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Supporting Information

We give an overview of the geometry which enables our

analysis. This has been previously described in [1] and in the

documentation of [2].

Directionality in Rn

We would like to analyse whether a given developmental

trajectory proceeds in a well-defined direction. This breaks

down into two questions: first, does it have a well-defined

direction and second, does it proceed in that direction. We

have illustrated the first of these questions in Supplementary

Figure 1. In Supplementary Figure 1 a) and b), we see a path

with a well-defined directionality, in panels c) and d) we see a

path without a well-defined directionality. These two situations

are reflected in the clustering or otherwise of the points on

the circle and sphere. More generally, in N dimensional space,

RN , a direction is a point on the N − 1 dimensional sphere

SN−1 = {x ∈ RN | ||x|| = 1}.
Our methods are agnostic as to the value of N and

to the nature of the N-dimensional space we are working

in. In particular, these methods work equally well when

working directly with gene expression values or with principal

components (PCs) for these values. For expository purposes,

we now suppose that we are working with the first 15 principal

components of gene expression, so that we are working in RN ,

N = 15. (In our analyses, we have used N = 3 and N = 10.) We

suppose that we have a pseudotime trajectory as determined by

standard pseudotime methods, e.g., by Slingshot [3]. Suppose

we now sample 10 cells from a particular trajectory. Call

these c1, . . . , c10. Using our first 15 PCs, we then have points

x1, . . . ,x10 in R15. Sighting from the first point x1 to each of

the successive points x2, . . . ,x10 gives us 9 directions in R15,

i.e., 9 points on S14. Call these points p1, . . . ,p9. To measure

the directionality of the path x1, . . . ,x10 (and therefore the

directionality of the pseudotime trajectory) we measure how

closely p1, . . . ,p9 cluster on S14. That is, we find a center c

on S14 that minimizes mean spherical distance to these points.

Charmingly, this measure of directionality can be seen as the

radius of an N − 2-sphere on SN−1.

Spherical distance between two points a and b of S14 is

given by the angle between them, which can be found as arcsine

of their dot product. The center c is found by minimizing an

objective function which can be either the mean distance or the

median distance from c to the points p1, . . . ,p9. Optimization

is carried out by applying the R function optim using the chosen

objective function (together with a penalty for departing the

unit sphere) and a starting point given by taking the (vector)

mean of the points p1, . . . ,p9 and normalizing this mean. The

resulting mean or median distance from the resulting center c is

taken as a measure of how closely the points p1, . . . ,p9 cluster

with a smaller distance demonstrating closer clustering.

We have referred here, to our PCA data simply as being

in R15, but in fact PCA gives a specific 15-dimensional affine

subspace V of RE , gene expression space. Specifically, it is

the unique 15-dimensional subspace with the property that

orthogonal projection onto this space minimizes the loss of

variation. It is worth noting that while our directionality results

are calculated using coordinates given by the individual PCs

that form a basis for the space V ∼= R15, the results themselves

are metric and depend only on V and not on the bases.

Supplementary Figure 1. Synthetic data. a) A path with a well-defined

directionality shown in two dimensions. Directions are sighted from its

origin producing a well-clustered set of points on the circle. b) The same

path shown in three dimensions. Here the directions are the blue points

on the sphere. Their common center is shown in yellow. The white circle

shows their mean distance from this center. c) A path without a well-

defined direction. Directions to the points of this path are spread out on

the circle. d) The same path shown in three dimensions. The white circle

showing mean distance to the common center is large, reflecting the lack

of common directionality.

We encourage users who are interested in eliminating the

sizes of individual cell populations from their analysis to sub-

sample their data set or to perform the analysis in gene

expression space.

Testing for directionality
We would like a statistical method for determining when we

have discovered statistically significant clustering on S14. Let

us take r to be the minimal mean (or median) radius found in

the previous paragraph. We can think of r as a function of the

original trajectory

x1, . . . ,x10 7→ p1,p2, . . . ,p9 7→ r.

We refer to this radius as the clustering radius.

Each time we sample the pseudotime trajectory, we will get

a different value for this radius. In this way, repeated sampling

(say 1000 times) produces an empirical distribution of estimates

of the directionality of the pseudotime trajectory, r1, . . . , r1000.

We would now like to use this to estimate a p-value for the

directionality of this trajectory.

In order to do this, we turn to permutation testing. That

is, we produce (say 1000) randomized trajectories xi
1, . . . ,x

i
10.

(We describe the randomization procedure below.) For each of

these 1000 randomized trajectories we compute their clustering

radius

si = r(x
i
1, . . . ,x

i
10).

Comparing the values r1, . . . , r1000 to s s1, . . . , s1000 using

the Wilcoxon signed rank test using the R function wilcox.test

gives us a p-value for the clustering on the sphere and therefore,

for the directionality of the trajectory we have sampled.

If we detect significant directionality we can proceed to

estimate the trajectory’s direction in gene expression space.

Having sampled the trajectory 1000 times, we find 1000

centers, c1, . . . , c1000, each the center for one of the sampled
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trajectories. We take their common center ĉ to give the

direction of the overall trajectory. If we are working with

the first 15 PCs, this will be a unit vector in R15. This

can then be translated back into gene expression space where

each coordinate represents a gene. The most positive and most

negative coordinates in this vector reveal the genes which are

most strongly up- and down-regulated along this trajectory. In

this way, directionality testing can be used to reveal biologically

significant information.

Notice that trajectories are typically paths between cell

clusters. Thus, while the use of PCA will filter some of the gene

expression information, in the case where we use a sufficient

number of PCs to capture a substantial portion of the overall

variation, we would expect the most prominent genes in the

overall trajectory to survive dimension reduction, as is observed

in the analyses presented here.

There are multiple ways of producing a randomized

trajectory. The most conservative of these is via matrix

permutation. We can consider the path x1, . . . ,x10 as a matrix

X where each of these points is a row of X. Thus X has

dimension 10 × 15. We can then independently randomly

permute the entries in each column of X thus independently

permuting the time order for each PC (or gene in the case where

we are working directly with gene expression). We describe this

as conservative in that it conserves the distribution in each

coordinate. A less conservative method is to randomly permute

the entries of X without respect to columns. Further details and

other methods of producing randomized paths are described in

[1] and in the vignette accompanying TrajectoryGeometry [2]

on Bioconductor.

Hepatoblasts, hepatocytes and cholangiocytes:
directionality in full gene expression space
Here we report directionality analysis of gene trajectories in

the data from [4] as above, using higher dimensional gene

expression data, namely, the 17583 that remain after filtering

out all genes expressed in 10 or fewer cells. These results are

shown in Supplementary Figure 2. Supplementary Figure 2a

shows mean spherical distance on the 17582-sphere for the

hepatoblast to hepatocyte trajectory sampled 1000 times

compared to 1000 randomised trajectories. We see that the

directionality of this trajectory in this higher dimensional space

is highly statistically significant. Supplementary Figure 2b

shows the results of a similar analysis for the hepatoblast to

cholangiocyte trajectory. These results parallel those of Figure

2d. Supplementary Figure 2c shows the comparison between

the directionality of the hepatoblast to hepatocyte trajectory

and that of the hepatoblast to cholangiocyte trajectory

as measured by their clustering radii on the 17582-sphere.

These results parallel those shown in Figure 2e, and show

that the hepatocyte trajectory maintains a significantly more

consistent directionality than the cholangiocyte trajectory.

Gene scores for the association of genes with the directionality

of the trajectory in PCA space are highly correlated with

those in gene expression space for the 1559 genes that are

common between the two analyses (Spearman’s ρ = 0.951

cholangiocyte trajectory; Spearman’s ρ = 0.946 hepatocyte

trajectory). Indeed, the top 10 up- and down-regulated genes

for each trajectory, from the analysis in 10-dimensional PCA

space (Figure 2c) show similar trends to those calculated

in 17582-dimensional gene expression space (Figure 2d-e).

Taken together, these results suggest that this sort of

directionality analysis is robust with respect to dimensionality

Supplementary Figure 2. Directionality of trajectories using the full

gene expression space R17583. a) Comparison of directionality in S17582

for hepatoblast to hepatocyte trajectory, 1000 samples. b) Comparison of

directionality in S17582 for hepatoblast to cholangiocyte trajectory, 1000

samples. c) Comparison of directionality in S17582 for the hepatoblast

to hepatocyte and hepatoblast to cholangiocyte trajectories. d) Bar

plot showing top 10 up-and down-regulated genes for the hepatoblast to

hepatocyte trajectory in S17582. e) Bar plot showing top 10 up- and down-

regulated genes for the hepatoblast to cholangiocyte trajectory in S17582.

and support the use of principal component data to estimate

the directionality of pseudotime trajectories.

Nested cell fate decisions
Data from [3] offer an opportunity to investigate nested cell

fate decisions. Supplementary Figure 3a), a plot in PCA

space, shows postnatal murine olfactory stem cells (also called

horizontal basal cells (HBCs)) giving rise to sustentacular cells,

neurons and microvillous cells (MVCs). Visual inspection of

this plot suggests that the HBC to Sustentacular trajectory is

a default trajectory, consistent with the fact that the latter

are produced via direct fate conversion from HBCs. In contrast

both neurogenic and MVC trajectories appear to branch off

from the sustentacular trajectory at the first decision point

(DP1), before diverging from one another at a second decision

point (DP2) corresponding to the globose basal cell state

(GBCs).

DP1 is a branch point

Focussing initially on the neuronal/sustentacular fate decision,

TrajectoryGeometry analysis reveals that although both

trajectories show significant directionality in comparison

to randomised trajectories (Supplementary Figure 3d),

the sustentacular trajectory displays a more consistent

directionality relative to the neuronal (and microvillous)

trajectory (Supplementary Figure 3b,d). Genes with a positive

score for the sustentacular trajectory include sustentacular

markers (e.g. Cyp2g1 [3]) whereas those with a negative
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Supplementary Figure 3. a) PCA plot of scRNAseq data for adult murine olfactory cells. Pseudotime trajectories inferred using Slingshot as in [3]

are shown on the plot. Cells are coloured by cluster as inferred in [3]. b) 3-dimensional sampled pathways for HBC to sustentacular, HBC to neuron,

and DP2 to neuron trajectories together with their projections on the 2-sphere. White circles denote mean distance from center (red dot). c) Bar plots

showing top 10 up-and down-regulated genes for each trajectory as in b). d) Violin plots indicating the mean spherical distance (radii of the white

circles in b) for paths sampled from the sustentacular and neuronal trajectories (purple and orange, respectively) relative to random trajectories (white).

Statistics calculated using 1000 random paths from each trajectory and the first 3 and the first 10 PCs respectively. e) Violin plots indicating the mean

spherical distance of the sustentacular (purple), neuronal (orange) and microvillous (green) trajectories using 1000 random paths from each trajectory

and the first 3 and the first 10 PCs respectively. f) Violin plots indicating the mean spherical distance for the neuronal trajectory (first 3 PCs) starting

from successively later points in pseudotime, as DP1 and DP2 are approached (values 50 and 170 on the neuronal trajectory shown in the top right

inset). g) Line graph indicating the –log10(p-value) for the significance of directionality for the neuronal trajectory (first 3 PCs) relative to random

trajectories, starting from successively later points in pseudotime.

score for the directionality of the sustentacular and neuronal

trajectories include HBC stem cell markers (Krt14, Krt5,

Trp63 [3] (Supplementary Figure 3c)). Although the top scored

genes for the overall neurogenic trajectory HBC-Neurons)

include neurogenic markers Sox11 and Tubb3 [5], GO term

overrepresentation analysis [6] reveals that the top 5 % of

genes with positive scores for this trajectory are highly enriched

for cell cycle markers (Supplementary Figure 4a), suggesting

that this directionality does not lead to the mature neuronal
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Supplementary Figure 4. a) Dot plot showing GO terms overrepresented among the top 5 % of genes associated with the HBC-neuron directionality.

Dot size indicates the overlap for each term, and gene ratio indicates the fraction of genes in each term. b) As in a) for genes associated with the

DP2-neuron directionality. c) Line graphs showing the progress of smoothed trajectories projected onto PC4. d) As in a) for the top 5% of genes

associated with PC4.

phenotype and may be strongly influenced by the proliferative

GBC population at DP2.

In spite of the relatively more consistent directionality of the

sustentacular trajectory, projection onto principle components

reveals that it makes a U-turn in PC4 (Supplementary

Figure 4c). Interestingly GO term overrepresentation analysis

of the top 5% of genes [6] shows this PC is highly associated

with ribosomal genes and protein synthesis (Supplementary

Figure 4d), suggesting transient upregulation of these genes is

required for the synthesis of proteins required by the emergent

cell type. Indeed, a similar pattern is also seen for the

later neuronal (and microvillous) trajectories (Supplementary

Figure 4d), suggesting that this is a common characteristic

coincident with differentiation.

Intriguingly, the trajectory from the first decision point

to neurons is not straight (see below). Furthermore,

Supplementary Figure 3g shows that the trajectory from

progenitors to neurons becomes more directional after passing

the first decision point (at value 50 on the neuronal trajectory)

and again after passing the second decision point (at value

170 on the neuronal trajectory) (Supplementary Figure 3b,f,g).

Interestingly the top 5 % of genes associated with the segment

of the neuronal trajectory from the second decision point

onwards (DP2-Neurons) (Supplementary Figure 3c) are highly

enriched [6] in GO terms associated with the development
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of a mature neuronal phenotype, such as axonogenesis and

neuron projection development (Supplementary Figure 4b).

Those negatively associated with the directionality of this post-

DP2 trajectory segment include cell cycle markers (e.g. Top2a,

Mki67), indicating progress in this direction involves departure

from the cycling GBC state at DP2.

DP2 exhibits branching behaviour

We now shift our focus to DP2, the neuronal/microvillous

decision (Supplementary Figure 5a).

Specifically we study the microvillous cell (MVC) and

neuronal trajectories from DP1 onwards, and subdivide them

at DP2 (Supplementary Figure 3a). Interestingly neither DP1-

Neurons nor DP1-MVCs is straight and the directionality

of both trajectories becomes more significant after DP2

(Supplementary Figure 5a,b,d,e). Comparing the directions

of their initial and final segments (using the first 10 PCs),

DP1-Neurons turns approximately 124 degrees and DP1-MVCs

makes a turn of 126 degrees (Supplementary Figure 3a depicts

the first 3 PCs.) Therefore on initial inspection, DP2 is a

bifurcation with each trajectory initiating a new transcriptomic

programme.

Notice that by turning more than 90 degrees each of

these has partially reversed direction, indicating the partial

retraction of a transcriptomic programme. Supplementary

Figure 5c and g show the progression of the pseudotime

trajectories for DP1-MVCs and DP1-Neurons in the direction

defined by DP1-DP2. Here it can be seen that progress is

reversed after the decision point suggesting DP2 is a transient

state.

To identify the transiently upregulated genes, we considered

the top 5% up- and down-regulated genes in the directions

for DP1-DP2, DP2-MVCs and DP2-Neurons and looked at

the intersection of the genes that were up-regulated in the

first leg with those that were down in the second leg.

GO term overrepresentation analysis [6] showed that such

genes transiently upregulated for both the microvillous and

the neuronal trajectories were highly enriched for cell-cycle

associated terms (Supplementary Figure 5g, Supplementary

Supplementary Figure 6a), consistent with the proliferative

nature of GBCs. This suggested that change in direction

observed for both neuronal and microvillous trajectories was

dominated by reentry into and departure from the cell cycle.

To test the hypothesis that branching behaviour was being

obscured by cell-cyle effects, we reanalysed data from DP1

onwards, omitting cell-cycle associated PC2 (Supplementary

Supplementary Figure 6b, c). Interestingly, this showed

the neuronal trajectory to have significantly more consistent

directionality than the MVC trajectory (Supplementary

Figure 5h). Therefore if cell-cycle effects are not considered,

DP1 appears to be a branch point with the microvillous

trajectory branching off from the neuronal trajectory. Put

differently, the geometry observed at DP2 results from

the transient overlay of cell-cycle on branching behaviour.

Furthermore, the top genes associated with the DP1-neuron

directionality are enriched in terms that indicate acquisition

of a mature neuronal phenotype (e.g. axonogenesis) if PC2 is

omitted (Supplementary Supplementary Figure 6c, d).

Taken together, these results support the hierarchical

branching of trajectories, with the neurogenic and MVC

trajectories first branching off a default sustentacular

trajectory. Although both MVC and neuronal trajectories then

enter the cycling GBC state, the neuronal trajectory appears to

be a default upon exit of the cell cycle, whereas the microvillous

trajectory branches off, suggesting it may require the input of

more extrinsic signals. As microvillous cells are comparatively

rare it is parsimonious that these are not produced by default.

Importantly, by considering the contribution of individual PCs

to directionality we were able to gain insight into the dynamics

of cell-type specific transcriptional programmes, and generic

transcriptional programmes (translation, cell-cycle).

A negative control

In order to provide a negative control for the detection of

branching behaviour by our software, we created synthetic

data which exhibits a symmetric bifurcation. Supplementary

Figure 7a) shows the first 2 PCs for this data with the

“cells” coloured by Seurat cluster and the two trajectory

curves superimposed. Both of these trajectories show highly

statistically significant directionality when compared to

randomized trajectories, both in dimension 3 and in dimension

10 as shown in Supplementary Figure 7 b) and c). However,

they are missing telltale signs of branching behaviour. The

first of these signs would be that one of the trajectories is

more directional than the other. However, their degree of

statistical significance is comparable. The underlying measure

of their directionality is the degree of spherical clustering of

their projections. Again, we see no significant difference in these

values either in dimension 3 or dimension 10 (Supplementary

Figure 7d), compare Figure 2d.) Finally, if there were branching

behaviour on one of these trajectories, we would expect that

when starting at later pseudotimes, we would see an increase

in significance up to the point when we start somewhere

near the decision point, as we see in Figure 2g. However, in

Supplementary Figure 7e, we see a loss of significance as we

approach normalized pseudotime 40, slightly before the decision

point. We attribute this to the comparison between the overall

noise level in the data and the remaining length of the chosen

path. Significance increases after the decision point, but equally

for both curves, again suggesting the absence of a default

trajectory along one and branching behaviour on the other.
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Supplementary Figure 5. a) Violin plots indicating the mean spherical distance for the neuronal trajectory (first 3 PCs) starting from successively

later points in pseudotime, as DP2 is approached (value 170 on the neuronal trajectory shown in the top right inset). b) Line graph indicating the

–log10(p-value) for the significance of directionality for the neuronal trajectory (first 3 PCs) relative to random trajectories, starting from successively

later points in pseudotime. c) Line graph showing progress of the smoothed neuronal trajectory (available in 5 PCs) projected onto the DP1-DP2

directionality. d) Violin plots indicating the mean spherical distance for the microvillous trajectory (first 3 PCs) starting from successively later points

in pseudotime, as DP2 is approached (value 220 on the microvillous trajectory shown in the top right inset). e) Line graph indicating the –log10(p-value)

for the significance of directionality for the microvillous trajectory (first 3 PCs) relative to random trajectories, starting from successively later points

in pseudotime. f) Line graph showing progress of the smoothed microvillous trajectory (available in 5 PCs) projected onto the DP1-DP2 directionality.

g) Dot plot showing GO terms overrepresented among the top 5 % of transiently upregulated genes at DP2 for the microvillous trajectory. Dot size

indicates the overlap for each term, and gene ratio indicates the fraction of genes in each term. h) Violin plots indicating the mean spherical distance of

the neuronal (orange) and microvillous (green) trajectories from DP1 onwards using 1000 random paths from each trajectory and PCs 1, 3-10 (omitting

PC2).
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Supplementary Figure 6. a) Dot plot showing GO terms overrepresented among transiently upregulated genes at DP2 for the neuronal trajectory

(the intersection of the top 5% up-regulated genes in the DP1-DP2 direction with the top 5% of downregulated genes in the DP2-Neurons direction).

Dot size indicates the overlap for each term, and gene ratio indicates the fraction of genes in each term. b) As in a) for the top 5% of genes associated

with PC2. c) Line graphs showing the progress of smoothed trajectories projected onto PC2. d) As in a) for the top 5% of genes associated with the

DP1-neuron directionality. e) As in a) for the top 5% of genes associated with the DP1-neuron directionality omitting PC2.



8

Supplementary Figure 7. a) PCA plot of synthetic data with symmetric bifurcation. Points are colored by Seurat cluster. Trajectory curves 1 and

2 are red and blue respectively. b) and c) Both trajectories are significantly directional when compared to randomized trajectories. We make these

comparisons using the first 3 PCs and the first 10 PCs. d) The directionality of the two trajectories as measured by spherical clustering in dimensions

3 and 10 show no significant difference. e) We show p-value for the trajectories in dimensions 3 and 10 when sampling starting at successively later

points in normalized pseudo-time.
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