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Supporting Information Text 

 
 
Geoglyph construction 

The Nazca Pampa is covered with pebbles, which have been exposed to the sun for many years, 
and their surfaces have turned dark brown, probably due to rock varnish (1). Beneath these 
pebbles is a layer of white sandy soil and pebbles. Therefore, when the dark pebbles on the 
surface are removed, the ground is exposed generating contrast. Line-type figurative geoglyphs, 
as well as the linear geometric geoglyphs, were drawn by removing dark brown pebbles from the 
ground surface in a linear pattern. Relief-type geoglyphs were created by removing dark surface 
stones from certain parts of the motif, making them appear in a lighter color than the untouched 
areas. Sometimes removed stones were re-used and piled up on other parts of the motif, creating 
an even darker and slightly elevated surface (relief).  

 
 
Archaeological drawings based on drone images of newly discovered geoglyphs 
 
Fig. S1 shows 20 examples of newly discovered relief-type figurative geoglyphs from our AI-
assisted survey, each in three versions (Fig. S1A: drone images, Fig. S1B: drone images with 
outlines as a guide to the eye, and Fig. S1C: archaeological interpretation of the relief). In the 
archaeological drawings (Fig. S1C) areas with removed surface stones are depicted as white, 
untouched surfaces as light brown, and elevated, dark areas are illustrated in dark brown. 
 
 
 
Giant linear/trapezoidal network 

There exists a giant linear/trapezoidal network extending from the Ingenio River Valley at the 
northern end of the Nazca Pampa all the way to the Nazca River Valley about 15 km to the south 
(2). This network consists of 1,335 straight lines with 165 line centers as nodes (3). It has 
approximately 10 entrances/exits at the northern end, where line-type figurative geoglyphs can be 
found near trapezoids or straight lines and another approximately 10 entrances/exits at the 
southern end of the Nazca Pampa. Two of the latter entrances/exits consist of 40-meter-wide 
roads, each with a line-type figurative geoglyph nearby, so both are considered major 
entrances/exits.  

 

AI-assisted workflow 

Fig. S2 shows a flowchart of the AI-assisted geoglyph detection as described in the Materials and 
Methods section.  

 

Details of the artificial neural network 

Our deep learning model utilizes gridded image classification with relatively small 112x112 pixel 
image patches (11x11 m2) and 5 m pitch, rather than object detection, where the model tries to 
find instances (bounding boxes) of objects (geoglyphs) in larger scenes. We deviated from pure 
object detection algorithms as applied in (4), by turning the problem of finding new geoglyphs into 
a gridded classification task, because: (a) archaeological workloads do not require near real-time 
model inference, thus we can afford slightly longer model runtimes, (b) precise bounding boxes 
are of little value for geoglyph detection, (c) we are severely restricted by the limited number of 
known figurative geoglyphs for training. By turning the problem into a classification task, each 
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training geoglyph is cut into multiple pieces, individually represented in the training set. The 
approach naturally augments the size of training samples. 

The convolutional neural network consists of a ResNet50 feature extractor (5), followed by a 2-
layer fully connected classifier. We set the batch size to 128. Feature extractor layers are pre-
trained on ImageNet (6) and their weights are frozen during the initial 190 training epochs (see 
Fig. S3). During this warmup the geoglyph classifier is trained. The following 50 epochs are 
dedicated to optimizing both the feature extractor and classifier weights to obtain the final relief-
type geoglyph detection model. A focal loss (7,8), helps model optimization on imbalanced binary 
classification datasets. An AdamW optimizer (9) with weight decay acts as regularization to 
counteract model overfitting (10). Additionally, we apply a learning rate decay to improve the 
stochastic gradient descent optimization. 

Thirty-three relief-type geoglyphs in the validation set assisted in tuning deep learning 
hyperparameters (11) such as the learning rate, ratio of positive-to-negative training samples, and 
early stopping based on a given validation accuracy score. Fig. S3 depicts the training loss, 
training accuracy, learning rate decay, and validation accuracy over number of training epochs. 
Training and validation accuracies jump after the feature extractor weights are allowed to be 
updated. The validation accuracy reaches a peak after 11 more epochs. Beyond that, the model 
starts overfitting on the training set resulting in decay of the validation accuracy. We exploit this 
characteristic behavior to apply early stopping to yield best model performance. 

Because we employ validation accuracy to inform hyperparameter tuning and early stopping, we 
conducted a separate model run exclusively for testing purposes. Here we not only held out a 
validation set of 33 known geoglyphs, but also a testing set of 84 known geoglyphs in a 12 km2 
area in the central Nazca Pampa. The testing set does not enter the training phase of the model. 
(Model prediction on the continuous grid is based on the model run without any held-out testing 
set). Depending on the adjustable parameters N and P, we compute the following geoglyph 
classification metrics (12): recall for model-missed geoglyphs, precision to quantify model 
candidates incorrectly identified as geoglyph, and the F1 metric, the harmonic mean of precision 
and recall (Table S1). Since this “testing” model run is handicapped by the large held-out testing 
set, the reported metrics are lower bounds for the final model run. The model utilized for the 
newly discovered geoglyphs built upon a total of 368 known relief-type geoglyphs plus 33 for 
validation. According to the best F1 metric in the “testing” model run, we fixed the 
hyperparameters of the geoglyph AI model to N=2 and P=0.55. 

 

Postprocessing of the modeled probability map 

The post processing from the grid of classifier-assigned probabilities to geoglyph candidate boxes 
that can easily be interpreted by humans during screening is illustrated in Figs. 3a, b. We apply a 
simple, rule-based algorithm with threshold probability P=0.55 to focus on the most promising 
candidates. For a given patch to classify as geoglyph, at least N=2 neighboring patches must 
concur in predicting the geoglyph class. Both P and N are adjustable hyperparameters with final 
choice made after testing results are obtained as detailed above. An example of the post-
processing result is provided in Fig. 3B.  

To avoid missed detections of geoglyphs our AI model is tuned for a high recall-precision ratio of 
14 (Table S1). Due to the enormous size of the Nazca Pampa, there are many more geoglyph 
candidates flagged by the AI model (47,410 in total) than can be surveyed in the field. However, 
the AI model eliminates more than 98% of the aerial imagery so that visual inspection can focus 
on the remaining 2% — a reduction of Big Geospatial Data by a factor of about 50. The limiting 
factor in achieving better recall and precision is the tiny set of 401 previously known relief-type 
figurative geoglyphs from the Nazca and Palpa areas used for model training, which are also 
quite diverse in what they depict. Reasons why the AI may not flag all the geoglyphs are: (a) the 
optical contrast is lower than the average training geoglyph’s because it is more eroded, or the 
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color contrast has faded. (b) The angle of the sun was not favorable for capturing a geoglyph. (c) 
The AI model is expected to miss some geoglyphs even under good viewing conditions due to 
tuning of the model (Table S1) to a recall of 0.35 on the held-out testing set. 

 

Examples of newly discovered geoglyph groups. 

Fig. S4 exemplifies four newly discovered geoglyph groups and their relation to the AI model 
geoglyph candidate boxes. Geoglyphs that overlap with the AI model candidate boxes are shown 
in green. Additional geoglyphs that were found during the field survey within the groups are 
shown in cyan.  

 

Newly discovered geometric geoglyphs. 

In addition to the 303 figurative geoglyphs, we discovered 42 geometric and 2 unidentified 
geoglyphs during the AI-assisted study. Geometric geoglyphs are much more numerous on the 
Nazca Pampa than figurative geoglyphs, and the 42 discovered here are a small fraction of the 
approximately 1500 known geometric geoglyphs on the Pampa. Thus, the discussion in this 
paper focuses mostly on the figurative ones. For completeness, we present the newly discovered 
geometric geoglyphs in Fig. S5 and Table S3. From 341 candidates targeted for a visit we were 
able to confirm 40 (41 if accounting for geoglyph groups) AI suggestions as authentic geometric 
geoglyphs. The 2022/23 field survey identified an additional non-AI new geoglyph for a total of 42 
new geometric geoglyphs. Extrapolated success rates of the three candidate ranks suggest 105 
new geometric geoglyphs will be discovered by the end of the field surveys. 
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Fig. S1.  

Examples of newly discovered relief-type geoglyphs from the AI-assisted survey.  
(A) Drone images taken during the field survey that confirmed the geoglyphs as authentic. (B) 

Images with outlines as a guide to the eye. (C) Archaeological interpretation of the relief (white: 
stones removed; dark brown: stones piled up; light brown: original surface). Scale bars: 5m.  

(This figures spans 3 pages) 
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Figure S2 

 

 

 
Fig. S2. Flowchart of the geospatial analysis system to detect new geoglyphs. (A) Big Data 
automation and AI drive the generation of geoglyph candidates. (B) Subsequently, geoglyph 
candidate images are visually inspected to focus on the most likely candidates, which are 
confirmed or rejected in a field survey by archaeologists. (C) Spatial relation analysis of 
geoglyphs with respect to trails and linear geoglyphs/trapezoids. 
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Figure S3 
 
 

 
 
Fig. S3. Model training and validation. (A) Training Loss, (B) Training Accuracy, (C) Learning 
Rate Decay, and (D) Validation Accuracy as a function of Training Epoch. The classifier weights 
are updated continuously, while the pretrained feature extractor weights (on ImageNet) are frozen 
until epoch 190. The best validation accuracy is achieved at epoch 201. 
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Fig. S4. 
Examples of confirmed geoglyph groups in relation to the AI-suggested boxes.  

(A-D) Geoglyphs that intersect one of the boxes are classified as AI-assisted discoveries (green). 
Geoglyphs that are part of a group with at least one AI-assisted geoglyph discovery are classified 

as part of AI-groups since they are less than 50m apart (cyan). 
(This figures spans 4 pages) 
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Figure S5 
 

 

 
 
Fig. S5. Distribution of the 42 newly discovered geometric geoglyphs. (40 AI, 1 AI-group, 
and 1 non-AI) from the 2022/23 field survey. 
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Table S1 
 
 

 Recall Precision F1 
N=1 N=2 N=1 N=2 N=1 N=2 

P=0.50 0.68 0.56 0.007 0.012 0.013 0.024 
P=0.55 0.42 0.35 0.011 0.025 0.021 0.047 

 
 
Table S1. Testing using held-out geoglyphs. Recall, precision, and F1 metrics as a function of 
tunable parameters N (minimum size of geoglyph candidate) and P (cutoff probability), to quantify 
model performance. 
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Table S2 
 
 

 
(a) 

screened 
candidates 

(b) visited 
field 

survey 
2022/23 

visited 
% 

confirmed 
figurative 
geoglyphs 

(method c1) 

confirmed 
figurative 
geoglyphs 

(method c2) 

(d) AI 
success rate 
[confirmed 

/visited] 

(e) 
additional 
figurative 
geoglyphs 
expected 

extrapolated 

Rank I 227 155 68.3 109 77 0.5 37 114 
Rank II 361 95 26.3 27 24 0.25 66 90 
Rank III 721 91 12.6 30 21 0.23 145 166 

total 
ranked 

1309 341  166 122  248 370 

unranked 
proposed 

by AI 
   78 56    

total AI    244 178    

non-AI    59 125    

total    303 303    

 
 
Table S2. Newly discovered Figurative Geoglyphs. AI-suggested geoglyph candidates of the 
three ranks and how many of them have been (a) screened by us and determined to be likely 
genuine by inspecting the imagery, (b) visited by us during the 2022/23 field survey, (c) confirmed 
as new figurative geoglyphs. (d) Calculated AI success rate. (e) Additional figurative geoglyphs 
expected from the three ranks in future field surveys and extrapolation. Confirmed new figurative 
geoglyphs are accounted for in two different ways: (c1) Counting as AI-discovered those 
geoglyphs that were individually predicted by AI and those associated with AI-predicted 
geoglyphs in groups. (c2) Counting as AI-discovered only those geoglyphs that were individually 
predicted by the AI. The AI success (d) rate is based on the latter. Unranked geoglyphs that were 
predicted by the AI but not included in the likely geoglyphs of the three ranks, as well as figurative 
Geoglyphs discovered without the help of AI (“non-AI") are shown at the bottom. 
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Table S3 
 
 

 
(a) 

screened 
candidates 

(b) visited 
field 

survey 
2022/23 

visited 
% 

confirmed 
geometric 
geoglyphs 

(method c1) 

confirmed 
geometric 
geoglyphs 

(method c2) 

(d) AI 
success rate 
[confirmed 

/visited] 

(e) 
additional 
geometric 
geoglyphs 
expected 

extrapolated 

Rank I 227 155 68.3 25 25 0.16 11 36 
Rank II 361 95 26.3 13 12 0.13 35 47 
Rank III 721 91 12.6 3 3 0.03 19 22 

total 
ranked 1309 341  41 40  65 105 

unranked 
proposed 

by AI    
0 0 

   
total AI    41 40    
non-AI    1 2    

total    42 42    
 
Table S3. Newly discovered Geometric Geoglyphs. AI-suggested geoglyph candidates of the 
three ranks and how many of them have been (a) screened by us and determined to be likely 
genuine by inspecting the imagery, (b) visited by us during the 2022/23 field survey, (c) confirmed 
as new geometric geoglyphs. (d) Calculated AI success rate. (e) Additional geometric geoglyphs 
expected from the three ranks in future field surveys and extrapolation. Confirmed new geometric 
geoglyphs are accounted for in two different ways: (c1) Counting as AI-discovered those 
geoglyphs that were individually predicted by AI and those associated with AI-predicted 
geoglyphs in groups. (c2) Counting as AI-discovered only those geoglyphs that were individually 
predicted by the AI. The AI success (d) rate is based on the latter. Unranked geoglyphs that were 
predicted by the AI but not included in the likely geoglyphs of the three ranks, as well as 
geometric Geoglyphs discovered without the help of AI (“non-AI") are shown at the bottom.  
 
 


