iScience, Volume 27

Supplemental information

Artificial antigen-presenting cell system reveals CD28's role in modulat-

ing T cell functions during human immunodeficiency virus infection

Tayma Shaaban Kabakibo, Edwige Arnold, Kartika Padhan, Audrée Lemieux, Gloria Gabrielle Ortega-Delgado, Jean-Pierre Routy, Naglaa Shoukry, Mathieu Dubé, and Daniel E. Kaufmann

CD4+

Α

B _{CD8⁺}

ART Α

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. T cell activation by aAPCs. Related to Figure 1. 15h stimulation of purified T cells from UD participants with aAPCs (aCD3:aCD28:lgG 1:4:0), unless otherwise indicated. **(A)** Gating strategy for identifying CD4⁺ and CD8⁺ T cells. **(B)** Staining of aCD3 and aCD28 antibodies on aAPCs with anti-lgG. **(C)** Representative flow cytometry plots showing cytokine expression in CD4⁺ and CD8⁺ T cells following 15h of SEB stimulation in total PBMCs. **(D)** Background-subtracted net cytokine⁺ CD4⁺ or CD8⁺ T cells after 15h of SEB stimulation in total PBMCs or purified T cells. Wilcoxon test is shown. **(E)** Background-subtracted net ICS⁺ CD4⁺ and CD8⁺ T cells responses to aAPCs aCD3:aCD28:lgG at a ratio of 1:4:0 or with equivalent amounts of soluble aCD3 and aCD28 crosslinked with different anti-IgG concentrations in purified T cells, N=3. **(F)** Background-subtracted net cytokine⁺ CD4⁺ or CD8⁺ T cells, when activated for 15h with aCD3+aCD28 aAPCs (cells-to-beads ratio of 1-4) or with Dynabeads (cells-to-beads ratio of 1-1), N=3, Wilcoxon test is shown. **(G)** Dot plots of CD4⁺ and CD8⁺ T cells (DUMP⁻) within the lymphocyte population. **(I)** Live T cells recuperation yields from the initial 2 million purified T cells (number of (DUMP-) T cells/ number of input T cells (2 million)). **(J-K)** Median fluorescence intensity (MFI) of different surface markers' expression on CD4⁺ T cells **(J)** or CD8⁺ T cells **(K)** after stimulation with different conditions of aAPCs for 15h. N=12, Wilcoxon test results are shown. In **E,F, H-K**, error bars represent interquartile.

Figure S2. CD28 co-stimulation enhances effector functions in CD4⁺ and CD8⁺ T cells to varying degrees. Related to Figure 2. Univariate analyses of cytokine expression in CD4⁺ and CD8⁺ T cells after 15h of aAPCs stimulation of purified T cells from UD participants. Unless specified otherwise, the 1:4:0 (aCD3:aCD28:lqG; aCD3 aCD28 aAPCs) stimulation is presented. N=2, except for [aCD3]=2.344 and 9.376 µg/mL, N=1. (C-D) Raw cytokine⁺ CD4⁺ (C) or CD8⁺ (D) T cell responses to SEB stimulation in total PBMCs (left) and to aAPCs stimulation with different aCD3:aCD28 ratios in purified T cells (right). Uns. Unstimulated. (E) Percentage of residual cytokine* signal when activating with aCD3 aAPCs compared to aCD3+aCD28 in CD4⁺ vs CD8⁺ T cells. (F-G) Median fluorescence intensity (MFI) of each gated cytokine⁺ in CD4⁺ (F) or CD8⁺ (G) T cells when stimulated with aCD3 aAPCs compared to aCD3+aCD28 aAPCs. (H-I) Median proportions of each memory subset in CD4⁺ (H) or CD8⁺ (I) T cells. (J) Percentage of residual cytokine* signal when activating with aCD3 aAPCs compared to aCD3+aCD28 in different CD4⁺ vs CD8⁺ T cells memory subsets. K) Proportion of CD28-expressing cells in memory subsets. (L) Representative overlay depicting the level of CD28 expression on indicated memory CD4+ T cell subsets. The FMO is presented as a negative control. (M) Median fluorescence intensity of CD28 expression on CD28+ naïve and indicated memory subsets in unstimulated CD4+ (orange) and CD8+ (blue) T cells. (C-M) N=12. In (E-G,J), Wilcoxon test was used for paired comparisons. (K,M) Freedman test are shown. Ns: nonsignificant, p > 0.05. In **(C-D)**, error bars represent interquartile range

Figure S3. High responsiveness of IL-2 to CD28 co-stimulation shapes effector functions. Related to Figure 3. Multivariate analyses of cytokine expression in CD4⁺ and CD8⁺ T cells after 15h of aAPCs stimulation of purified T cells from UD participants. The 1:4:0 (aCD3:aCD28:lgG; aCD3 aCD28 aAPCs) and 1:0:4 (aCD3:aCD28:lgG; aCD3 aAPCs) are herein qualitatively compared. Cytokine⁺ CD4 and CD8 T cells are identified by Boolean ORgate gating, downsampled to 1000 cell per participant per condition, concatenated then analyzed as follows. (A) Heat map overlaid on the cytokine⁺ UMAP showing the expression gradient for each cytokine. (B-C) Frequencies of cytokine⁺ clusters among cytokine⁺ CD4⁺ (B) and CD8⁺ (C) T cells in UD. (*p < 0.05, **p < 0.01, ***p < 0.001). (D-E) Global PCA analysis using the proportions of clusters in cytokine⁺ CD4⁺ (D) and CD8⁺ (E) activated T cells. The percentage on the x and y axes presents the variance attributed to PC1 and PC2, respectively. **Figure S4. CD28 co-stimulation induces expression of other co-stimulatory molecules. Related to Figure 4.** Univariate analyses of co-stimulatory marker expression in CD4⁺ and CD8⁺ T cells after 15h of aAPCs stimulation of purified T cells from UD participants. The stimulation conditions are indicated in each panel. **(A-B)** Representative flow cytometry plots of CD69 **(A)** or co-stimulatory molecules **(B)** expression in CD8⁺ T cells following 15h aAPCs (aCD3:aCD28:IgG) stimulation of 1:0:4 or 1:4:0 in purified T cells. **(C-D)** Raw CD4⁺ **(C)** or CD8⁺ **(D)** T cells responses to SEB in total PBMCs and to aAPCs stimulation with different aCD3:aCD28 ratios in purified T cells. Uns. Unstimulated. **(E)** Percentage of residual signal in absence of CD28 costimulation in CD4⁺ vs CD8⁺ T cells. Wilcoxon test result is shown. **(F-G)** Representative examples of median fluorescence intensity (MFI) of each cytokine expression in CD4⁺ and CD8⁺ T cells when stimulated with aCD3 aAPCs (aCD3:aCD28:IgG 1:0:4) compared to aCD3+aCD28 aAPCs (aCD3:aCD28:IgG 1:4:0). In **(C-E)**, n=11. In **(C-E)**, error bars represent interguartile range. **Figure S5.** Altered Dependency of IL-2, IFNγ, and TNFα on CD28 co-stimulation in HIV infection. Related to Figure 6. Univariate analyses of cytokine expression in CD4⁺ and CD8⁺ T cells after 15h of aAPCs stimulation of purified T cells from UD versus UNT participants. Unless, specified, the ratios presented are 1:4:0 (aCD3:aCD28:IgG; aCD3 aCD28 aAPCs). (A) Representative flow cytometry plots of cytokine expression in CD4⁺ and CD8⁺ T cells following 15h aAPCs (aCD3:aCD28:IgG 1:4:0) stimulation in purified T cells from UNT PWH. Unstimulated conditions represent T cells incubated with control IgG aAPCs (aCD3:aCD28:IgG 0:0:5). (B) Net cytokine⁺ CD4⁺ and CD8⁺ T cells responses to aCD3 aAPCs (aCD3:aCD28:IgG 1:0:4) stimulation of purified T cells from UD vs UNT. (C) Net cytokine⁺ CD4⁺ and CD8⁺ T cells responses to aCD3 aAPCs (aCD3:aCD28:IgG 1:0:4) stimulation of purified T cells from UD vs UNT. (D) Number of net cytokine⁺ CD4 T cells per mm3 after aAPCs (aCD3:aCD28:IgG 1:0:4) or (aCD3:aCD28:IgG 1:4:0) stimulation of purified T cells from UD vs UNT. (F) Number of net cytokine⁺ CD4 T cells per mm3 after aAPCs (aCD3:aCD28:IgG 1:0:4) or (aCD3:aCD28:IgG 1:4:0) stimulation of purified T cells from UD vs UNT. (F-I) Proportions of memory subsets in CD4⁺ (F and H) or CD8⁺ (G and I) T cells from UD or UNT cohorts. (J-K) Comparison of residual signal in the absence of CD28 co-stimulation in each memory subset of CD4⁺ (H) or CD8⁺ (I) T cells between UD and UNT for each individual cytokine. In (B-E, H,I), Mann-Whitney test results are shown. In (B-I), N=12. In (B-E, H,I), error bars represent interquartile range.

Figure S6. T cells from untreated PWH exhibit imbalanced effector functions favoring IFNγ, TNFα, and CD107a, with reduced IL-2 production. Related to Figure 6. Multivariate analyses of cytokine expression in CD4⁺ and CD8⁺ T cells after 15h of aAPCs stimulation of purified T cells at the 1:4:0 (aCD3:aCD28:lgG; aCD3 aCD28 aAPCs) ratio. UD and UNT participants are herein qualitatively compared. Cytokine⁺ CD4 and CD8 cells are identified by Boolean ORgate gating, downsampled to 1000 cells per participant per condition, concatenated, then analyzed as follows. (**A-B**) Net CD4⁺ (**A**) or CD8⁺ (**B**) T cell cytokine responses to aAPCs stimulation (aCD3:aCD28:lgG 1:4:0) of purified T cells. (**C-D**) Proportion of cytokine⁺ cells in activated CD4⁺ (**C**) or CD8⁺ (**D**) T cells. In (**A-D**), Mann-Whitney test results are shown, UD=12, UNT=13. In (**A-D**), error bars represent interquartile range. **Figure S7. Partial normalization of cytokine profile in CD4⁺ T cells by ART, with limited effects on CD8⁺ T cell functions. Related to Figure 7.** Univariate analyses of cytokine expression in CD4⁺ and CD8⁺ T cells after 15h of aAPCs stimulation of purified T cells from UNT versus ART participants. **(A)** Representative flow cytometry plots of cytokines expression in CD4⁺ and CD8⁺ T cells following 15h aAPCs (aCD3:aCD28:lgG 1:4:0) stimulation of purified T cells from ART PWH. Unstimulated conditions correspond to T cells incubated with control IgG aAPCs (aCD3:aCD28:lgG 0:0:5). **(B-C)** Net CD4⁺ **(B)** or CD8⁺ **(C)** T cells responses to aAPCs stimulation of purified T cells with different aCD3:aCD28 ratios. Friedman test was used. **(D)** Number of net cytokine+ CD4⁺ T cells per mm3 after aAPCs (aCD3:aCD28:lgG 1:0:4) or (aCD3:aCD28:lgG 1:0:4) or (aCD3:aCD28:lgG 1:0:4) or (aCD3:aCD28:lgG 1:4:0) stimulation of purified T cells from UNT vs ART. **(E)** N Number of net cytokine+ CD8⁺ T cells from UNT vs ART. **W**ilcoxon test result is shown. **(F-G)** Proportion of CD28-expressing cells in memory subsets. **(F)** CD4 (orange) and CD8 (blue) in UNT, **(G)** CD4 (orange) and CD8 (blue) in ART. **(H-I)** Median fluorescence intensity of CD28 expression on CD28⁺ naïve and indicated memory subsets in **(H)** CD4 (orange) and CD8 (blue) in ART. In **(B-M)**, UNT=13, ART=13. In **(F-I)**, Freeman tests are shown.

Supplementary Tables

 $\textbf{Table S1}. \ Clinical \ data \ for \ uninfected \ (UD), \ untreated \ (UNT), \ and \ treated \ (ART)$

participants. Related to Figures 1 to 7

	Participant	Sex	Age	CD4/CD8	CD4	Viral Load	Time of	Time	Time
	ID		(years)	Ratio	count	(copies/mL)	infection	on	between pre-
					(cells/uL)		(years)	ART	post ART
								(years)	timepoints
									(years)
DN	UD1	Μ	64	1.78	552	NA	NA	NA	NA
	UD2	Μ	59	2.40	530	NA	NA	NA	NA
	UD3	Μ	4 <u>0</u>	1.26	461	NA	NA	NA	NA
	UD4	F	41	3.93	1273	NA	NA	NA	NA
	UD5	F	45	2.31	632	NA	NA	NA	NA
	UD6	F	38	1.65	529	NA	NA	NA	NA
	UD7	Μ	63	3.50	675	NA	NA	NA	NA
	UD8	Μ	65	2.61	310	NA	NA	NA	NA
	UD9	F	39	2.05	667	NA	NA	NA	NA
	UD10	F	60	1.46	670	NA	NA	NA	NA
	UD11	М	57	1.95	726	NA	NA	NA	NA
	UD12	М	50	4.13	1758	NA	NA	NA	NA
	MEDIAN	NA	54	2.18	650	NA	NA	NA	NA
NT	UNT1	М	40	0.75	571	6678	0.2	NA	NA
	UNT2	М	38	0.23	320	132886	0.4	NA	NA
	UNT3	М	51	0.12	216	96873	13.4	NA	NA
	UNT4	М	42	0.45	320	105130	23.8	NA	NA
	UNT5	М	34	0.07	300	1000000	1.1	NA	NA
	UNT6	F	37	0.59	321	36715	0.2	NA	NA
	UNT7	М	47	0.96	492	39489	8.5	NA	NA
	UNT8	М	22	0.31	597	35859	0.1	NA	NA
	UNT9	Μ	26	1.11	597	2700	5.6	NA	NA
	UNT10	М	38	1.63	962	7000	0.1	NA	NA
	UNT11	Μ	24	0.80	971	16316	0.1	NA	NA
	UNT12	Μ	48	0.35	416	15250	6.5	NA	NA
	UNT13	Μ	38	0.89	1036	5362	0.4	NA	NA
	MEDIAN	NA	38	0.59	492	35859	0.45	NA	NA
	ART1	Μ	42	1.8	602	< 20	2.7	2.2	2.45
	ART2	Μ	40	0.49	616	< 40	1.8	1.2	1.44
ART	ART3	Μ	52	0.30	361	< 20	14.5	1.1	1.17
	ART4	М	43	0.61	482	< 40	24.9	1.0	1.13
	ART5	М	37	0.29	662	< 40	4.2	2.6	3.10
	ART6	F	37	0.99	416	44	0.9	0.5	0.61
	ART7	Μ	48	1.72	640	< 40	9.8	0.7	1.27
	ART8	Μ	26	1.34	871	< 40	3.9	3.6	3.74
	ART9	Μ	28	1.19	694	< 40	7.4	1.1	1.82
	ART10	Μ	42	2.30	509	< 40	3.3	3.1	3.18
	ART11	М	26	1.65	862	< 40	1.8	1.3	1.67
	ART12	Μ	50	0.80	700	< 40	9.2	1.2	2.68
	ART13	Μ	42	1.34	876	< 40	4.7	3.5	4.23
	MEDIAN	NA	42	1.19	640	NA	4.24	1.25	1.82

NA : Not-Applicable

Table 52. Flow cytometry antibody staining panel for intracellular detection. Related to the 51 AR Methods section.
--

Marker	Fluorophore	Clone	Vendor	Catalogue #
CD3	BUV395	UCHT1	BD Bioscience	563546
CD4	BUV496	SK3	BD Bioscience	564651
CD45RA	BUV563	HI100	BD Bioscience	612926
CD27	BUV661	L128	BD Bioscience	750167
CD57	BV421	NK-1	BD Bioscience	563896
CD14	BV480	M5E2	BD Bioscience	746304
CD19	BV480	HIB19	BD Bioscience	746457
LIVE/DEAD	Aquavivid	NA	Thermo Fisher	L34960
Fixable dead cell	-		Scientific	
CD8	BV570	RPA-T8	Biolegend	301037
CD107a	BV786	H4A3	BD Bioscience	563869
ΤΝFα	AF488	Mab11	Biolegend	502915
CD69	PerCPeF710	FN50	ebioscience	46-0699-42
IL17a	PE	REA1063	Miltenyi	130-120-551
IL-2	PE-Dazzle594	MQ1-17H12	Biolegend	500344
IFNγ	PE-Cy7	557643	BD Bioscience	557643
CCR7	APC-R700	2-L1-A	BD Bioscience	566767
CD40L	APC	TRAP1	BD Bioscience	555702

 Table S3. Flow cytometry antibody staining panel for co-stimulatory molecules detection. Related to the STAR

 Methods section.

Marker	Fluorophore	Clone	Vendor	Catalogue #
CD3	BUV395	UCHT1	BD Bioscience	563546
CD4	BUV496	SK3	BD Bioscience	564651
CD45RA	BUV563	HI100	BD Bioscience	612926
CD27	BUV661	L128	BD Bioscience	750167
CD57	BV421	NK-1	BD Bioscience	563896
CD14	BV480	M5E2	BD Bioscience	746304
CD19	BV480	HIB19	BD Bioscience	746457
LIVE/DEAD	Aquavivid	NA	Thermo Fisher	L34960
Fixable dead cell	-		Scientific	
CD8	BV570	RPA-T8	Biolegend	301037
CD28	BUV737	CD28.2	BD Bioscience	564438
PD-1	BB515	EH12.1	BD Bioscience	564494
CD69	BV650	FN50	Biolegend	310934
TIGIT	PerCPeF710	MBSA43	ebioscience	46-9500-42
4-1BB	PE-Dazzle594	4B4-1	Biolegend	309826
ICOS	PE-Cy7	ISA-3	ebioscience	25-9948
CCR7	APC-R700	2-L1-A	BD Bioscience	566767
OX40	APC	ACT35	BD Bioscience	563473
CD40L	PE	TRAP	BD Bioscience	555700