevector range127

0.3 ≲ k∥di ≲ 0.9, the anisotropic case is unstable but the isotropic case is damped, with similar128

absolute values of the growth or damping rates. And, it is worth noting that the region of129

significant damping (−γ/ω > 0.1) in the isotropic ion temperature case occurs for k∥di ≳ 0.4,130

similar to the fiducial case of ion cyclotron damping explored in Sec. S1. Note also that the131

agreement of the damping rate at k∥di ≲ 0.3 between the isotropic and the anisotropic cases132

makes sense because the damping in that regime is due to Landau and transit-time damping,133

both of which depend only on the β∥p, which does not change.134

To assess the impact of the distribution function not being well fit by a bi-Maxwellian distri-135

bution (as assumed by the PLUME solver), we also calculate the linear dispersion relation via a136

numerical integration using the Arbitrary Linear Plasma Solver (ALPS) [s5], which determines137

complex linear wave eigenfrequencies for arbitrary gyrotropic equilibrium velocity distribu-138

tions. The growth rates to these solutions are shown in Fig. S6. As inputs to this calculation, we139

averaged the observed ion distribution function over the entire 77 second interval considered in140

the manuscript, as well as shorter averaging intervals of 7 seconds and 1 second. The observed141

distributions are interpolated onto a Cartesian grid in (v⊥/vA, v∥/vA) using a smooth-plate in-142

terpolation method covering a range of v∥ ∈ [−3, 3]vA and v⊥ ∈ [0, 3]vA. We calculated the143

parallel propagating solutions for the Alfvén/ion cyclotron mode, keeping k⊥di = 10−3 con-144

stant with varying k∥di. The forward and backwards solutions are considered separately, as145

asymmetries in the distribution lead to different behaviors for the two modes.146

For the 77 second averaged distribution, the forward Alfvén solution remains broadly un-147

stable (similar to the PLUME results), while the region of wavevector support for the backwards148

solution is decreased, as is the peak growth rate. When considering the shorter intervals, we see149

significant variability in the wavemodes that are unstable, at times nearly suppressing the insta-150

bility altogether. The decrease of the instability growth rates for shorter measurement intervals151

is strong evidence that measured intervals yield a larger perpendicular “apparent temperature”152

than actually exists in the plasma [s5]. The instrumental effect of “apparent temperature” arises153

when wave activity, which leads to significant plasma wave motions perpendicular to the mag-154

netic field, as is the case for both Alfvén and ion cyclotron waves, artificially broadens the155

measured velocity distribution. This may be an explanation for why linear dispersion relation156

calculations suggest that the ion cyclotron waves are unstable for this interval, but that the direct157

field-particle correlation measurements show instead a transfer of energy from the waves to the158

ions, leading to wave damping rather than growth.159
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Figure S6: Instability growth rates as a function of time average interval. Growth rates
for parallel propagating Alfvén/ion cyclotron waves as a function of k∥di and fixed k⊥di =
10−3, calculated using the PLUME bi-Maxwellian linear dispersion solver for the anisotropic
temperatures presented in Fig. S5 (top right) and the ALPS linear dispersion solver (left and
central columns) for three different averaging intervals (77 seconds - top, 7 seconds- middle, 1
second- bottom). The range of unstable modes identified by PLUME is overplotted as dashed
lines in the other panels.
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Another issue besides the apparent temperature that may impact the predictions of whether160

the observed ion cyclotron waves in the turbulence are damped or growing is a comparison of161

the unstable wave growth rates compared to the ion cyclotron wave periods themselves. For162

many cases of temperature anisotropy instabilities being triggered in space or astrophysical163

plasmas, the unstable temperature anisotropy is driven by large-scale compressible fluctuations.164

Because the instabilities typically grow on ion cyclotron timescales, as shown in Fig. S6, the165

low-frequency of the large-scale fluctuations driving the temperature anisotropy leads to a rela-166

tively steady background conditions in which the unstable wave can grow. Thus, linear disper-167

sion relation solvers, such as PLUME and ALPS, which assume static equilibrium conditions,168

provide a reasonable calculation of the growth or damping rates. In this observed interval in169

the magnetosheath, however, the ion cyclotron wave is oscillating at ω/Ωi ≃ 0.36, whereas the170

peak instability growth rates are significantly slower with γ/Ωi ∼ 0.04. Thus, the growth or171

damping rates in observed turbulent plasma may not be the same as those calculated by these172

linear dispersion relation solvers which assume static equilibrium conditions. This is another173

potential explanation for why the dispersion relation solvers predict unstable wave growth, but174

the observations clearly indicate wave damping.175

S3. Estimation of Ion Cyclotron Wave Vector176

If we assume that the ICW undergoing damping in the MMS observation can be characterized177

by a single wave vector k (which is not unreasonable considering the appearant dominance of178

a single wave mode in the high-pass filtered electric and magnetic fields in Figure 2(d) and179

(e)), we can estimate the spacecraft frame frequency ωs/c due to the sum of the plasma frame180

frequency plus the Doppler shift associated with the flow U of spatial fluctuations in the plasma181

past the spacecraft, given by [s6]182

ωs/c = ω + k ·U (S4)

where ω is the frequency of the wave in the plasma rest frame. The FAC coordinate system183

defined in the Methods section is defined such that the ê⊥2 unit vector is perpendicular to the184

plane of the mean magnetic field B0 and mean ion flow velocity U0i. Averaged over the full185

τ = 77 s correlation interval, the mean magnetic field in GSE coordinates is ⟨Bx, By, Bz⟩τ =186

(14.5, 27.7, 36.2) nT, and the mean ion bulk flow is ⟨Ui,x, Ui,y, Ui,z⟩τ =(−51.3,−98.3,−51.8) km/s.187

To use the measured ICW frequency fICW = 0.26 Hz to estimate the parallel wavenumber188

k∥di of the wave, we first take a single, plane-wave vector of the form189

k = k∥ê∥ + k⊥ cosϕê⊥1 + k⊥ sinϕê⊥2, (S5)

with components k∥ and k⊥ that are parallel and perpendicular to the mean magnetic field190

direction ê∥, and ϕ is the angle of the perpendicular component away from the ê⊥1 direction.191
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With the angle between B0 and U0i given by θBU = 156◦, substituting eq. (S5) into eq. (S4)192

and normalizing appropriately into dimensionless quantities, we obtain193

ωs/c

Ωi

=
ω

Ωi

+ (k∥di)(U0i/vA) cos θBU + (k∥di)(U0i/vA) sin θBU(k⊥/k∥) cosϕ (S6)

Here ω/Ωi is the real frequency from the linear Vlasov-Maxwell dispersion relation for the194

ICW (as shown in Fig. 6), k∥di is the independent variable, and U0i/vA and θBU are measured195

directly from the measurements. We must vary the unknown parameters for the perpendicular196

component of the wavevector (k⊥di, ϕ), which we parameterize by the dimensionless quantities197

k⊥/k∥ and ϕ.198

Since instability-driven ICWs have the most rapid growth rates with k∥ ≫ k⊥, as shown in199

Fig. S5, we will assume values of the wavevector anisotropy in the range 10−2 ≤ k⊥/k∥ ≤ 1.200

We will also allow the azimuthal angle to vary over the full range 0 ≤ ϕ ≤ 2π. Taking201

U0i = 122 km/s and vA = 357 km/s, we plot in Fig. S7 predictions of the normalized spacecraft-202

frame frequency ωs/c/Ωi as a function of the normalized parallel wavenumber k∥di. The first203

two terms of eq. (S6), which do not depend on the perpendicular component of the wavevec-204

tor, are plotted separately, showing the plasma frame frequency ω/Ωi (black dashed) and the205

Doppler-shifted parallel component of the wavevector (k∥di)(U0i/vA) cos θBU (red dashed).206

Here we take a specific value for the wave vector anisotropy k⊥/k∥ = 0.25 and allow ϕ to207

vary over the full 2π. If the projection of the parallel wave phase velocity moves in the same208

direction as the flow, the spacecraft-frame frequency ωs/c/Ωi is a sum of the plasma-frame209

frequency and parallel Doppler shift (blue solid), and the range in yellow shows how the per-210

pendicular component changes the result with k⊥/k∥ = 0.25 and 0 ≤ ϕ ≤ 2π. Similarly, if the211

parallel wave phase velocity moves in the direction opposite the flow, ωs/c/Ωi is a difference212

of the plasma-frame frequency and parallel Doppler shift (green solid), with variations due to213

the possible variations of the perpendicular component spanned by the cyan range. The mea-214

sured ICW frequency fICW = 0.26 Hz, when normalized to the local ion cyclotron frequency215

fci = 0.73 Hz, is indicated by the horizontal dotted line. The takeaway from Fig. S7 is that216

the observed ICW frequency fICW = 0.26 Hz can be explained by this modeling with parallel217

wavenumber values that span the range 0.5 ≲ k∥di ≲ 1.5 within the cyan range. This is con-218

sistent with the modeling shown in Fig. 6 of the manuscript, where damping (for the isotropic219

temperature case) has significant damping rates with −γ/ω > 0.1 for values k∥di ≳ 0.6. There-220

fore, we conclude that values of k∥di ≳ 0.6 are reasonable to use to make predictions of the221

velocity-space signature of the ion cyclotron damping using linear Vlasov-Maxwell dispersion222

relation solutions.223

224
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Figure S7: Spacecraft-frame frequency of ion cyclotron wave. Determination of the normal-
ized spacecraft-frame frequency ωs/c/Ωi as a function of the normalized parallel wavenumber
k∥di from eq. (S6). We plot the plasma frame frequency ω/Ωi (black dashed) and the Doppler-
shifted parallel component of the wavevector (k∥di)(U0i/vA) cos θBU (red dashed). The sum
(blue solid) and difference (green solid) of the plasma-frame frequency and parallel Doppler
shift are shown. When the contribution of the perpendicular component of the wavevector with
k⊥/k∥ = 0.25 and 0 ≤ ϕ ≤ 2π is included, the resulting possible range of spacecraft-frame
frequencies ωs/c/Ωi is given by the yellow range for the sum of the cyan range for the difference.

S4. Estimation of Upstream Bow Shock Parameters225

The ICWs observed in the MMS interval analyzed here are most likely to have been gener-226

ated by a significant ion temperature anisotropy T⊥i/T∥i > 1 through the Alfvén/ion cyclotron227

instability [s7, s8]. An obvious candidate mechanism for the generation of an ion tempera-228

ture anisotropy that exceeds the threshold for this instability [s8] is compression of the incom-229

ing solar wind at Earth’s bow shock. For quasiperpendicular upstream bow shock conditions230

θBn > 45◦, one indeed expects the generation of an anisotropy in the sense of T⊥/T∥ > 1.231

Therefore, it is worthwhile investigating the conditions at the bow shock to determine whether232

shock compression is likely to trigger the generation of the ICWs observed by MMS downstream233

in the magnetosheath.234

The burst-mode interval at 07:24:28 on 12 JAN 2016 investigated here occurs on the in-235

bound pass from apogee to perigee, but the MMS spacecraft unfortunately did not cross the236
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bow shock on its previous passage through apogee, so a direct determination of the upstream237

conditions of the shock—in particular the Alfvén Mach number MA and shock normal angle238

θBn in the normal incidence frame—is not possible. Instead, we are forced to use the mag-239

netic field direction upstream from an upstream solar wind monitor and the direction of the240

bow shock normal upstream from our measured interval to estimate the shock normal angle241

θBn. In Geocentric Solar Eclicptic (GSE) coordinates, the MMS burst-mode interval at 7:24:28242

occurs at (9.59,−4.00,−0.97)RE , where the radius of the Earth is RE = 6378 km. Using a243

model of the Earth’s bow shock [s9], we estimate the bow shock crossing position as the posi-244

tion directly toward the Sun in the GSE x direction at (13.36,−4.00,−0.97)RE , with a shock245

normal unit vector in GSE coordinates of (0.986,−0.160,−0.039). During this time, the ACE246

spacecraft was monitoring the upstream solar wind conditions at the L1 point with a position247

(235.17, 0, 0)RE . The solar wind velocity measured at ACE in the hour before the MMS mea-248

surements is fairly steady at approximately 600 km/s, and the solar wind flow velocity in the249

magnetosheath downstream of the bow shock measured during the MMS interval is 112 km/s.250

Together, the travel time for the solar wind plasma to flow from ACE through the bow shock to251

the position of MMS is estimated to be 42.6 min. Making the assumption the direction of the252

magnetic field (frozen into the solar wind flow) does not change from the position of ACE to253

the bow shock, using the magnetic field direction at ACE at time 06:41:52, we obtain a shock-254

normal angle of θBn = 15◦ ± 7◦, where the standard deviation is taken over a four minute255

interval centered at that time. This estimate puts the upstream conditions of the shock into the256

regime of quasiparallel shocks with θBn < 45◦, seemingly in contradiction with the need for a257

more perpendicular shock crossing to lead to the measurements of T⊥i/T∥i > 1.258

Of course, estimating the local direction of the magnetic field at the bow shock crossing up-259

stream of our measured MMS interval in the magnetosheath using data from the ACE spacecraft260

at position 235.17RE and at a time 42.6 min earlier carries significant uncertainties. In addition,261

quasiparallel shocks at sufficiently high Mach numbers lead to significant upstream perturba-262

tions that can lead to large local changes of the magnetic field direction at the shock crossing263

[s10, s11, s12]. The ACE data give an upstream magnetic field magnitude of |B| ∼ 6 nT and264

we estimate the upstream proton number density of ni ∼ 2 cm−3, so the Alfvén velocity is265

vA = 93 km/s, leading to an Alfvén Mach number of MA ∼ 6.4. At this supercritical Mach266

number [s13], particle reflection at the shock can indeed lead to significant upstream fluctu-267

ations, so the local shock normal angle θBn upstream of the measured MMS interval could268

possibly have had a much larger θBn > 45◦, leading to the local generation of the sufficiently269

large ion temperature anisotropy T⊥i/T∥i > 1 to generate the ICWs that were observed. Though270

we do not have any clear confirmation of conditions that we expect would generate such a per-271

pendicular temperature anisotropy, we cannot rule out such upstream conditions at the shock.272

273
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Figure S8: Standard vs. alternative field-particle correlation. a Alternative field-particle
correlation C ′

E⊥
(v∥, v⊥; τ) and b field-particle correlation CE⊥(v∥, v⊥; τ) shown for τ = 77 s.

S5. Observation of 2V Gyrotropic C ′
E⊥

(v∥, v⊥) and CE⊥(v∥, v⊥)274

275

The intermediate step in the computation of the field-particle correlation CE⊥(v∥, v⊥) is276

the computation of the alternative field-particle correlation C ′
E⊥

(v∥, v⊥) using Eq. 5 of the277

manuscript. In Fig. S8a we show C ′
E⊥

(v∥, v⊥) and in Fig. S8b we show CE⊥(v∥, v⊥).278

S6. Collisionless Damping Rates for the Anisotropic Turbulent Cascade279

280

In Fig. S9, we plot (a) the normalized frequency ω/k∥vA and (b) the normalized collisionless281

damping rate −γ/ω for the anisotropic fluctuations (k⊥ ≫ k∥) of the large-scale turbulent282

cascade over the range at 10−2 ≤ k⊥ρ⊥i ≤ 102 for k∥ρ⊥i = 10−3 with the plasma parameters283

β∥i = 0.383, T∥i/T∥e = 6.84, T⊥e/T∥e = 0.973, v∥ti/c = 7.34 × 10−4, and with dashed lines284

corresponding to T⊥i/T∥i = 2.43 and solid lines corresponding to T⊥i/T∥i = 1. Note that,285

in the limit k⊥ ≫ k∥ that is relevant to the fluctuations of the large-scale turbulent cascade,286

the normalized damping rate −γ/ω is independent of the value of k∥ as long as k∥di ≲ 1.287

In Fig. S9(b), the total normalized damping rate −γ/ω (black) is decomposed into ion −γi/ω288

(red) and electron −γe/ω (blue) contributions, both of which are dominated by collisionless289

damping via the Landau resonance for these plasma parameters. The critical finding here is290
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that collisionless damping via the Landau resonance for the ions is very weak, with −γ/ω ≲291

4 × 10−3, due to the fact that the low β∥i = 0.383 leads to a parallel phase velocity for Alfvén292

waves that falls in the tail of the ion velocity distribution.293

Figure S9: Alfvén wave frequency and damping rate. From the linear dispersion relation
for Alfvén waves, (a) the normalized frequency ω/k∥vA and (b) the normalized collisionless
damping rate −γ/ω for the parameters of the large-scale cascade with a typical wavevector
anisotropy k⊥ ≫ k∥. In this limit, ion damping is dominated by the Landau resonance (Landau
and transit-time damping), and the ion contribution to the normalized damping rate γi/ω is
given by the red curves for T⊥i/T∥i = 1 (solid) and T⊥i/T∥i = 2.43 (dashed). Significant
collisionless damping occurs when −γi/ω ≳ 0.1, but here the maximum damping rates for ions
have γi/ω ≲ 4× 10−3, yielding very weak ion damping.
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