
Dear Dr. Glidden,

Thank you very much for submitting your manuscript "Temperature dependence of mosquitoes:
comparing mechanistic and machine learning approaches" for consideration at PLOS Neglected
Tropical Diseases. As with all papers reviewed by the journal, your manuscript was reviewed by
members of the editorial board and by several independent reviewers. In light of the reviews
(below this email), we would like to invite the resubmission of a significantly-revised version that
takes into account the reviewers' comments.

Most of the reviewers have expressed major concerns and reservations on fundamental
aspects of experimental design and approaches that have significant impact on your findings.
These concerns must be fully addressed for your MS to be considered for publication.

We cannot make any decision about publication until we have seen the revised manuscript and
your response to the reviewers' comments. Your revised manuscript is also likely to be sent to
reviewers for further evaluation.

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to the review comments and a
description of the changes you have made in the manuscript. Please note while forming your
response, if your article is accepted, you may have the opportunity to make the peer review
history publicly available. The record will include editor decision letters (with reviews) and your
responses to reviewer comments. If eligible, we will contact you to opt in or out.

[2] Two versions of the revised manuscript: one with either highlights or tracked changes
denoting where the text has been changed; the other a clean version (uploaded as the
manuscript file).

Important additional instructions are given below your reviewer comments.

Please prepare and submit your revised manuscript within 60 days. If you anticipate any delay,
please let us know the expected resubmission date by replying to this email. Please note that
revised manuscripts received after the 60-day due date may require evaluation and peer review
similar to newly submitted manuscripts.

Thank you again for your submission. We hope that our editorial process has been constructive
so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you
have any questions or comments.

Sincerely,



Paul O. Mireji, PhD
Section Editor
PLOS Neglected Tropical Diseases

Paul Mireji
Section Editor
PLOS Neglected Tropical Diseases
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Most of the reviewers have expressed major concerns and reservations on fundamental
aspects of experimental design and approaches that have significant impact on your findings.
These concerns must be fully addressed for your MS to be considered for publication.

Reviewer's Responses to Questions

<b>Key Review Criteria Required for Acceptance?</b></br></br>
As you describe the new analyses required for acceptance, please consider the
following:</br></br>

<b>Methods</b></br></br>
-Are the objectives of the study clearly articulated with a clear testable hypothesis stated?</br>
-Is the study design appropriate to address the stated objectives?</br>
-Is the population clearly described and appropriate for the hypothesis being tested?</br>
-Is the sample size sufficient to ensure adequate power to address the hypothesis being
tested?</br>
-Were correct statistical analysis used to support conclusions?</br>
-Are there concerns about ethical or regulatory requirements being met?</br></br>

Reviewer #1: Review comments.

Manuscript PNTD-23-01598 tiled: “Temperature dependence of mosquitoes: comparing
mechanistic and machine learning.
This study discusses the increasing global public health concern posed by mosquito vectors
(e.g., Aedes, Anopheles, Culex spp.), which transmit diseases like dengue, Zika, chikungunya,
West Nile, and malaria. The authors argues that mosquitoes are shifting geographically due to
climate change and other human activities. As ectotherms, mosquitoes are highly sensitive to
temperature, affecting their life history traits (like biting rate and survival probability), which
show upper and lower thermal limits and intermediate optima in lab studies. According to the
authors, the correlation between lab-based thermal responses and mosquitoes' responses in
natural settings is unclear. To bridge this knowledge gap, the study used machine learning
models based on thousands of global mosquito occurrences and high-resolution satellite data



to estimate vector thermal responses. This approach, which included adjustments for mosquito
activity season and ecologically relevant spatial
sampling, revealed a strong correlation between laboratory-estimated thermal minima and field
observations (r = 0.90), with a moderate correlation for thermal optima (r = 0.69). However,
thermal maxima were not detectable in field distributions for comparison with lab estimates.
The study concluded that lab studies can effectively predict lower thermal limits and optima of
mosquitoes in the field. Additionally, lab-based models might capture physiological limits at high
temperatures, crucial for understanding mosquito responses to climate change, which are not
apparent in field observations.

Thank you for this clear summary of our findings.

First impression: The study title “Temperature dependence of mosquitoes: comparing
mechanistic and machine learning. I am contemplating whether it is appropriate to draw
comparisons between methodologies that fundamentally differ from each other. For instance,
mechanistic models are process-driven and are typically calibrated using data derived from
controlled biological experiments. These models have a clear and traceable logic in how they
process information, closely following biological phenomena as observed in laboratory settings.
In contrast, machine learning models often function as 'black boxes.' Their internal workings in
processing data are not transparent, making it challenging to understand precisely how they
arrive at their outputs. Furthermore, these models, primarily developed from extensive datasets,
may lack a direct linkage to biological or ecological principles. They are designed to identify
patterns and make predictions based on the data they are fed,
without necessarily incorporating the underlying biological or ecological mechanisms.
Therefore, comparing these two types of models might overlook the inherent differences in their
approaches, purposes, and the nature of the data they are based on. While each has its
strengths, they operate on different premises – mechanistic models with a focus on process
and understanding, and machine learning models with an emphasis on pattern recognition and
prediction.

Thank you for this comment. We appreciate this concern, and agree that the underlying
assumptions of mechanistic and machine learning models differ dramatically. However,
the fundamental question of our study—how comparable are temperature response
relationships inferred from mechanistic vs. ML models?—stems from this exact concern,
and thus this is where we believe the strength of our study lies. Despite their lack of
mechanism and transparency, machine learning approaches are often used to
understand the current distributional limits on species, and even their potential
responses to global change. From mechanistic thermal biology studies (in simplified,
laboratory environments), we know that organisms have non-monotonic responses to
temperature that place constraints at both lower and upper temperature ranges, yet we
do not yet know whether these constraints are captured in ML approaches. Conversely,
the temperature constraints inferred from mechanistic modeling and experiments may be
moderated by potentially complex interactions with other environmental factors, so their



relevance in real ecosystems also remains unknown. Thus, our goal was to compare the
two approaches, which has not been done in the past and is currently unexplored in the
literature, to help us bridge the gap between these varied methodologies and understand
the relative strengths of each for future research. As such, the aim of our manuscript was
not to show that we should replace one model with the other, but to show how these
models complement each other. By doing so we can determine how to use the models
simultaneously in order to gain a more comprehensive understanding of species
response to global change. We have now included additional text in the Introduction
(lines 78-81, 104-128) that addresses this concern.

Critical comments on the methodology used.
While the study delves into a compelling and potentially significant area of research, I have
reservations regarding its methodology. In the case of mosquito studies, laboratory experiments
are conducted to replicate the biophysical mechanisms defining and characterizing mosquito
species. These experiments aim to understand species' responses to environmental factors like
temperature, focusing on the process rather than being purely data-driven. The models or
equations developed to estimate the lower and upper limits of a species' developmental stages
are process-bound and characteristic of each species, adhering to principles that define them.
However, translating these laboratory findings to natural settings using machine learning (ML)
models presents significant challenges. Discrepancies between ML predictions and laboratory
findings, particularly at lower thermal optima and upper limits, can arise from various factors.
The complexity of natural environments, with factors like microclimates and ecological
interactions, may not be fully captured in lab settings. ML models, despite their power, depend
on the quality and range of input data, which might not comprehensively represent natural
conditions. Laboratory studies often simplify complex biophysical mechanisms for practicality,
potentially leading to gaps when applying these rules to real-world scenarios. Generalizing lab
findings to field conditions via ML might fail to account for the nuanced dynamics of mosquito
ecology. Therefore, while ML holds promise in bridging lab and field studies, its application
needs careful consideration and calibration, respecting the complexities of ecosystems and the
inherent limitations of lab experiments and ML algorithms.

This is an excellent summary of the advantages and disadvantages of each approach,
and precisely the reason for investigating the relationship between temperature
responses inferred from each method.

On a smaller, technical note, since ML results are based on the data that they are fed, we
performed out-of-sample tests with a bootstrapping approach to make sure the results
are consistent beyond a specific training dataset. This helps to test if the model is only
learning patterns of the specific data fed into the model or if the model is learning more
general biological patterns that are not unique to the training data. If the estimated
temperature responses had large differences between bootstrapped samples, it would
suggest the patterns detected by the ML may be an artifact of the data and not the



ecological system; instead, we find that the temperature responses are largely consistent
between samples (Fig 3).

Translating laboratory findings to natural settings using machine learning (ML) models can be
challenging.
This is exemplified by the varying correlation levels between ML predictions and laboratory
findings, particularly regarding lower thermal optima and upper limits (thermal minima and field
observations showing a high correlation of r = 0.90, but a more moderate correlation for thermal
optima at r = 0.69). Several factors contribute to this discrepancy:
i. Complexity of natural environments: Mosquito habitats in nature are far more complex
and varied than those in laboratory settings. Factors such as microclimates, ecological
interactions, and geographical diversity significantly influence mosquito behavior and survival.
These elements are often not fully replicated or captured in controlled laboratory environments.
ii. Limitations of machine learning models: ML models are highly dependent on the quality
and range of input data. If laboratory data do not encompass the full spectrum of natural
conditions or omit essential environmental variables, these models may fall short in accurately
predicting real-world scenarios.
iii. Biophysical Mechanism Simplification: For practicality, laboratory studies often simplify
the complex biophysical mechanisms of mosquito species. This necessary simplification for
in-depth study can create gaps when ML models attempt to apply these rules to the more
intricate conditions of the real world.
iv. Generalization from Laboratory to Field: While laboratory studies are crucial for grasping
the basic biology of mosquitoes, extending these findings to field conditions via ML can
potentially miss the subtle and dynamic aspects of mosquito ecology in nature.
Although ML offers a valuable means to connect laboratory research and field observations, its
application should be thoughtfully considered. This involves recognizing the intricacies of
natural ecosystems and the inherent limitations of both laboratory methodologies and ML
algorithms.

We agree with the reviewer’s comments, especially those regarding the complexity of
natural environments and difficulty in generalizing findings from lab to field. In the
current literature, there is often a disconnect between lab-based experimental work and
real-world contexts which makes it difficult to translate lab/process-based findings into
estimated impacts outside of the lab. Our study aims to understand when and where
these lab-based and real-world contexts differ, therefore allowing us to better
contextualize lab findings. We highlight this aim in the Introduction (lines 67 - 73, 102 -
120). We address the reviewer’s concerns about discrepancies between the correlation
for thermal minima and thermal optima in more detail below.

Further, we only included species in the study if the available occurrence points covered
a large portion of known range and so that data contained adequate variation in relation
to the variation vectors experience in natural conditions (but see below for how we tested
for sampling bias in Europe and America). The continued advancement of geospatial



environmental data is making it more and more possible to include essential predictor
variables. We carefully selected our variables based on what we consider to be important
environmental drivers and have included more details on the justification for their
inclusion in the methods (lines 278-327). Additionally, we performed the analysis at a
resolution reflective of mosquito biology and dispersal (1km2 at the equator). We
acknowledge that our input data still faces some of the limitations the reviewer
describes, but we believe our dataset is comprehensive enough to capture real biological
patterns.

Reviewer #2: The study elucidates to develop a model based on newer tools, on the occurrence
of 7 important vector species belonging to Culicidae, in relation to temperature globally.
However, the species distribution data used for the modelling study relies on GBIF, which
remains still as a baseline data to describe the occurrence of these species globally. The
authors could have chosen curated different Country wise data available in the literature. Even
though the authors aim the study to be a global one, they mostly restrict the data to American
(and to a lesser extent African) Countries. Vector borne diseases are mainly a problem of
tropical countries, which remains the worst affected. Species occurrence data used in the study
(Fig. 1a) in highly affected country by the disease, where the species they concentrate is mostly
Asian and African Countries, where data on the occurrence of these species is shown as
meagre.

Thank you for bringing up this point; we agree that the distribution of occurrence data in
GBIF is heavily weighted towards Europe and North America (see Figures S5 - S11). This
is primarily an issue for species of interest whose ranges are global (i.e., Aedes aegypti
and Aedes albopictus) and less of a concern for regional species (i.e., Anopheles
stephensi, Anopheles gambiae, Culex tarsalis). We also searched the literature for global
occurrence databases for each of the species of interest and included additional
observations for Anopheles gambiae (Wiebe et al., 2017) and Anopheles stephensi (Sinka
et al., 2020), including 2,106 raw occurrences for An. gambiae and 1,126 raw occurrences
for An. stephensi, given that these two species had low sample sizes from the GBIF
database alone (see lines 336-342 in the main text describing these additional occurrence
points). While more targeted data collection for each of the species of interest in African
and Asian countries would better balance the sample of occurrence points, this would
create additional problems for sampling background points. We currently use non-target
species in GBIF to construct a background sampling effort to address the geographically
biased sampling. If we were to introduce country-specific occurrence datasets, the
species in GBIF would no longer serve as an accurate measure of sampling bias for the
dataset, requiring additional occurrence data for non-target species to complement each
of the country-specific target species datasets. While this is not feasible, we agree that
with the current distribution of data heavily weighted towards some regions, and if there
is regional variation in species thermal dependence, the estimates will be over-weighted
towards North America and Europe. To address this, we have added a new analysis that
removes occurrence and background points in North America and Europe for global
species showing heavy bias towards these continents (Ae. aegypti and Ae. albopictus) to



understand whether estimates of critical thermal limits and maxima that are more
representative of Asia and Africa differ from those previously found. We find in these
new analyses that the thermal minima and optima estimates are robust whether we
consider all occurrence points, without Europe, and without North America (Figure S19).
We now explain this additional sensitivity analysis in the Methods (lines 406- 414) and
Results (lines 654-658).

In addition, the parameter chosen for this modelling is only a single environmental parameter,
temperature. Even though it remains crucial in mosquito survival and development, other very
important parameter relative humidity which is also a very crucial one is somehow not included
at all. Earlier authors, used to compute a parameter saturation deficit ( a combination of both
temperature and relative humidity) as both these parameters have been determined as the most
important environmental parameters affecting mosquito survival and thereby their distribution.

We thank the reviewer for this concern, and agree that other parameters like humidity
may have a large impact on mosquito distributions. As saturation deficit is intended to
combine temperature and humidity while the intent of this study was to understand the
thermal dependence of mosquitoes in the field in comparison with lab studies, we
instead have newly added relative humidity as an additional covariate given recent
literature on its potential importance (Brown et al. 2023 Ecology Letters). We find that the
estimated thermal minima and optima change very little, and have updated all analyses
through the manuscripts to include relative humidity as an additional variable.

In page 5 authors emphasis on the selection of the period of distribution as "active season".
Active season is there only in temperate regions, in in tropical countries. Hope this is a global
investigation. - May be modified

For this study, we define mosquito activity seasons by photoperiod (days with over 9
hours of sunlight), precipitation (days with at least 50 mm of precipitation in the last 30
days), or year round, depending on the mosquito species and previous literature
suggesting constraints on mosquito activity (see Methods lines 210-225 and Table 1) to
better capture the temperatures experienced by mosquitoes while they were active. The
length of these activity seasons differs regionally (Figs. S2 and S3), with more tropical
regions having year round activity seasons even when limited by photoperiod (due to
daylength always exceeding 9 hours in the tropics) and only higher latitude areas having
shorter activity seasons (Fig. S2). We now clarify this in the manuscript (lines 253 -254
216).

Reviewer #3: Methods are generally valid but need additional information. In particular, I would
suggest the authors to provide more details regarding the XGBoost. One thing that is not clear to
me is that how the XGboost infers the relationship between the probability of occurrence and
temperature. It may be helpful if the authors can provide sort of schematic plots to help readers
who are less familiar with that particular method.



To quantify the effect of temperature in our ML models we utilize partial dependence
plots, which graphically depict the marginal effect of a variable on the model predictions.
In this case, the partial dependence plot for temperature is calculated as the average
predicted probability of species occurrence for a given temperature value across all
combinations of other variables observed in the data (Goldstein et al. 2015). This
approach is common in explainable AI to understand how one or more features affect the
predicted outcome. We have updated the explanation in the Methods to help better clarify
how this approach works (lines 374-378).

Goldstein, Alex, et al. "Peeking inside the black box: Visualizing statistical learning with
plots of individual conditional expectation." Journal of Computational and Graphical
Statistics 24.1 (2015): 44-65.

--------------------

<b>Results</b></br></br>
-Does the analysis presented match the analysis plan?</br>
-Are the results clearly and completely presented?</br>
-Are the figures (Tables, Images) of sufficient quality for clarity?</br></br>

Reviewer #1: The confusion in this study arises from the observed discrepancy in accurately
predicting thermal minima and thermal optima for the same mosquito species. It is perplexing
how the machine learning models can predict one variable (thermal minima) with high accuracy
(r = 0.90) but show less precision (r = 0.69) in predicting the other (thermal optima), despite
both being characteristics of the same species. From a biophysical standpoint, this
inconsistency seems counterintuitive since both limits are integral traits of the species,
influenced by similar biological processes. The fact that these thermal characteristics, both
resulting from and driven by the same biological processes, show different levels of
predictability challenges the logical coherence of the study's findings. This inconsistency raises
questions about the underlying methodologies or data used in the study, suggesting a need for a
more nuanced approach that considers the interconnected nature of these biophysical traits.

Because as species distribution models aim to predict the probability of occurrence
rather than mosquito abundance, we actually find the greater predictability of thermal
minima (now r = 0.869 after the addition of relative humidity to the models) compared to
thermal optima (now r = 0.687) to be unsurprising. This is because once temperatures
exceed the necessary threshold for mosquito populations to survive, we would expect
the probability of occurrence (as estimated in an SDM) to plateau and have only minimal
further increases as temperature approaches the optimal temperature for mosquito
population sizes. To better isolate thermal optima, a model that predicts mosquito
abundance (and therefore would need reliable abundance data) would likely be
necessary. We now better explain why this result is consistent with expectations



regarding how SDMs detect the influence of environmental variables in the Results and
Discussion (lines 486-492, 558-567).

Reviewer #2: Analysis had been carried out for the data they have chosen for the study.
However, this is not comprehensive.
We appreciate that the dataset used for occurrence points likely misses some data not
registered in global databases, but as discussed in our previous response, inclusion of
additional datasets for all countries introduces additional challenges due to the need to
correct for sampling bias. We more directly estimate whether the parameters of interest
are sensitive to our geographic sample by dropping occurrences in North America and
Europe (new Figs. S15 - S18) and find that the thermal minima and optima detected for
mosquitoes are largely consistent (new Fig S19).

Reviewer #3: Results are clearly presented.
Thank you!

--------------------

<b>Conclusions</b></br></br>
-Are the conclusions supported by the data presented?</br>
-Are the limitations of analysis clearly described?</br>
-Do the authors discuss how these data can be helpful to advance our understanding of the
topic under study?</br>
-Is public health relevance addressed?</br></br>

Reviewer #1: Another challenge in this study also lies in the selection of covariates for building
the machine learning (ML) model. The criteria or process used to choose variable 'x' is not
clearly articulated, raising concerns about the foundation upon which the ML model was
developed. Before delving into the complexities of an ML model, which often functions as a
'black box', it is essential to engage in what I refer to as "data exploration." This process involves
a thorough examination of each variable, particularly environmental ones, to understand their
individual and collective contributions to the phenomena we aim to predict. Data exploration is
crucial as it helps in identifying the most relevant predictors and understanding the underlying
relationships within the data. This preliminary step is vital for ensuring that the ML model is built
on a solid and transparent foundation, enhancing its predictive accuracy and reliability. Without
this initial exploration,
there's a risk of overlooking key variables or misinterpreting their importance, which could lead
to less effective models and questionable conclusions

We appreciate the opportunity to further clarify our approach to variable selection in the ML
model. We took a detailed approach to determining which environmental predictor variables to
include. We first looked to the literature to understand which ecological variables were
consistently utilized in past SDM models. Further, we sought to understand which variables



were found to be highly important predictors in other papers for our target mosquito species.
Once we identified which predictors were consistently ranked as top predictors across papers,
we applied our judgment to select a set of environmental covariates that we believed could
reasonably capture underlying vector ecology and biology.

For example, in this process, we identified that human population density is a variable that may
be ecologically important as it represents the fact that many mosquito species are highly
human-dependent by preferring human blood-feeding, inhabiting urban or peri-urban niches,
and breeding in artificial containers or pools of water in close proximity to human settlements.
Indeed, human population density was the most important predictor for Ae. aegypti in a
Pakistan model (Fatima et al., 2016), and for Cx. pipiens in a Middle East and North Africa
model (Conley et al., 2014), and was thus included as a predictor in our models. Precipitation
of the driest quarter, on the other hand, was thought to capture suitable mosquito breeding
habitats in the period of less standing water during the dry season. This variable was found to
be an important predictor for An. gambiae in a Nigeria model (Akpan et al., 2018), for Ae.
aegypti and Cx. pipiens in an East Africa model (Mweya et al., 2013), and for Ae. aegypti in a
Colombia model (Cabrera et al., 2020). Enhanced vegetation index describes the quality of
vegetation features like leaf area, canopy cover, and sugar resources that may provide
alternate food sources or resting sites for many species (Conley et al., 2014), and may
estimate seasonal patterns in gross primary production (Waring et al., 2006). The mean of this
variable was found to be an important predictor for Cx. pipiens in Middle East and North Africa,
while the standard deviation of this variable was found to account for 44.7% of model fit in
past MaxEnt SDM models of the same species (Conley et al., 2014).

In this fashion, we aimed to select a set of non-overlapping environmental predictors that had
ecological explainability but also historical precedent, for use in our model. This approach to
variable selection is laid out in the Methods (lines 275-327). We have visualizations of all
environmental covariates in the supplement (Fig S4) and their relationships via correlation
plots (Fig. S1).

Reviewer #2: Authors made an investigation to model the influence of temperature on the
occurrence and distribution of 7 important species of mosquitoes. Their conclusion seems to
be valid. They could arrive at therma minima and therma optima values. However they could not
obtain a significant correlation for therma maxima. This could be owing to lack of including
another equally important parameter, relative humidity for generating their model.
Thank you for this suggestion. We have included the additional suggested covariate of
relative humidity in the model and find largely similar estimates throughout the analysis.
The inability of the models to estimate the thermal maxima is likely due to limited
sampling at the upper thermal limits of the species ranges and the fact that some species
may not yet be limited in their distributions due to their upper thermal limits. We note this
in the Discussion (lines 695-700, 702-704).



Reviewer #3: Conclusions are well justified.
Thank you!

--------------------

<b>Editorial and Data Presentation Modifications?</b></br><br/>
Use this section for editorial suggestions as well as relatively minor modifications of existing
data that would enhance clarity. If the only modifications needed are minor and/or editorial, you
may wish to recommend “Minor Revision” or “Accept”.

Reviewer #1: Reject

Reviewer #2: There are some errors such as
1) When a species is mentioned in the manuscript for the first instance those should be written
in full and not as abbreviation. Page 4 lines 100-101
2) Culex quinquefasciatius, one of the species they include in the study is the main vector for
Lymphatic filariasis in tropical Countries. Authors mention it as a arbo-viral vector only. Page 4
Lines 106-107.
Thank you for pointing out these omissions. We have now corrected them.

Reviewer #3: Minor Revision

--------------------

<b>Summary and General Comments</b></br></br>
Use this section to provide overall comments, discuss strengths/weaknesses of the study,
novelty, significance, general execution and scholarship. You may also include additional
comments for the author, including concerns about dual publication, research ethics, or
publication ethics. If requesting major revision, please articulate the new experiments that are
needed.

Reviewer #1: This study discusses the increasing global public health concern posed by
mosquito vectors (e.g., Aedes, Anopheles, Culex spp.), which transmit diseases like dengue,
Zika, chikungunya, West Nile, and malaria. The authors argues that mosquitoes are shifting
geographically due to climate change and other human activities. As ectotherms, mosquitoes
are highly sensitive to temperature, affecting their life history traits (like biting rate and survival
probability), which show upper and lower thermal limits and intermediate optima in lab studies.
According to the authors, the correlation between lab-based thermal responses and mosquitoes'
responses in natural settings is unclear. To bridge this knowledge gap, the study used machine
learning models based on thousands of global mosquito occurrences and high-resolution
satellite data to estimate vector thermal responses. This approach, which included adjustments
for mosquito activity season and ecologically relevant



spatial sampling, revealed a strong correlation between laboratory-estimated thermal minima
and field observations (r = 0.90), with a moderate correlation for thermal optima (r = 0.69).
However, thermal maxima were not detectable in field distributions for comparison with lab
estimates. The study concluded that lab studies can effectively predict lower thermal limits and
optima of mosquitoes in the field. Additionally, lab-based models might capture physiological
limits at high temperatures, crucial for understanding mosquito responses to climate change,
which are not apparent in field observations.First impression: The study title “Temperature
dependence of mosquitoes: comparing mechanistic and machine learning. I am contemplating
whether it is appropriate to draw comparisons between methodologies that fundamentally differ
from each other. For instance, mechanistic models are process-driven and are typically
calibrated using data derived from controlled biological
experiments. These models have a clear and traceable logic in how they process information,
closely following biological phenomena as observed in laboratory settings. In contrast, machine
learning models often function as 'black boxes.' Their internal workings in processing data are
not transparent, making it challenging to understand precisely how they arrive at their outputs.
Furthermore, these models, primarily developed from extensive datasets, may lack a direct
linkage to biological or ecological principles. They are designed to identify patterns and make
predictions based on the data they are fed, without necessarily incorporating the underlying
biological or ecological mechanisms. Therefore, comparing these two types of models might
overlook the inherent differences in their approaches, purposes, and the nature of the data they
are based on. While each has its strengths, they operate on different premises – mechanistic
models with a focus on process and understanding,
and machine learning models with an emphasis on pattern recognition and prediction.

While lab-based models and machine learning-based models do have fundamentally
different approaches and premises, in this context, they aim to understand the same
important phenomena. We agree that machine learning models are primarily designed to
identify patterns based on large datasets, and in this case, we can provide datasets and
covariates formulated to detect the same biologically relevant critical thermal values that
are identified from lab-based studies so we can understand the relevance of those
lab-based estimates to real world contexts. Throughout the analysis, we emphasized this
particular aim, from our selection of variables to our estimation of thermal minima and
optima in partial dependence plots. As a result, while the original intent of ML models
may have been a “black box” for prediction, our analysis emphasizes the way in which
the interpretable ML can be used to understand phenomena in addition to prediction, and
the importance of careful consideration of the strengths, weaknesses, and underlying
premises of both approaches. We now better clarify this in the manuscript (lines
110-128). Importantly, because ML models are often used in the literature to identify
current temperature constraints on species with implications for responses to future
warming, our work serves to test the validity of this approach and to highlight important
thermal constraints that ML approaches may miss. Further, our analysis is not intended
to prove that we should replace one method over the other, but shows that ML models
and thermal performance curves are highly complementary and using them in concert



can help to gain a more comprehensive understanding of species response to global
change. We better emphasize this in the abstract and introduction (lines 35-38, 78-81).

Reviewer #2: In summary, if the authors would have used a curated data on the occurrence and
distribution of the concerned species as well as if they would have included relative humidity, in
addition to temperature, into the environmental parameters, they could have come out with a
more reliable model on the influence of climatic and environmental parameters on the
distribution of these species.

Thank you for these suggestions. We have implemented the suggestion to include
relative humidity and find that for some species it is among the most important
predictors, and find that despite that, in the updated models there is little change in the
identified critical thermal values from the PDPs and therefore little change in the overall
correlation between SDM-based and lab-based thermal values. Second, while we have
already added additional curated data beyond GBIF for some species and inclusion of
further occurrences would introduce additional complications related to background
point sampling (see above), we agree completely that there may be geographic variation
in the species’ thermal responses that is masked by the larger number of occurrences in
North America and Europe. To understand the effect this may have, we conducted
sensitivity analyses and found that the results are largely consistent across different
geographic samples (new Fig. S19).

Reviewer #3: This is a clearly written paper but additional info on the method would be helpful.
Thank you for suggesting this, we have added additional clarification on the methods in
lines 374-378.

--------------------
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