
nature ecology & evolution

https://doi.org/10.1038/s41559-024-02514-5Article

The genetic architecture of repeated  
local adaptation to climate in distantly  
related plants

In the format provided by the  
authors and unedited

Supplementary information

https://doi.org/10.1038/s41559-024-02514-5


1 

The genetic architecture of repeated local adaptation to climate in 1 

distantly-related plants - Supplementary Materials 2 

 3 

Supplementary Methods: 4 

1. Justification of repeatability threshold (FDR < 0.5) 5 
2. Comparing the OrthoFinder tree against the proposed species tree 6 
3. Covariance among climate variables 7 
4. Justification of GEA methodology 8 
5. Correcting for the effect of SNP count on ZWZA heteroscedasticity 9 
6. Alternative methods for deriving Orthogroup-level pleiotropy estimates 10 
7. Randomisations to test the effect of Orthogroup structure 11 

 12 

Supplementary Results: 13 

1. Orthogroups tested for repeatability are representative of general genes in GEA 14 
analyses 15 

2. Relative Niche-Breadth and GEA power do not predict contributions to repeatability 16 
3. RAOs are not enriched for phylogenetic signal of GEA results 17 
4. Orthogroups tested for repeatability may exhibit more repeatability than those not 18 

tested 19 
5. Reduced sampling of the global species range may reduce contributions to 20 

repeatability 21 
6. Gene duplication may facilitate adaptive repeatability 22 
7. Recombination does not drive signals of GEA or repeatability 23 

 24 

Supplementary Figures: 25 

● Supplementary Figure 1: Summary of bioinformatics workflows 26 
● Supplementary Figure 2: Associations between GEA power and species contributions 27 

to repeatability. 28 
● Supplementary Figure 3: Associations between Niche Breadth (global mean) and 29 

species contributions to repeatability. 30 
● Supplementary Figure 4: Associations between Niche Breadth (local mean) and 31 

species contributions to repeatability. 32 
● Supplementary Figure 5: Brassicacae PicMin analysis of tested vs untested 33 

orthogroups. 34 
● Supplementary Figure 6: Summary of orthogroup occupancy. 35 
● Supplementary Figure 7: Agreement between TimeTree phylogeny and OrthoFinder 36 

phylogeny. 37 
● Supplementary Figure 8: Expected PicMin p-value distributions under the null. 38 
● Supplementary Figure 9: Overlap of RAOs across climate variables. 39 



2 

● Supplementary Figure 10: Demonstration of expected false-positives based on the 40 
FDR. 41 

● Supplementary Figure 11: GEA ep-value distributions in tested vs untested 42 
orthogroups. 43 

● Supplementary Figure 12: Associations between GEA ep-values and recombination 44 
rate. 45 
 46 

Supplementary Tables: 47 

● Supplementary Table 1: Original dataset details 48 
● Supplementary Table 2: Orthogroup summary statistics 49 
● Supplementary Table 3: Full PicMin statistical test results for RAOs 50 
● Supplementary Table 4: Summary of species contributions across RAOs 51 
● Supplementary Table 5: GO terms for RAOs 52 
● Supplementary Table 6: Arabidopsis thaliana gene details in RAOs 53 
● Supplementary Table 7: GO enrichment test results 54 
● Supplementary Table 8: Estimates of pleiotropy for all tested orthogroups 55 

  56 



3 

SUPPLEMENTARY METHODS 57 

 58 

1) Justification of repeatability threshold (FDR < 0.5) 59 
The decision to categorise RAOs on the basis of an FDR-threshold of 0.5 was taken to include 60 
as many true-positives as possible in downstream functional enrichment analyses, while 61 
limiting the inclusion of false positives so that they do not make up the majority in our final 62 
set of RAOs. At this threshold, each RAO is at least as, or more, likely to be a true-positive 63 
than it is a false-positive. It is important to note that unlike p-values, FDR-adjusted p-value 64 
(q-value) thresholds do not carry any expectation for an expected number of q-values below 65 
the threshold, given the number of tests performed when all null hypotheses are true. For 66 
example, when performing 100, 1000 or 10,000 tests, a p-value threshold of 0.05 carries an 67 
expectation of approximately 5, 50, and 500 (5%) ‘significant’ tests below the threshold 68 
when all null hypotheses are true. In contrast, a q-value threshold of 0.5 carries an 69 
expectation of ~1 test being significant below the threshold (with a 50% chance of being a 70 
false-positive) regardless of the number of tests performed when all null hypotheses are 71 
true (Fig S9). This is because the FDR-threshold explicitly defines the proportion of results 72 
below that threshold that are expected to be false-positives, not the absolute number of 73 
false-positives. Consequently, an enrichment of tests with q-values <0.5 relative to null 74 
expectations can be considered a demonstration of an enrichment of true-positives. Put 75 
another way, an enrichment of tests with q-values <0.5 is an indication of a non-uniform p-76 
value distribution that is weighted towards more lower values. 77 
 78 
We tested this by randomly shuffling ep-valuesWZA within species within each climate 79 
variable 1000 times. We then performed all PicMin tests as for our observed data, FDR-80 
adjusted the p-values within each climate variable, and summed together the number of 81 
orthogroups with an FDR q-value <0.5 across the 21 climate variables. Across the 1,000 82 
permutations, we observe an expected median of 36 (mean = 37.9) RAOs with an FDR of 83 
<0.5 (between 1 and 2 per climate variable, per randomisation, in line with random uniform 84 
expectations) and a maximum of 102. Similar expected values (median = 36, mean = 37.8, 85 
max = 102) were obtained when reducing RAOs to unique orthogroups (i.e. an orthogroup 86 
may be significant across multiple climate variables). In our observed data we detected 141 87 
RAOs, or 108 unique RAOs, representing a significant enrichment when compared to null 88 
expectations. 89 
 90 

2) Comparing the OrthoFinder tree against the proposed species tree 91 
The topology among major clades of the inferred species tree among reference genome 92 
species had good agreement with the equivalent species tree from TimeTree (Fig S7), 93 
although there were disagreements regarding sister taxa at the ancestral node of the 94 
Eudicot species (all species excluding Pinus taeda, Picea abies and Panicum hallii) and within 95 
Populus and Brassicacae clades. Our species tree’s grouping of P. trichocarpa and P. 96 
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deltoides as sisters is supported by phylogenomics work in Populus1, and our grouping of 97 
Capsella rubella and Boechera stricta as sisters within Brassicaceae is supported by 98 
additional phylogenomics2. 99 
 100 

3) Covariance among climate variables 101 
The 19 bioclim variables studied here are, of course, not independent of one another and 102 
exhibit substantial covariance. This is to be expected given various bioclim variables are 103 
calculated from other bioclim variables, for e.g. isothermality (BIO3) = 100 * mean diurnal 104 
range (BIO2)/ temperature annual range (BIO7). In other cases, bioclim variables are simply 105 
similar observations, for e.g., maximum temperature in the warmest month (BIO5) and 106 
mean temperature in the warmest quarter (BIO10). Many studies seek to remove non-107 
independence within environmental datasets through reducing dimensionality with 108 
principal component analysis (PCA) or redundancy analysis (RDA). Reducing dimensionality, 109 
whilst reducing nonindependence, does however add significant complications in terms of 110 
interpretation, where it can be unclear which environmental contributors to a combined 111 
variable are responsible for adaptation. Additionally, such approaches are undesirable in 112 
studies of multiple datasets where covariance of bioclim variables will vary among individual 113 
datasets, such that combined variables are incomparable. One approach to this issue may 114 
be to include environmental data from all datasets in a single dimensionality reduction, 115 
however this approach tends to maximise the significance of variation among datasets, 116 
which greatly exceeds variation within datasets, and is substantially less relevant to 117 
selection pressures and adaptation within datasets. Consequently, the simplest approach in 118 
terms of downstream interpretation and making comparisons across datasets is to maintain 119 
individual variables and acknowledge the potential non-independence of results among 120 
likely covarying variables (Fig S10). 121 
 122 
Our climate change variables did exhibit some association with other bioclim variables, 123 
particularly those linked with seasonality (Extended Data 6). This is likely due to the 124 
increased variance of monthly max temperature and precipitation at sites with greater 125 
seasonality, which will dampen effect size estimates between decades. 126 
 127 
4) Justification of GEA methodology 128 
We performed GEAs using Kendall’s τ correlations that do not correct for population 129 
structure for several reasons. Firstly, the non-parametric correlation makes no assumptions 130 
about the distribution of allele frequency or environmental variation which is likely to vary 131 
substantially among datasets and climate variables. The Kendall’s τ correlation is a rank-132 
based correlation similar to Spearman’s ρ but with adjustments to handle ties. There are an 133 
abundance of approaches to perform GEA, some of the most popular being BayPass3, 134 
PCAdapt4, latent-factor mixed modelling (LFMM)5, and RDA6. Each of these approaches 135 
includes a correction for potentially spurious associations between allele frequencies and 136 
environment driven by spatial autocorrelation between population structure/gene flow and 137 
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environmental variation. In doing so, these approaches should theoretically reduce false-138 
positives (Type-I error) but incur a drop in power (more false-negatives, Type-II error)7,8, as 139 
seen empirically in other studies9,10. However, a recent study deploying these methods on 140 
datasets created using individual-based simulations of evolution found substantial variation 141 
in realised power and false positive rates, with LFMM exhibiting a high power but a false 142 
positive rate near 100%, while RDA showed both very low power and low false positive 143 
rate11. Low power for methods including population structure correction was also observed 144 
by another simulation study assessing the accuracy of GEA methods12. Thus, methods that 145 
attempt to “control for population structure” cannot reliably disentangle the contributions 146 
of genetic drift and natural selection to observed patterns of allele frequency variation 147 
within a single species when axes of environmental variation align with axes of population 148 
structure. For studying climate variation, which is inherently spatial, axes of climatic 149 
variation are expected to align with spatial axes of population structure. This is especially 150 
the case in real empirical datasets where complex phenomena like allele surfing might be 151 
particularly problematic13.  152 
 153 
In contrast, our method avoids the pitfalls of correction for population structure by instead 154 
relying on comparisons across species to more reliably detect the signature of natural 155 
selection repeatedly driving local adaptation. This works better than single-species analyses 156 
because if random genetic drift is driving evolution at a given gene in multiple species, we 157 
can specify the probability of repeatedly observing a strong association by chance and 158 
perform our tests accordingly. There is therefore no need to correct for population structure 159 
at the level of the within-species analysis, because this is controlled by our among-species 160 
probability model, as deployed in PicMin. 161 
 162 
It should be noted however that some major historical expansion and contraction events are 163 
shared across species and may have facilitated admixture among closely-related species, for 164 
example in Northern Eurasia following glaciation-interglaciation cycles14. To rule out the 165 
potential for such introgression to be driving our observations, we visualised the shared 166 
contributions of closely-related species and general phylogenetic signal within our 167 
repeatability results and statistically tested phylogenetic signal in our repeatability results. 168 
 169 
5) Correcting for the effect of SNP count on ZWZA heteroscedasticity 170 
The uncorrected ZWZA exhibits heteroscedasticity associated with increased ZWZA variance in 171 
genes with more SNPs. We took several post-processing steps to account for this. Firstly, for 172 
the most SNP dense genes, we down sampled SNPs in genes with SNP counts above the 75% 173 
quantile to the 75% quantile, taking the per gene ZWZA score as the mean ZWZA calculated 174 
over 100 down sampled SNP sets. We also trimmed genes with minimal SNP information, 175 
removing genes with fewer than 5 SNPs, or if the 5% quantile of per gene SNP count was 176 
less than 5, we removed the bottom 5% of genes based on SNP count. This process 177 
therefore removed, at most, the bottom 5% of genes. We took a modified approach to the 178 
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WZA for standardising for SNP count across genes. Because the WZA is an approach 179 
designed to detect local adaptation, the WZA conservatively estimates the expected mean 180 
and variance of ZWZA for a gene of given SNP count by approximating the relationship 181 
between ZWZA mean and variance and SNP count using all observed data. However, true-182 
positive GEA outliers could upwardly bias estimates of ZWZA variance under this approach. 183 
Because we do not expect false-positive outliers to appear repeatedly across species, we 184 
adopted a less conservative approach and only estimated ZWZA mean and variance from the 185 
lower half of ZWZA scores (ZWZA < 0). For our analysis, this should improve power within 186 
species at the cost of potentially identifying more false-positives, but these should be 187 
removed later in the across-species repeatability analysis. Having an approximation for the 188 
expected mean and variance of ZWZA for a gene with a given number of SNPs, we calculated 189 
a parametric p-value for each gene on the basis of the observed ZWZA using the pnorm() 190 
function. 191 
 192 
6) Alternative methods for deriving Orthogroup-level pleiotropy estimates 193 
To condense our per gene estimates of tissue specificity to per orthogroup estimates, we 194 
initially approached this in two ways. We transformed τ scores into per gene ep-values 195 
based on rank, treating either higher τ estimates (and higher specificity) as lower ep-values 196 
or lower τ values (and higher pleiotropy) as lower ep-values. We explored both of these 197 
approaches to ensure that choice of the most specific vs. least specific paralog per 198 
orthogroup did not affect the interpretation of pleiotropy drawn from this analysis. In each 199 
case, we then retained the minimum ep-value per orthogroup and corrected for paralogs 200 
with a Dunn-Šidák correction. Finally, we transformed per orthogroup ep-values to Z-scores 201 
(Zτ) with a mean of 0 and sd of 1 across all orthogroups.  202 
 203 
This approach therefore reflects our approach based on Tippett’s method for condensing 204 
per gene GEA results to orthogroups. This approach was preferred over taking the mean τ 205 
per Orthogroup as there is no assumption that paralogs should retain specificity/pleiotropy. 206 
Indeed, taking the mean τ per orthogroup greatly reduced the occurrence of high τ values in 207 
the genome-wide distribution suggesting paralogs within orthogroups vary in their 208 
specificity of expression, which may occur due to neofunctionilisation or 209 
subfunctionalisation15. Whilst we observed that the number of paralogs decreases as 210 
evidence for repeatability increases (Extended Data 8B), it is important to note that this is 211 
not a feature introduced by the data structure and having to correct for the number of 212 
paralogs (Extended Data 8B and Fig 5E). 213 
 214 
7) Randomisations to test the effect of Orthogroup structure 215 
A potential bias between evidence for repeatability and duplication metrics could be 216 
introduced due to our method for processing per orthogroup ep-values requiring a Dunn-217 
Šidák correction based on the number of paralogs (reducing the statistical power more in 218 
bigger orthogroups). To test this, we took the observed per gene ep-values associated with 219 
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all climate variables and shuffled them 100 times within species and within climate variables 220 
before correcting for the number of paralogs as normal. In total this creates 2,100 221 
randomised single-variable p-value sets (21 variables * 100 randomisations). This approach 222 
therefore shuffles the biological information contained within the per gene ep-values but 223 
retains the orthogroup and paralog structure within the dataset across species and climate 224 
variables. We then ran PicMin on each of the 2,100 sets of randomised data and within each 225 
of the 100 randomised sets, calculated the minimum PicMin p-value across the 21 226 
randomised climate variables and used these to group orthogroups into deciles as for our 227 
observed data. We could then calculate the mean duplication metrics per decile as for our 228 
observed data, and repeated this 100 times to derive 100 randomised means per decile to 229 
compare against our observed decile means. 230 
  231 
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SUPPLEMENTARY RESULTS 232 

 233 

1) Orthogroups tested for repeatability are representative of general genes in 234 

GEA analyses 235 
A concern when testing for repeatability across species is whether or not the genes within 236 
orthogroups that are actually tested for repeatability are representative of all genes. Only 237 
genes that were in orthogroups with at least 20 species represented and with no fewer than 238 
10 paralogs were tested for repeatability with PicMin. This decision was made to reduce the 239 
total number of tests performed by only testing orthogroups with the most data and so 240 
greatest power to detect repeatability across diverse species. The genes in these tested 241 
orthogroups (N = 8,470) represented varying proportions of the total genes tested by GEA 242 
per species, ranging from 37.1% in Picea abies to 61.6% in Panicum hallii (Table S2). We first 243 
plotted the distributions of per orthogroup ep-values in tested vs not-tested orthogroups. 244 
These plots, summarised for precipitation in the dry month, demonstrate that in general the 245 
distribution of tested ep-values for a given climate variable were approximately uniform 246 
across most species and did not differ substantially from those that were not tested in most 247 
cases (Fig S11). If anything, orthogroups tested for repeatability were more likely to include 248 
probable adaptive genes than orthogroups that were not tested for repeatability, evidenced 249 
as inflated densities of lower per gene GEA ep-values in tested vs untested distributions. 250 
 251 
2) Relative Niche-Breadth and GEA power do not predict contributions to 252 

repeatability 253 
The variability with which species contribute towards signatures of repeatability across 254 
climate variables (Fig 3A) begs the question of whether there are features of individual GEA 255 
(individual here referring to any given pair of species-climate) that explain this variation. The 256 
focus on individual species-climate tests, as opposed to the overall total number of RAOs, 257 
sets this question apart from those in the section “Reduced sampling of the global species 258 
range may reduce contributions to repeatability”. Variability of contribution could be 259 
explained by the power attached to each individual GEA, with the assumption being that 260 
species contribute more towards repeatability for GEA with greater power as a result of 261 
lower Type-II error. To examine this, we looked at two features of GEA that are likely to 262 
affect power: 1) the proportion of genetic variance that can be explained by climatic 263 
variation (hereafter GSEA - Genetic Structure Environment Association); 2) the relative 264 
niche-breadth (NB) of climatic variation, which may reflect strength of selection across the 265 
sampled range. We note that in contrast to the LOO analysis above, here, niche breadth is 266 
calculated in two different ways: one that represents the breadth relative to other species 267 
and another that accounts for scaling between the breadth measure and magnitude of the 268 
mean. As opposed to approximating the proportion of the global climate niche that has 269 
been sampled within each dataset, our measures of niche breadth here attempt to 270 
approximate comparable estimates of climate variability among species. For example, here 271 
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we are quantifying whether the sampling of species X experiences a greater variability of a 272 
given climate variable than the sampling of species Y, as opposed to measuring the extent to 273 
which the sampling of species X covers species X’s global climate niche. 274 
 275 
We calculated GSEA using partial redundancy analysis (pRDA). We constructed models to 276 
explain the variance in a response matrix of per site allele frequencies, randomly sampled to 277 
10,000 SNPs (with at least 90% of non-missing data per SNP), by predictor matrices of 278 
climate variation and spatial variation (latitude and longitude). We opted for latitude and 279 
longitude representations of space because these capture the assumptions of isolation-by-280 
distance and spatial autocorrelations with the environment. Alternative approaches, such as 281 
Moran’s spatial eigenvectors, accurately capture spatial information in terms of clustering of 282 
populations, but it is difficult to interpret these alongside how environmental variation may 283 
similarly covary with space. We produced a separate model for each bioclim variable 284 
individually, as opposed to modelling all together, in order to link genetic variance explained 285 
by individual climate variables back to individual variable GEAs. We considered the total 286 
proportion of genetic variance explained by climate as the combined partitions of genetic 287 
variation that could be explained exclusively by climate and that could be explained by 288 
either climate or space. If a greater proportion of neutral population structure is aligned 289 
with axes of environmental variation, GEA may exhibit reduced power as a result of truly 290 
adaptive genes co-segregating with an appreciable proportion of genome-wide neutral 291 
genetic variation11. We predicted that within species, the strongest contributions towards 292 
repeatability signatures would be observed when GSEA was lowest. Across species, 293 
however, we did not observe any consistent relationship between GSEA and contribution 294 
towards signatures of repeatability (Fig S2). 295 
 296 
We calculated niche breadth in two ways to account for variability in means and distribution 297 
shapes across variables and species. Firstly, for each dataset and each climate variable, we 298 
calculated the species range (max - min) of climatic variation, and then standardised this 299 
based on the global range within climate variables across all species from locations with 300 
genome-sequenced samples included (i.e. not from GBIF). This estimate of niche breadth 301 
therefore captures the proportion of global variation present within an individual dataset, 302 
with the prediction being that the datasets contributing most to repeatability for a given 303 
climate variable will be those where this proportion is greatest. Secondly, we estimated 304 
niche-breadth by standardising species’ range values by the mean climate value within each 305 
range. This estimate of niche breadth therefore contextualises previous estimates as a 306 
proportion of their mean. We opted to explore both of these estimates of niche breadth due 307 
to subtle differences in interpretation that come with standardising by either the global 308 
range or local mean. Take for example two ranges of precipitation variation between 100-309 
200 mm and 3000-3100 mm. Each of these ranges is equivalent if standardised by the global 310 
range, however we expect that a 100mm difference in rainfall may be more significant if it 311 
represents a doubling in annual precipitation relative to a small increase. Standardising by 312 
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the local mean therefore captures differences in relative niche breadth. In each case, we 313 
observe no evidence that niche breadth variation is associated with contributions towards 314 
signatures of repeatability (Fig S3-S4). 315 
 316 
3) RAOs are not enriched for phylogenetic signal of GEA results 317 
It is expected that species that are more closely-related may contribute disproportionately 318 
to signatures of repeatability, particularly if closely-related species share adaptive variation. 319 
Consequently, clusters of closely-related species, for example our Brassicaceae species or 320 
Helianthus or Eucalyptus species groups, may be disproportionate contributors to 321 
repeatability in our dataset. On the other hand, the PicMin test assumes that each species is 322 
independently evolving, so shared standing variation among closely-related species could 323 
introduce non-independence into the test. Thus, it is important to assess whether our 324 
results include a signal of closely-related species having increased repeatability.  A visual 325 
inspection of contributions towards repeatability suggests that this is not the case (Fig 3B, 326 
Extended Data 3). However, we also tested each RAO for phylogenetic signal in the 327 
distribution of GEA ep-values among species tips. To do this, we took each of the 141 RAOs 328 
(some of the 108 unique RAOs were represented across multiple climate variables) and used 329 
the phytools::phylosig()16 function to test each orthogroup for phylogenetic signal of -log10-330 
transformed GEA p-values against random expectations under Brownian evolution. We used 331 
the ‘K’ method 17 with 1,000 sims (we also used the ‘lambda’ method and obtained the 332 
same result). To derive a species-level phylogenetic tree with branch lengths (Extended Data 333 
2A), we curated our reference genome tree (Fig 1D) and where multiple species were 334 
mapped to the same reference genome (for example Helianthus and Eucalyptus) we split 335 
tips to include all species and separated species by the minimum branch length in the 336 
original reference genome phylogeny. We then asked whether the average ‘K’ value 337 
observed in the 141 RAOs differed from 1,000 random draws of 141 orthogroups (excluding 338 
the 141 RAOs). 339 
 340 
There was limited evidence of significant phylogenetic signal of GEA ep-values within the 341 
141 RAOs. Seven RAOs had phylogenetic clustering signal p-values <0.05, in line with null 342 
expectations (5% of tests). The mean ‘K’ value of observed RAOs was 0.081, which was 343 
actually lower than the mean ‘K’ (0.086) of 1,000 randomly chosen groups of orthogroups 344 
(Extended Data 2B). These results demonstrate that there was limited evidence of 345 
phylogenetic signal driving signatures of repeatability within RAOs, and RAOs did not exhibit 346 
elevated phylogenetic signal relative to orthogroups without evidence of adaptive 347 
repeatability. 348 
 349 
4) Orthogroups tested for repeatability may exhibit more repeatability than 350 

those not tested 351 
It is expected that repeatability should decline with increasing TMRCA between species. This 352 
is due to several factors, including reduced likelihood of sharing common adaptive variants, 353 
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functional divergence of genes, and changes to species general biology and physiology18. We 354 
observed no evidence of phylogenetic signal in our RAOs, however. One explanation for this 355 
may be that the orthogroups tested for repeatability are reasonably conserved, potentially 356 
negating the expected trend at the genome-level of reduced repeatability through increased 357 
functional divergence of genes. To examine this, we repeated the PicMin repeatability 358 
analyses over a set of orthogroups found in the 7 Brassicaceae species in our dataset. 359 
 360 
This set of orthogroups comprised 6,914 orthogroups in total. Of these, 5,620 were tested in 361 
the original analysis (‘Full Dataset’), and 1,294 were tested here for the first time (‘Brassica 362 
Dataset’). Of the 1,294 newly tested orthogroups, 374 orthogroups contained genes that 363 
were only found in Brassicaceae genomes (‘Brassica Unique’). We repeated PicMin analyses 364 
using the same method as for the main analysis, and tested repeatability for orthogroups 365 
with all seven species. 366 
 367 
In total, 25 orthogroups exhibited evidence of repeatability at our FDR <0.5 threshold, all of 368 
which were orthogroups previously tested in our main analysis. In addition to this, 369 
visualising the distribution of PicMin p-values across all climate variables by orthogroup 370 
status highlighted that orthogroups that had been tested in our main analysis exhibited 371 
stronger evidence of repeatability in this analysis (Fig S5). This result was consistent if 372 
orthogroups were grouped by previously-tested vs newly-tested, or unique to Brassicaceae 373 
vs not unique. In this re-analysis, all orthogroups had equal statistical power (7 species), and 374 
so this variability cannot be explained by variable power in orthogroups that were not 375 
tested previously. These results lend support to the idea that orthogroups with higher levels 376 
of conservation across species (i.e. those that contained enough species to be tested in our 377 
main analysis) may be more likely to be repeatedly involved in adaptation. A potential 378 
mechanism for this might be a reduction in functional divergence that is expected with 379 
increased conservation across diverse species. 380 
 381 
5) Reduced sampling of the global species range may reduce contributions to 382 

repeatability 383 
To address the potential of sampling bias in the repeatability analyses, and to explore 384 
variability among species in contributing towards repeatability, we quantified a range of 385 
features related to dataset quality. To understand how these features may affect the 386 
repeatability analyses, we used a Leave-One-Out (LOO) cross-validation approach that 387 
involved removing each species from the overall PicMin analysis and repeating the PicMin 388 
process, whilst accounting for the N-1 species. This LOO procedure produced a species-level 389 
value reflecting the increase or decrease in the number of FDR <0.5 orthogroups detected, 390 
which we then compared against our dataset quality features. 391 
 392 
Dataset quality features were selected to reflect either biological or technical limitations of 393 
datasets and included the following: 1) Approximate climate extent covered by sequenced 394 
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dataset, relative to total climatic range of the species; 2) approximate geographic extent 395 
covered by the dataset, relative to global range; 3) percentage of total genes within the 396 
genome covered by sequencing data; 4) number of SNPs (averaged through datasets within 397 
species) per species; 5) number of individuals sampled (averaged through datasets within 398 
species) per species; 6) number of sampling locations (averaged through datasets within 399 
species) per species; 7) ratio of the number of individuals to number of sampling locations. 400 
 401 
Features 1) and 2) were approximated by pulling all occurrence data for each species from 402 
GBIF (GBIF Occurrence Download https://doi.org/10.15468/dl.mcbger Accessed from R via 403 
rgbif [https://github.com/ropensci/rgbif] on 2024-05-03). For 1), the climatic niche of each 404 
species was calculated by extracting bioclim variables for all locations in GBIF and reducing 405 
dimensionality using scaled principal components analysis (PCA). The climate values for the 406 
sampled ranges were then projected onto the species-specific climate PCA. To compare the 407 
sampled niche to the global niche for each species, we calculated hypervolume overlap over 408 
each PC using dynamic range boxes (dynRB_Pn function in the dynRB package19). Overall 409 
hypervolume overlap was then calculated as the weighted mean overlap across individual 410 
principal components, where weights reflected the relevant eigenvalues, i.e. overlap on PC1 411 
is more significant than PC10. For 2), we used the same occurrence data to calculate the 412 
average distance (in km) between a given pair of species occurrence points. Where species 413 
had >1000 occurrences in GBIF, we took 100 random subsets of 1,000 occurrences and 414 
performed pairwise distance calculations within subsets, keeping only intracontinental 415 
distances to avoid including distances across oceans. For our sampled data points, we took 416 
the same approach and calculated the mean distance (in km) between all paired locations. 417 
We then calculated the ratio of the average sampled distance to the average global 418 
distances. Whilst this measure is crude, it should capture the main information we are 419 
interested in here, i.e. distinguishing between a species where we have data from across the 420 
majority of its known geographic distribution as opposed to a small minority. Feature 3) was 421 
calculated on the basis of the number of genes with ZWZA scores relative to the number of 422 
genes in the total OrthoFinder2 outputs for each genome. Features 4-7 were extracted from 423 
each of the original VCF files, and are found in Table S1. Features 1 and 2 reflect biological 424 
quality, in terms of the extent of biological variation sampled within our datasets. The 425 
remaining features reflect technical quality related to the sequencing of samples and 426 
statistical power. 427 
 428 
Removing individual species had a variable effect on the retained number of PicMin RAOs 429 
(FDR <0.5 & <0.3, Extended Data 4A-B). The largest increase in the number of RAOs (relative 430 
to the total dataset count of 141 RAOs) was observed when removing Amaranthus 431 
tuberculatus (211 FDR <0.5 RAOs), whereas the largest reduction in RAOs was observed 432 
when removing either Eucalpytus albens or E. sideroxylon (89 FDR <0.5 RAOs). Interestingly, 433 
despite the removal of either of these Eucalyptus resulting in the same number of retained 434 
RAOs, the RAOs that were removed from the full set were generally not the same. 435 
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Specifically, of the RAOs removed from the original 141 by removing each of E. albens and E. 436 
sideroxlyon, only 50.6% were shared between the two eucalypts. This result is in agreement 437 
with the results presented in Fig 3B and Extended Data 2, suggesting a negligible influence 438 
of common or shared contributions towards repeatability between these species, or any 439 
closely-related species. In general, the change in the number of RAOs compared to when 440 
including all species reflected a mix of original RAOs dropping out and previously 441 
undetected RAOs becoming more significant. To give an example, of the 89 RAOs observed 442 
when excluding E. sideroxlyon, 74 of these were retained in the original 141 and 15 were 443 
newly detected. 444 
 445 
When exploring the effect of dataset features on the variability of the LOO results among 446 
species (Extended Data 4C), the strongest associations were negative associations between 447 
the change in FDR <0.5 RAOs (LOO CV Change) and geographic sampling extent (Global 448 
Range Distance Ratio, ρ = -0.43) and climate niche sampling breadth (Global Climate Niche 449 
Overlap, ρ = -0.33) (Extended Data 4D). This highlights that the main feature of datasets 450 
underlying the potential power of each species in our repeatability analysis is biological, i.e. 451 
the extent of global species-level biological variation that has been sampled. Specifically, it 452 
suggests that removing species where less of the natural variation has been sampled tends 453 
to increase the number of RAOs, and vice-versa.  454 
 455 
6) Gene duplication may facilitate adaptive repeatability 456 
Gene duplication has been invoked to explain repeatability variation, notably among conifer 457 
species20. Duplications may facilitate repeatable evolution by alleviating functional 458 
constraints through sub- or neofunctionalisation15. We asked whether RAOs differed for the 459 
total number of duplications within each gene tree, the number of species-specific 460 
duplications (where all nodes downstream of the duplication involve a single genome), the 461 
number of single-copy genes within each gene tree, and whether species contributing 462 
towards repeatability within orthogroups were enriched for duplications (Extended Data 463 
8A).  464 
 465 
Our per orthogroup pleiotropy metrics were negatively associated with the number of gene 466 
duplication events per orthogroup (expression breadth: ρ = -0.328, p < 2.2-16; node degree: ρ 467 
= -0.383, p < 2.2e-16; Fig 5E). Importantly, however, randomising per gene pleiotropy scores 468 
did not produce any association with the number of duplication events per orthogroup, 469 
demonstrating that the orthogroup structure and analysis is not expected to produce 470 
spurious associations.  471 
 472 
As observed for pleiotropy, grouping orthogroups by their strongest evidence of 473 
repeatability highlighted a clear tendency for gene duplication to vary with evidence of 474 
adaptive repeatability. Orthogroups with stronger evidence of repeatability were 475 
characterised by fewer duplications, fewer species-specific duplications, and a greater 476 
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number of single-copy genes (Extended Data 8B). Importantly, these associations with gene 477 
duplication were not observed following randomisation within species of per gene GEA ep-478 
values (black bars in Extended Data 8B). Species contributing towards repeatability in RAOs 479 
(PicMin FDR < 0.5) did not differ in terms of per species duplications from species with low 480 
GEA ep-values (<0.1) from randomly drawn orthogroups (10,000 permutations, p = 0.127). 481 
These results therefore suggest that orthogroups with reduced gene duplication may be 482 
more likely to be repeatedly associated with adaptation, however it may be difficult to 483 
separate out the effects of pleiotropy and duplication, given duplication may promote 484 
subfunctionilisation and specialism among duplicated genes21. Indeed, per orthogroup 485 
duplication events were negatively associated with per orthogroup pleiotropy metrics (Fig 486 
5E).  487 
 488 
Interestingly, however, species that were contributing towards repeatability within RAOs 489 
were less likely to be single-copy genes within RAOs with respect to random expectations 490 
derived from taking species with low GEA ep-values within random sets of orthogroups 491 
(Extended Data 7C). This result therefore contradicts the notion that repeatedly adaptive 492 
orthogroups may be associated with reduced duplication, and is in line with previous 493 
observations in conifers20. The discrepancy between these results may be explainable due to 494 
noisy per orthogroup estimates as opposed to potentially more relevant per species 495 
estimates of duplication. 496 
 497 
7) Recombination does not drive signals of GEA or repeatability 498 
Recombination rate landscapes, potentially shared to some extent among closely-related 499 
species, represent a potential source of bias within our analyses due to the risk that WZA 500 
variance may be greatest in regions of low recombination22. It is unlikely that this source of 501 
bias has a strong effect on our repeatability results, given repeatability is observed to vary 502 
among climate variables, all of which are expected to be influenced in the same way by the 503 
recombination landscapes within species. Still, we wanted to quantify its effect here for a 504 
subset of datasets for which recombination rates were available. Recombination rates were 505 
acquired for the following genomes: Arabis alpina23, Arabidopsis lyrata24, Arabidopsis 506 
thaliana25 and Helianthus annuus26. These corresponded to nine individual datasets. To 507 
examine associations between recombination rate and GEA results (WZA scores corrected 508 
for SNP count), we plotted GEA ep-values against ep-values estimated for individual genes 509 
according to the weighted-mean recombination rate over a given gene. We plotted four 510 
random climate variables as a demonstration (Fig S12). 511 
 512 
Across the Brassicaceae, there is no observable association between recombination rate and 513 
GEA. Each distribution plotted is a uniform distribution of empirical p-values, thus the 514 
expected plot when association is minimal reflects regions of density across the whole 515 
plotting space. The association is complicated for the Helianthus species, however, 516 
exhibiting contrasting associations. H. annuus, and to a lesser extent H. argophyllus, exhibit 517 
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an association between GEA variance and low recombination, which can be seen particularly 518 
clearly for max temp warmest month and H. annuus as all high and low GEA ep-values are 519 
observed in regions of low recombination (low recombination ep-value). Conversely, H. 520 
petiolaris exhibits a linear association whereby GEA p-values are generally lower in regions 521 
of low recombination. This discrepancy between the Brassicaceae and Helianthus may 522 
reflect the known adaptive significance of regions of low recombination in these data from 523 
Helianthus spp.27, therefore these associations may be genuine and biological. In support of 524 
this, the association between GEA results and recombination appear stronger in accordance 525 
with the proportion of each species genome where large non-recombining regions are 526 
observed in the original study (H. argophyllus has the lowest proportion of the genome 527 
covered, H. petiolaris has the most). Importantly, given that the effect of recombination is 528 
not observed across all datasets, it is unlikely to bias our estimates of repeatability. In 529 
addition, even though Helianthus spp. do exhibit an association, they do not show any 530 
evidence of contributing excessively to our estimates of repeatability in Fig 3A-B. 531 
 532 
We also looked into whether genes within the same orthogroup were repeatedly associated 533 
with low recombination across species, and whether these overlapped significantly with our 534 
RAOs identified across GEA. To do this, we looked at the recombination rates from each of 535 
the four species and condensed the ep-values to per orthogroup p-values using the same 536 
Tippett’s approach as was used for the GEA data. We then tested the same 8,470 537 
orthogroups that were tested for climate data using PicMin, in order to identify orthogroups 538 
with repeatedly low recombination across the four species. We also removed orthogroups 539 
that did not have recombination estimates in all four species, leaving 7,446 to test with 540 
PicMin. This analysis identified 9 orthogroups with evidence of repeatedly low 541 
recombination across species at an FDR < 0.5. Of these 9, 1 was also identified as an RAO 542 
associated with climate at FDR < 0.5 (N = 108). An intersection of 1 does represent an almost 543 
ten-fold enrichment above the random expectation of 0.11, however it also only represents 544 
>1% of the identified RAOs associated with climate adaptation. From this, we can conclude 545 
that some repeatability identified through our GEA analyses may be driven by common 546 
regions of low recombination, however the extent of this effect is likely minimal. 547 
 548 
  549 
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SUPPLEMENTARY FIGURES 550 

 551 

 552 
Supplementary Figure 1: Summary of workflows for SNP-calling, GEA and testing for 553 
repeatability signatures.  554 
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 555 
 556 
Supplementary Figure 2: Associations between GEA power, estimated as in the inverse of 557 
how much neutral genetic variation is explained by climatic variation, and the extent to 558 
which an individual species contributes low p-values to RAOs. The y-axis represents the 559 
proportion of RAOs that include a low p-value (<0.1) from a given species. The x-axis is the 560 
proportion of neutral genetic variation that is explained by climatic variation, as estimated 561 
by pRDA. Each point therefore represents a single GEA combination of species and climate 562 
variable. Linear regression lines and standard error are included to provide a general 563 
approximation of the relationship. 564 
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 565 
 566 
Supplementary Figure 3: Associations between Niche Breadth, standardised by the global 567 
climatic range across all species, and the extent to which an individual species contributes 568 
low p-values to RAOs. The y-axis represents the proportion of RAOs that include a 569 
contributing p-value from a given species. Each point therefore represents a single GEA 570 
combination of species and climate variable. Linear regression lines and standard error are 571 
included to provide a general approximation of the relationship. 572 
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 573 
 574 
Supplementary Figure 4: Associations between Niche Breadth, standardised by the local 575 
species mean climate, and the extent to which an individual species contributes low p-values 576 
to RAOs. The y-axis represents the proportion of RAOs that include a contributing p-value 577 
from a given species. Each point therefore represents a single GEA combination of species 578 
and climate variable. Linear regression lines and standard error are included to provide a 579 
general approximation of the relationship. 580 
  581 
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 582 
 583 
Supplementary Figure 5: Distributions of PicMin p-values for tests of repeatability within 584 
seven Brassicaceae species. In each panel, distributions are coloured according to the status 585 
of Orthogroups in terms of whether they were tested in the main analysis (left panel) or were 586 
orthogroups that were unique to Brassicaceae (right panel). Both panels show the same 587 
result, which implies that the orthogroups with higher degrees of conservation across 588 
species, that were tested in our main analysis, also exhibit increased evidence for 589 
repeatability when tested only within Brassicaceae.  590 
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 591 
Supplementary Figure 6: Orthogroup occupancy across species. Histogram shows the 592 
distribution of the number of species represented per orthogroup. The black line denotes the 593 
cut-off of 20 used for repeatability analyses.  594 
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 595 
 596 
Supplementary Figure 7: Agreement between the species-tree derived here from 5,003 597 
orthogroups from the 17 reference genome including in this study (left), and the species tree 598 
described by TimeTree (right), which is shown in Extended Data 1.  599 
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 600 
 601 
Supplementary Figure 8: The distribution of p-values derived from PicMin under the null 602 
model that no species exhibits adaptation within a given orthogroup. Each panel shows the 603 
null distribution under a different number of tested species (19-25). These distributions were 604 
produced over 1,000,000 orthogroups per number of species derived from random uniform 605 
ep-values, and were used as an empirical null distribution to adjust final PicMin p-values. 606 
  607 
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 608 
 609 
Supplementary Figure 9: Demonstration of the different expectations for p-values and FDR-610 
corrected q-values when selecting a cut-off. Each histogram represents 1,000 random 611 
uniform draws of p-values where all null hypotheses are true, for either 1,000, 10,000, or 612 
100,000 tests. The ‘Signif p’ column shows the distribution of the number of tests with a p-613 
value < 0.05, with the median shown as a red line. The expected number of tests with a p-614 
value < 0.05 increases with the number of tests performed (approximately 5% of tests). The 615 
‘Signif FDR’ column shows the same data FDR-corrected, with the number of tests with an 616 
FDR-corrected q-value < 0.5 (the threshold used here), with the median (either 0 or 1) shown 617 
as a red line. This simulated data demonstrates that, regardless of the number of tests being 618 
performed, there is no expectation for many tests to fall below the FDR < 0.5 threshold as 619 
there is for uncorrected p-values.  620 
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 621 
 622 
Supplementary Figure 10: Overlap of RAOs (FDR < 0.5) among different climate variables. 623 
Each cell shows the number of orthogroups that were commonly identified through GEA 624 
associated with different climate variables. Axes are clustered with dendrograms denoting 625 
groups of climate variables with the most similar sets of orthogroups identified. 626 
 627 
 628 
  629 
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 630 

 631 
 632 
Supplementary Figure 11: Density distributions of tested vs not-tested orthogroup GEA ep-633 
values. Each facet shows a different species, and fill denotes whether orthogroups were 634 
tested for repeatability or not.   635 
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 636 
 637 

 638 
 639 
Supplementary Figure 12: Associations between GEA results and recombination rate. Each 640 
facet shows the density of per gene estimates of association with environment (WZA ep-641 
value corrected for SNP count) and recombination rate (weighted mean, lower ep-value 642 
reflects lower recombination). Each axis represents a uniform distribution of empirical p-643 
values, such that if no association exists, regions of high density are observed across the 644 
plotting area. Darker regions represent a greater density of genes. 645 
  646 
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