

Supplemental Figure S1 - Genetic characterization of NEK10 knockout cells. A) NEK10 gene sequencing and gene alignment of Parental and NEK10 KO HAP1 cells (from Horizon web site). NEK10 KO cells have a 35 bp deletion in exon 4. B) Location of diagnostic oprimer in NEK10 exon 4. C) 10% polyacrylamide gel of PCR amplification of parental and NEK10 KO DNA using the primers depicted in panel B. Lane 1 shows the molecular marker DNA – (100 bp Low Ladder Thermo Scientific). Amplicons of NEK10 exon 4 are approximately 150 bp for the Parental line, but 35 bp shorter for the NEK10 KO cells. Each lane shows a different combination of oligonucleotide primers (Forwards F1 and F2 with Reverse B1 and B2). Non-tempate controls showed no amplification (not shown). D) Western blot of homogenates of HAP1 control and NEK10 KO lines. An antibody generated in goats by Santa Cruz Biotechnology (cat#sc-103067 NEK10 (D-17)) was used to detect the 133 KD band, which was absent in the KO line.

Supplemental Figure S2 – Mitochondrial respiration analysis of control (pLKO), and NEK10-knockdown cells (sh89 e sh90). The graphs in figures A and B show the OCR (oxygen consumption rate) during mitochondrial respiration. The pLKO cells are shown in red, sh89 cells in green; sh90 cells in the blue line. The black arrows show the time when the inhibitors were added with their respective concentration. The red arrow indicates maximal respiration. C – The graph shows the Basal Respiration of pLKO, sh89, and sh90 cells. In D-Maximal respiration. E- Proton Leak. F- ATP production linked to OCR. G- Spare Respiratory Capacity. All the graphs show the results of 4 independent experiments (n=4) in quadruplicate (4 different cell passages). The data was obtained with Seahorse XFe24 Analyzer – Agilent equipment and analyzed at Seahorse Wave desktop software 35. The statistical analyses were performed with GraphPad Prism 47 and used a one-way ANOVA test followed by the post hoc Dunnett test, where * = p <0.05. The graphs are shown in Mean \pm SD.

Supplemental Figure S3 – Morphology analysis of the control (pLKO), and NEK10-depleted cells (sh89 e sh90) by Transmission Electron Microscopy (TEM). In A are shown the representative picture of the mitochondria of the pLKO; B - sh89; and C - sh90 cells. A total of 78 mitochondria from pLKO cells, 166 mitochondria from sh89 cells, and 107 mitochondria from sh90 cells were analyzed. The scale bar is 1µm. In total, 15 images were taken for pLKO cells; 17 images for sh89 cells; and 18 images for sh90 cells. In D – The graph shows the analysis of the mitochondrial length (Size in µm); E- mitochondrial width (Width in µm); F- mitochondrial area (Area in µm2); and G - number of mitochondrial cristae per mitochondrion. The mitochondrion was classified based on their mitochondrial morphology: spherical (<6 µm), or elongated (> = 6 µm) ¹¹ (Figure H). Mitochondrial morphology analysis was performed using Image J2 software ³³. The statistical analyses were performed with GraphPad Prism ⁴⁷, and the one-way ANOVA tests followed Tukey's test was employed, where p-value <0.05 = *, p-value <0.01 = **, p-value < 0.001 ***, and p-value < 0.001 = ****. The graphs are shown in Mean with SD.

Supplemental Figure S4. FCCP reduces fluorescence of TMRM/TMRE in the concentrations used (20 nM). HEK293T cells were incubated with TMRE 20 nM for 30 minutes and analyzed in an BD FACSAria TM flow analyzer (panel A). FCCP was added at 20 μ M for mitochondrial depolarization before measurements (panel B). Quantification shown in panel C.

Supplemental Figure S5- Composition analysis of mitochondrial fractions of Parental cells and NEK10 KO cells, NEK10 knockout, and PCR mycoplasma analysis. In A – Mitochondrial fractionation of Parental cells passage 9 (p9); B- Mitochondrial fractionation of Parental cells passage 10 (p10) and C- Mitochondrial fractionation of Parental cells passage 40 (p40). In D – Mitochondrial fractionation of NEK10 KO cells passage 7 (p7); E- Mitochondrial fractionation of NEK10 KO cells passage 8 (p8) and F- Mitochondrial fractionation of NEK10 KO cells passage 8 (p8) and F- Mitochondrial fractionation of NEK10 KO cells passage 38 (p38). Western blots were analyzed with anti-ATAD3 antibodies (1:1000) in the upper panels and anti-Tubulin A (1:1000) in the middle panels, and total protein analysis was detected by the Stain-Free Blot technique Bio-Rad. The molecular protein marker used in the blotting westerns was Thermo Scientific Spectra[™] Multicol-or Broad Range Protein Ladder. Figures G and H are shown a 12% polyacrylamide with amplified bands of the Parental cells (p9, p10, and p40) of approximately 150 bp (indicated by the red arrow) and of the NEK10 KO cells (p7, p9, and p38) of approximately 115 bp (indicated by the blue arrow). In I and J, the 1% agarose gel shows the negative mycoplasma test of the Parental cells (p9, p10, and p40) and of the NEK10 KO cells (p7, p9, and p38).

В

Putative Signal of Phosphorylated Mlto-ER proteins

Supplemental Figure S6 - Differential putative signal of phosphorylated mitochondrial and ER proteins from Parental and NEK10 KO cells. A) Heat map of the 65 phosphorylated putative signals of mitochondrial and ER proteins from NEK10 KO (p7, p8, p38) and Parental cells (p9, p10, p40). The putative signal found for each phosphorylated protein, with a p-value < 0.05, is shown. B) Significantly different phosphorylation. 44 (68%) of a total of 65 proteins have a putative phosphorylation signal higher in Parental cells than in NEK10 KO cells. And 21 proteins (32%) have a higher putative phosphorylation signal in NEK10 KO cells compared to Parental cells.

Supplemental Figure S7. Putative signal of mitochondrial/ER-related proteins altered in NEK 10 KO cells. All significantly altered propteins (p<0.05) in NEK10 KO (relative to parental) crude mitochondria are shown. Each NEK10 KO passage was normalized to its respective Parental control signal.

Gene Symbol	Accession	Ratio (KO/Parent)	p-value	e i urentur	Gene Symbol	Accession	Ratio (KO/Parent)	p-value
MAP1LC3B	Q9GZQ8	1.896750524	8.425E-05		NDUFS4	043181	0.768454039	0.01604531
ATP7A	Q04656	0.876484822	0.000103		PYCR2	Q96C36	0.895993384	0.01616341
PMPCA	Q10713	1.093680399	0.0001752		BAX	Q07812	1.091957706	0.01621322
UQCC1	Q9NVA1	0.752057688	0.0005114		NDUFA10	095299	0.784537452	0.01685225
ANK3	Q12955	0.872760801	0.0006727		RNF170	Q96K19	0.845929171	0.01697735
MI-AIP6	P00846	0.818612245	0.0007649		I MEM14C	Q9P0S9	0.904122279	0.01/84/26
PRIVITS	014744	1 35160366	0.0000404		PDADCI	Q6P996 P/0016	1.302036012	0.01817852
NDUFA11	086Y39	0 79533129	0.0003434		GARS1	P41250	0 721143545	0.01875204
RTN4IP1	Q8WWV3	0.790507005	0.0010884		SLC30A5	Q8TAD4	0.648037326	0.0192248
APOL2	Q9BQE5	1.8125	0.0012098		IARS2	Q9NSE4	0.760929729	0.02001179
COQ5	Q5HYK3	0.639601079	0.0012133		MTOR	P42345	0.81509434	0.02114274
GABARAPL2	P60520	1.478971963	0.0016325		ERAP1	Q9NZ08	0.933338556	0.02126
MICU2	Q8IYU8	1.24074393	0.0016719		NDUFA12	Q9U109	0.788216426	0.02198759
DTYMK	P23919	0.742454136	0.0017567		TM9SF2	Q99805	0.834173792	0.02301564
MIX23	C9JQ41	0.798353909	0.0017773		ABCB8	Q9NUT2	1.083612814	0.02428979
UQCRQ	014949	0.825229035	0.0018405		HLA-A	Q53Z42	1.330183265	0.02437287
COX18	Q8N8Q8	1.510895472	0.0018741		CLN5	075503	1.114444991	0.02446412
CLCN5	P51795	0.791392065	0.0020817		PGS1	Q32NB8	1.456483126	0.02514/07
	Q15800	1.534944181	0.0021489		IVIT-ND4	P03905	0.736647999	0.02583178
SVTL4	015239	1 322241406	0.0022207		I MAN2I	093487	0.87846168	0.02033018
	0561/13	2 116402116	0.0022508		CPOX	P36551	0.874981385	0.02050217
MCEE	Q96PE7	0.880968651	0.0027022		TRIP11	Q15643	0.877745311	0.02700614
UQCRC2	P22695	0.819374135	0.0027047		MT-ND5	P03915	0.756728275	0.02782088
CTSC	P53634	0.74586269	0.0028152		DHCR7	Q9UBM7	1.154406356	0.0279679
APOE	P02649	1.918116976	0.0029208		AIMP1	Q12904	0.863011768	0.02822622
GTPBP3	Q969Y2	0.777683002	0.0029319		SUPV3L1	Q8IYB8	0.887411788	0.02844017
MCCC2	Q9HCC0	0.933081427	0.003059		OAT	P04181	1.720669201	0.0292547
BST2	Q10589	1.650746269	0.0031486		PPOX	P50336	0.754415195	0.02940751
SIL1	Q9H173	1.403764706	0.0040973		MT-CO2	P00403	0.856852216	0.02947087
TMEM11	P17152	0.807971014	0.0041418		FN1	P02751	0.595776031	0.03059181
CDK16	Q00536	0.895788789	0.0042373		ATP5MJ	AUAUAUMTQ	0.844018447	0.03073883
IVIT-NDZ	P03891	0.72949301	0.0043884		MICUI	F5H510	1.380514706	0.03150694
OCPI	001068	0.506/529/6	0.0043932				1.141004014	0.031/1810
NDUEC2	095298	0.720838124	0.004403		FIE3A	014152	0 799429507	0.03217910
CST3	P01034	1 494922139	0.0047487		CTTN	014247	1 619933749	0.03248963
LRRC8D	Q7L1W4	0.829951691	0.0047643		NDUFB7	P17568	0.870799448	0.03294738
SLC25A16	P16260	1.700980392	0.004872		ECI1	P42126	0.705161252	0.03385329
B4GAT1	O43505	1.218878813	0.005197		NBAS	A2RRP1	0.887094786	0.0340257
PARK7	Q99497	0.821196581	0.0058193		PLOD1	Q02809	1.193676424	0.03434599
CDK1	P06493	1.220389015	0.0061841		ATL3	Q6DD88	0.873181759	0.03443278
HADHB	P55084	1.082789575	0.0062973		FLNA	P21333	1.483308629	0.03459456
AP3D1	014617	0.912780269	0.0064598		APOOL	Q6UXV4	1.13953115	0.03504888
SUCLG2	Q96199	0.942527588	0.0069314		TFG	Q92734	0.789585547	0.03510912
FDFT1	P37268	2.298319672	0.0070343		ISCU	Q9H1K1	1.104905345	0.03517402
BDH1	Q02338	1.1990/8139	0.0072738			094826	0.888693726	0.03528466
	VSIRTA	0.775556767	0.0076643		NAA25	D28331	0.844070962	0.03500951
SUCI G1	P53597	0.880879629	0.0070045		GRPFL2	087445	0.759684607	0.03611999
ABCE1	P61221	0.797233837	0.0082222		TXNRD2	40A182DWF2	0.840348384	0.03627015
PC	P11498	1.107594022	0.0093414		ATP5MK	Q96IX5	0.86239539	0.03735858
SUCLA2	A0A2R8Y6Y7	0.879236496	0.0098128		CARD19	Q96LW7	1.212962963	0.03738221
NIF3L1	Q9GZT8	0.830544747	0.0100185		MSH6	P52701	1.310607503	0.03826792
LLGL1	Q15334	0.921229492	0.0101264		COQ7	H3BP28	0.814505979	0.03832307
ABCB7	075027	1.155276785	0.0103018		SIRT5	Q9NXA8	0.882431828	0.03836766
MT-ND6	P03923	0.737964656	0.010419		DNAJC11	Q9NVH1	0.914288644	0.03850007
TSN	Q15631	0.808966074	0.0104996		ZMPSTE24	075844	0.874137931	0.03908396
LUQ3	Q9NZJ6	0.834023073	0.010562		UQCRB	P14927	0.841400656	0.04042972
KAB3D	095/16	1.357/90428	0.0107209		IVIEE	Q96218	1.190/42031	0.04005/59
ATP6AP2		1 360764755	0.0107498		GRPFI 1	043204 09HAV/7	1 115470974	0.0407004
VRK1	Q99986	1.443961885	0.0113724		FECH	P22830	0.838853031	0.04129133
NADK2	Q4G0N4	0.830400658	0.0113819		HADHA	H0YFD6	1.070906313	0.04162355
PARP1	P09874	1.773443089	0.01157		GHITM	Q9H3K2	1.132198953	0.04169004
CDK5RAP2	Q96SN8	0.735040191	0.0116329		CTSA	P10619	1.108732222	0.0417012
FKBP9	O95302	1.272814793	0.0121078		NUP210	Q8TEM1	1.304665876	0.04192848
NOA1	Q8NC60	1.359159095	0.0121424		SLC25A20	043772	1.158769426	0.04207959
GPT2	Q8TD30	0.683488896	0.0122001		SQLE	Q14534	1.495143331	0.0423004
TSFM	P43897	0.892999979	0.0129092		RACK1	P63244	0.784912377	0.04235659
GATM	P50440	1.430699593	0.0131649		TFB1M	Q8WVM0	1.175881443	0.04262367
UQCRC1	P31930	0.862318434	0.013178		CPT1A	P50416	1.190184987	0.04295446
NDUFS7	F5H5N1	0.833272595	0.0132898		NCLN	Q969V3	0.940693797	0.04306423
AAKS1	P49588	0./34503501	0.0134156		SERVINH1	P50454	1.100245340	0.0432/213
RARSE	P20332	1.140323141	0.0135924			P11766	0.30302/9/8	0.04493343
NURPI	08TR37	1.434004247	0.0135962		HSDAD	P38646	0.865413678	0.04529779
GALNT2	Q10471	0.788749088	0.0138681		RIDA	P52758	0.720510096	0.0454383
SQOR	Q9Y6N5	1.441088898	0.0142112		NDUFV1	G3V0I5	0.808518103	0.04577722
SCD	000767	2.380105018	0.0142781		USO1	O60763	0.826526121	0.0460825
BCKDK	H3BS02	1.669776119	0.0146127		QTRT2	Q9H974	0.843821656	0.04639331
DHRS1	Q96LJ7	1.407354001	0.0147935		COX15	Q7KZN9	1.282993197	0.04713629
NUMA1	A0A087WY61	1.788034703	0.0150632		HCCS	P53701	1.198333333	0.04871752
COL2A1	P02458	1.513370119	0.0153484		PDK1	Q15118	0.808317268	0.04953672
SYNJ2BP-COX16	A0A087WYV9	1.255399629	0.0155042					

Supplemental Figure S8. Putative signal of total mitochondrial and ER proteins from Parental and NEK10 KO cells. A) Heat map of 171 putative signals of mitochondrial and ER proteins from NEK10 KO (p7, p8, p38) and Parental cells (p9, p10, p40). The putative signal found for total protein, with a p-value < 0.05, is shown. B) 100 (58.4%) of a total of 171 proteins have a putative protein signal higher in Parental cells than in NEK10 KO cells. And 41.6% of these proteins (71 proteins) have a higher putative total protein signal in NEK10 KO cells compared to Parental cells.

Supplemental Figure S9. Analyses of phosphoproteins. A) Crude mitochondrial fractionation of Parental cells passages p11 and NEK10 KO passage p10. The upper panel shows the western blotting analyzed with the anti-ATAD3 antibody. The middle panel shows western blotting analyzed with anti-Tubulin A antibody. Total protein analysis was detected by Bio-Rad Stain-Free Blot technique, lower panel. The protein molecular marker is Thermo Scientific Spectra[™] Multicolor Broad Range Protein Ladder.

B) Analysis was performed with the anti-total phosphothreonine antibody. C) Analysis with anti-total phosphoserine antibody. D) Analysis with anti-total phosphotyrosine antibody. Lanes 2, 5, and 8 are the crude mitochondrial fractions of Parental cells. Lanes 3, 6, and 9 are the crude mitochondrial fractions of NEK10 KO cells. In the lower panel is shown the total protein analysis detected by the Bio-Rad Stain-Free Blot. The protein molecular marker used in the blotting westerns was Thermo Scientific Spectra[™] Multicolor Broad Range Protein Ladder. E) The representative graph of total threonine, serine, and tyrosine phosphorylation is presented in percentage of control. The intensity of the bands was quantified with Image J2. The Stain Free Blot was used as a phosphorylation intensity normalizer.

Supplemental Figure S10 – Mitochondrial proteins levels of Parental and NEK10 KO cells. The western blottings show the levels of ATAD3; HSP60; TOM20; AIF. The protein levels analysis in % is shown in graphs on the right of each blot, The Tubulin A or B-actin levels were used for protein levels normalization. The intensity of the bands was quantified with Image J2. The graphs show the result of n=4. The statistical analyses were performed with GraphPad Prism 4.7 employing paired t-test, where p-value <0.05 = *, and p-value <0.01 = **. The graphs are shown in Mean with SD.