Multi-omic single-cell sequencing defines tissue-specific responses in Stevens-Johnson Syndrome and Toxic epidermal necrolysis.

Supplementary Figures

Supplementary Figure 1 | UMAP location of predominant immune subsets across sample types. Expression distribution for key cell types across SJS/TEN unaffected skin (n=1 patient, 2,628 cells), SJS/TEN affected skin (n=1 patient, 2,049 cells), normal skin from an unrelated healthy donor (n=1 donor, 6,856 cells), burn blister fluid (n=4 patients, 6,776 cells), and SJS/TEN blister fluid (n=15 patients, 91,579 cells). The majority of the UMAP locations of each subset are labeled with the percentage of each subset within that location indicated. *Unaff, unaffected; aff, affected; SJS/TEN, Stevens-Johnson syndrome and toxic epidermal necrolysis.*

Supplementary Figure 3 | Differential signature of macrophages between burn and SJS/TEN blister fluid. (A) Differential gene expression signatures (two-tailed Wilcoxon, Hochberg adj, p<0.05) between macrophages in burn (n=4 patients, 917 cells) and SJS/TEN blister fluid (n=15 patients, 3,471 cells). Genes colored red are significantly (p<0.05) increased (light red <0.6log2FC, dark red >0.6log2FC). The top 10 genes are labeled. (B) Box plot expression of the top 10 significantly differentially expressed genes in burn or SJS/TEN blister fluid or interest genes that further discern the dermal macrophage signature from literature. *Indicates significant differential expression (two-tailed Wilcoxon, Hochberg adj, p<0.05 and >0.6 log2FC). For box plots, bounds of the box represent the interquartile range from the 25th to 75th percentile, the center line shows the median expression, and whiskers identify maximum and minimum values to the 10th and 90th percentile, respectively. Outliers are shown. Figure created using VGAS. Source data are provided as a Source Data file. *FDR, false discovery rate; FC, fold change; SJS/TEN, Stevens-Johnson syndrome and toxic epidermal necrolysis*.

Supplementary Figure 4 | Relationship between drug, reaction severity, time since onset, and cell subset representation in SJS/TEN blister fluid. Scatter plots show the relationship between immune cell subset representation (CD8⁺ T-cells, CD4⁺ T-cells, NK cells, monocytes, macrophages, DC) and sampling day (time since onset of symptoms) for each SJS/TEN patient as outlined in Supplementary Table 1. Each dot represents an individual patient (n=15). Co-trimoxazole-induced SJS/TEN blister fluids highlighted red according to disease severity defined by the percentage BSA (light red, SJS and SJS/TEN overlap indicating BSA <30%; dark red, TEN indicating a BSA >30%). Source data are provided as a Source Data file. *BSA, Body surface area detached; SJS/TEN, Stevens-Johnson syndrome/toxic epidermal necrolysis; NK, natural killer; DC, dendritic cell.*

Supplementary Figure 5 | The relative proportion of immune cell subsets within immune cells of skin biopsies. The relative proportion of immune subsets in normal skin (n=1 donor, n=3,873 cells) and time-paired unaffected and affected SJS/TEN skin (n=1 patient; unaffected skin, 453 cells; affected skin, 933 cells) after removal of stromal subsets from each sample. Source data are provided as a Source Data file. *SJS/TEN, Stevens-Johnson syndrome/toxic epidermal necrolysis; NK, natural killer; DC, dendritic cell.*

Supplementary Figure 6 | Expression of IFN and IL-17 responsive gene signatures in $\gamma\delta$ T, ILC, MAIT, or Tconv cells in SJS/TEN blister fluid. Box plot expression of CD27 (co-stimulation) or diverse IFNor IL-17-responding genes across CD8⁺ T-cells in SJS/TEN blister fluid (n=15 patients) which have been re-aligned as $\gamma\delta$ T (747 cells), ILC (159 cells), MAIT (328 cells), Treg (364 cells) or Tconv (62,169 cells) using the Azimuth PBMC reference dataset. For box plots, bounds of the box represent the interquartile range from the 25th to 75th percentile, the center line shows the median expression, and whiskers identify maximum and minimum values to the 10th and 90th percentile, respectively. Outliers are shown. Figure created using VGAS. *SJS/TEN, Stevens-Johnson syndrome and toxic epidermal necrolysis;* $\gamma\delta$, gamma delta; ILC, innate-like lymphoid cell; MAIT, mucosal-associated invariant T-cells; *Tconv, T conventional cell.* a. Immunohistochemistry on SJS/TEN affected skin

Supplementary Figure 7 | Immunohistochemistry and spatial sequencing map cytotoxic CD8⁺ T_{RM} T-cells to the dermal-epidermal junction of skin during SJS/TEN. a Immunohistochemistry of healthy control (n=1) and SJS/TEN affected skin (n=1) using antibodies specific for CD8, CD103, and GNLY map cytotoxic CD8⁺ T_{RM} T-cells to the dermal-epidermal boundary in SJS/TEN affected skin. **b** Nanostring GeoMX spatial sequencing on affected SJS/TEN skin biopsy (n=1) showing tissue pathology and cell subset positioning with CD3 (red), panCK (green), CD45 (yellow), and DNA (blue). Detached epidermis with formation of a subepidermal blister can be seen on the right-hand side nearest ROI 1 and ROI 9. **c** Regional expression of specific marker genes for interest cell subsets including keratinocytes (MultiKRT) and CD8⁺ T-cells (*CD45, CD3, CD8A*) and the cytotoxic CD8⁺ Tconv cluster including markers for cytotoxicity (*GZMB*), regulation (*LAG3*), activation (*CD27*), and proliferation (*KI67*). RNA counts were normalized using ERCC spike-in controls. Source data are provided as a Source Data file. *Tconv, T conventional cell; T_{RM} tissue-resident memory; ROI, region of interest; CK, cytokeratin; ERCC, External RNA Controls Consortium*.

Supplementary Figure 8 | Differential expression of *HLA class I* and *LAG3 ligands* in cell subsets of unaffected and affected SJS/TEN patient skin. Comparative gene expression in scRNA-defined stromal and immune subsets between time-paired unaffected and affected skin from an SJS/TEN patient. **a** HLA class I (*HLA-A*, *HLA-B*, *HLA-C*). **b** LAG3 ligands (*HLA-DRA*, *LGALS3*). Cells shown for unaffected skin (epithelial cells, n=558; fibroblasts, n=594; MSC, n=673; keratinocytes, n=331; CD4+ Tconv, n=118; CD8+ Tconv, n=142; NK cells, n=67; monocytes, n=45; macrophages, n=18, DC, n=2) and affected skin (epithelial cells, n=177; fibroblasts, n=219; MSC, n=578; keratinocytes, n=108; CD4+ Tconv, n=155; CD8+ Tconv, n=356; NK cells, n=136; monocytes, n=220; macrophages, n=21, DC, n=11). Differential gene expression analyses were performed (two-tailed Wilcoxon, Hochberg adj. p<0.05). Asterisks (*) indicate a significant increase above 0.6log2 fold change in gene expression for that subset in affected compared to unaffected skin. Source data are provided as a Source Data file *HLA, human leukocyte antiger; MSC, mesenchymal stromal cell; NK, natural killer; DC, dendritic cell.*

Supplementary Figure 9 | Individual TRAV and TRBV scTCR-seq counts on CD8⁺ Tconv cells across paired samples from a single SJS/TEN patient. Individual counts for all identified TRAV and TRBV in CD8⁺ Tconv across TCR+ cells from unaffected skin (n=79 cells), affected skin (n=235 cells), and blister fluid from three anatomical sites (blister fluid 1, n=1318 cells; blister fluid 2, n=610 cells; blister fluid 3, n=1033 cells) from a single patient with SJS/TEN. The dominant TRAV and TRBV in affected skin and blister fluid are highlighted red, and the dominant TRAV and TRBV in unaffected skin are highlighted in green. Figure created using VGAS. Source data are provided as a Source Data file. *TCR, T-cell receptor; TRAV, TCR alpha variable; TRBV, TCR beta variable; Tconv, T conventional cell.*

a. UNAFFECTED SKIN (79 CD8+ Tconv cells with TCR expression)

TCR	CDR3a	CDR36	TRAV	TRAJ	TRBV	TRBJ	Ct.
1	CIVRVARNTGNQFYF	CASSYHTGGSGYEQYF	TRAV26-1	TRAJ49	TRBV6-2	TRBJ2-7	3
2	CATDVMNRDDKIIF	CASSLTARGSGVELFF	TRAV17	TRAJ30	TRBV13	TRBJ2-2	2
3	CAVSDRSGGGADGLTF	CASSLGLNYEQYF	TRAV8-6	TRAJ45	TRBV28	TRBJ2-7	2
4	CAASVTGNQFYF	CASSVESGGWYGYTF	TRAV29/DV5	TRAJ49	TRBV9	TRBJ1-2	2
5	CALRGWGRRALTF	CATSDDGAGTDTQYF	TRAV19	TRAJ5	TRBV24-1	TRBJ2-3	1
6	CAGAGNAGNMLTF	CASSQVRFYGYTF	TRAV27	TRAJ39	TRBV4-3	TRBJ1-2	1
7	CALTQGAQKLVF	CASSHLTGELFF	TRAV16	TRAJ54	TRBV11-2	TRBJ2-2	1
8	CAETSYGQNFVF	CASSEMSVGETQYF	TRAV5	TRAJ26	TRBV6-1	TRBJ2-5	1
9	CALRGGAAGNKLTF	CASSDNPPYTEAFF	TRAV19	TRAJ17	TRBV7-9	TRBJ1-1	1
10	CALSEVTTSGTYKYIF	CASSQDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1

AFFECTED SKIN (235 CD8+ Tconv cells with TCR expression)

TCR	CDR3a	CDR36	TRAV	TRAJ	TRBV	TRBJ	Ct.
1	CALSEVTTSGTYKYIF	CASSQDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	27
2	CALSEVTTSGTYKYIF	CASSPDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	20
3	CIVRVHSGGGADGLTF	CASSPDRGGYEQYF	TRAV26-1	TRAJ45	TRBV27	TRBJ2-7	10
4	CVVNNARNNDMRF	CASSPDRGGYEQYF	TRAV12-1	TRAJ43	TRBV27	TRBJ2-7	4
5	CLNDMRF	CASSQLSGNSPLHF	TRAV25	TRAJ43	TRBV3-1	TRBJ1-6	3
6	CAGRPDSGTYKYIF	CPPSLPRDDYEQYF	TRAV35	TRAJ40	TRBV27	TRBJ2-7	3
7	CAVCQEDDYKLSF	CSARDLAVYNSPLHF	TRAV22	TRAJ20	TRBV20-1	TRBJ1-6	2
8	CAASVTGNQFYF	CASSVESGGWYGYTF	TRAV29/DV5	TRAJ49	TRBV9	TRBJ1-2	2
9	CAVSGYGGATNKLIF	CASSLGDRQSYEQYF	TRAV21	TRAJ32	TRBV7-9	TRBJ2-7	2
10	CAVSPNNNARLMF	CASSLLGVGSPLHF	TRAV21	TRAJ31	TRBV5-1	TRBJ1-6	2

BLISTER FLUID 1 (ARM, 1318 CD8+ Tconv cells with TCR expression)

TCR	CDR3a	CDR36	TRAV	TRAJ	TRBV	TRBJ	Ct.
1	CALSEVTTSGTYKYIF	CASSPDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	128
2	CIVRVHSGGGADGLTF	CASSPDRGGYEQYF	TRAV26-1	TRAJ45	TRBV27	TRBJ2-7	97
3	CALSEVTTSGTYKYIF	CASSQDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	82
4	CALSEARSSASKIIF	CASSDRDRYYEQYF	TRAV19	TRAJ3	TRBV7-9	TRBJ2-7	33
5	CVVNNARNNDMRF	CASSPDRGGYEQYF	TRAV12-1	TRAJ43	TRBV27	TRBJ2-7	24
6	CALSESETSGSRLTF	CASSLWEVERAYNEQFF	TRAV19	TRAJ58	TRBV28	TRBJ2-1	18
7	CAVSLTYSGGGADGLTF	CSAKGGEQYF	TRAV8-4	TRAJ45	TRBV20-1	TRBJ2-7	17
8	CAADTGGFKTIF	CASTLSAGLNQPQHF	TRAV13-1	TRAJ9	TRBV19	TRBJ1-5	16
9	CVVNLYKLSF	CASSSQRAVDEQFF	TRAV12-1	TRAJ20	TRBV7-9	TRBJ2-1	14
10	CATGTSYGKLTF	CASSLPTLGLAGGATDNEQFF	TRAV17	TRAJ52	TRBV28	TRBJ2-1	13

BLISTER FLUID 2 (FACE, 610 CD8+ Tconv cells with TCR expression)

TCR	CDR3a	CDR36	TRAV	TRAJ	TRBV	TRBJ	Ct.
1	CALSEVTTSGTYKYIF	CASSQDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	43
2	CALSEVTTSGTYKYIF	CASSPDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	42
3	CIVRVHSGGGADGLTF	CASSPDRGGYEQYF	TRAV26-1	TRAJ45	TRBV27	TRBJ2-7	29
4	CALSEARSSASKIIF	CASSDRDRYYEQYF	TRAV19	TRAJ3	TRBV7-9	TRBJ2-7	14
5	CAMNSYSGAGSYQLTF	CASSPFYSGGDTDTQYF	TRAV14/DV4	TRAJ28	TRBV12-3	TRBJ2-3	9
6	CAADTGGFKTIF	CASTLSAGLNQPQHF	TRAV13-1	TRAJ9	TRBV19	TRBJ1-5	9
7	CATGTSYGKLTF	CASSLPTLGLAGGATDNEQFF	TRAV17	TRAJ52	TRBV28	TRBJ2-1	7
8	CAVSLTYSGGGADGLTF	CSAKGGEQYF	TRAV8-4	TRAJ45	TRBV20-1	TRBJ2-7	6
9	CALSESETSGSRLTF	CASSLWEVERAYNEQFF	TRAV19	TRAJ58	TRBV28	TRBJ2-1	6
10	CVVNLYKLSF	CASSSQRAVDEQFF	TRAV12-1	TRAJ20	TRBV7-9	TRBJ2-1	6

BLISTER FLUID 3 (FOOT, 1033 CD8+ Tconv cells with TCR expression)

TCR	CDR3a	CDR36	TRAV	TRAJ	TRBV	TRBJ	Ct.
1	CALSEVTTSGTYKYIF	CASSPDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	154
2	CIVRVHSGGGADGLTF	CASSPDRGGYEQYF	TRAV26-1	TRAJ45	TRBV27	TRBJ2-7	112
3	CALSEVTTSGTYKYIF	CASSQDRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	93
4	CAVSLTYSGGGADGLTF	CSAKGGEQYF	TRAV8-4	TRAJ45	TRBV20-1	TRBJ2-7	18
5	CAVYYGNNRLAF	CASSTGGLGNQPQHF	TRAV12-2	TRAJ7	TRBV6-5	TRBJ1-5	14
6	CVVNNARNNDMRF	CASSPDRGGYEQYF	TRAV12-1	TRAJ43	TRBV27	TRBJ2-7	11
7	CATGTSYGKLTF	CASSLPTLGLAGGATDNEQFF	TRAV17	TRAJ52	TRBV28	TRBJ2-1	9
8	CAMNSYSGAGSYQLTF	CASSPFYSGGDTDTQYF	TRAV14/DV4	TRAJ28	TRBV12-3	TRBJ2-3	9
9	CAATGSGTYKYIF	CASSMQGYTMNTEAFF	TRAV29/DV5	TRAJ40	TRBV19	TRBJ1-1	8
10	CALSEARSSASKIIF	CASSDRDRYYEQYF	TRAV19	TRAJ3	TRBV7-9	TRBJ2-7	7

b. UNAFFFECTED SKIN

BLISTER FLUID 3

Supplementary Figure 10 | Top functional CDR3αβ clonotypes and counts in CD8⁺ Tconv across paired samples from a single SJS/TEN patient. a Top 10 CDR3 TCRαβ clonotypes and counts in the CD8⁺ Tconv population from unaffected skin (n=79 cells), affected skin (n=235 cells), and blister fluid from three anatomical sites (blister fluid 1, n=1318 cells; blister fluid 2, n=610 cells; blister fluid 3, n=1033 cells) from a single patient with SJS/TEN. Blue highlights indicate the same functional CDR3αβ clonotypes. **b** Circos plots show comparative clonality and CDR3α and CDR3β pairings between samples. The width of each segment is proportionate to its expression. Least to most dominant is colored green to red. Top 50 CDR3αβ clonotypes shown for each sample. Source data are provided as a Source Data file. *Tconv, T conventional cell; TCR, T-cell receptor; TRAV, TCR alpha variable; TRBV, TCR beta variable; TRAJ, TCR alpha joining; TRBJ, TCR beta joining; CDR3, complementary-determining region; Ct., count.*

Supplementary Figure 11 | Oligoclonal TCR CDR3aß clonotypes were identified in the cytotoxic CD8⁺ Tconv cluster in blister fluids from all SJS/TEN patients. a Circos plots show comparative clonality and CDR3a and CDR3β pairings of CD8+ Tconv cells in blister fluid samples from patients with SJS/TEN (n=15 patients). The width of each segment is proportionate to its expression. Least to most dominant is colored green to red. Up to the top 50 clonotypes are shown for each sample. b UMAPs show the expression of the dominantly-expanded TCR⁺ cells (black circle highlight) for each patient across CD8⁺ Tconv clusters (Patient 1, 1429 cells, 449 TCR+ cells; Patient 2, 1687 cells, 1235 TCR+ cells; Patient 3, 5470 cells, 2961 TCR+ cells; Patient 4, 2510 cells, 729 TCR+ cells; Patient 5, 5183 cells, 4327 TCR+ cells; Patient 6, 1709 cells, 701 TCR+ cells; Patient 7, 3232 cells, 1086 TCR+ cells; Patient 8, 49 cells, 26 TCR+ cells; Patient 9, 12920 cells, 9566 TCR+ cells; Patient 10, 2347 cells, 1720 TCR+ cells; Patient 11, 4866 cells, 3949 TCR+ cells; Patient 12, 4629 cells, 3719 TCR+ cells; Patient 13, 7870 cells, 6177 TCR+ cells; Patient 14, 3670 cells, 66 TCR+ cells; Patient 15, 4598 cells, 3221 TCR+ cells). The percentage of dominantly-expanded TCR⁺ cells in the cytotoxic CD8⁺ Tconv cluster is indicated above each UMAP. The total number of TCR clonotypes and cells in the cytotoxic CD8⁺ Tconv cluster is indicated below each UMAP. DomTCR, dominantly-expanded T-cell receptors; Tconv, T conventional cell; TCR, T-cell receptor; CDR, complimentary-determining region.

a. Blister fluid: Expression of top expanded TCRs in CD8 Tconv

b. Blister fluid: CDR3 $\alpha\beta$ expression of CD8 Tconv cells selected by each top clonotype

	Cells expressing clonot	ype 1	Cells expressing clono	type 2	Cells expressing clo	notype 3
TCR	CDR3α/CDR3β	Ct.	CDR3α/CDR3β	Ct.	CDR3α/CDR3β	Ct.
1	CALSEVTTSGTYKYIF	324	CIVRVHSGGGADGLTF	238	CALSEVTTSGTYKYIF	218
	CASSPDRGGYEQYF		CASSPDRGGYEQYF		CASSQDRGGYEQYF	
2	CIVRVHSGGGADGLTF	221	CALSEVTTSGTYKYIF	221		
	CASSPDRGGYEQYF		CASSPDRGGYEQYF			
3	CVVNNARNNDMRF	37	CIVRVHSGGGADGLTF	1		
	CASSPDRGGYEQYF		CASTLSAGLNQPQHF			
4	CALSEVTTSGTYKYIF	1	CAADTGGFKTIF	1		
	CASSYDRGGYEQYF		CASSPDRGGYEQYF			
5			CAADTGGFKTIF	1		
			CASTLSAGLNQPQHF			

C. Affected skin: CDR3αβ expression of CD8 Tconv cells selected by each top clonotype

		Cells expressing clonot	ype 1	Cells expressing clono	type 2	Cells expressing clor	notype 3
	TCR	CDR3α/CDR3β	Ct.	CDR3α/CDR3β	Ct.	CDR3α/CDR3β	Ct.
I	1	CALSEVTTSGTYKYIF	20	CALSEVTTSGTYKYIF	10	CALSEVTTSGTYKYIF	27
		CASSPDRGGYEQYF		CASSPDRGGYEQYF		CASSQDRGGYEQYF	
	2	CIVRVHSGGGADGLTF	10	CIVRVHSGGGADGLTF	10		
		CASSPDRGGYEQYF		CASSPDRGGYEQYF			
	3	CVVNNARNNDMRF	4				
		CASSPDRGGYEQYF					

Supplementary Figure 12 | Top expanded TCRαβ clonotypes in CD8⁺ Tconv in affected skin and blister fluid have shared expression on dual TCRαβ⁺ T-cells. a Expression of each of the top 3 dominantly-expanded TCR on CD8⁺ Tconv cells in blister fluid (n=1 patient, 5470 total CD8+ Tconv, 2961 TCR+ CD8+ Tconv, 324 CD8+ Tconv express clonotype 1, 238 cells express clonotype 2, 218 cells express clonotype 3) from a patient with SJS/TEN. Cells expressing each clonotype are circled in black. **b** The TCR clonotypes and counts expressed by the same cells selected for expression of each top clonotype individually in SJS/TEN blister fluid. **c** The TCR clonotypes and counts expressed by cells selected for expression of each top clonotype individually in paired SJS/TEN affected skin (356 total CD8+ Tconv, 235 TCR+ CD8+ Tconv, 20 CD8+ Tconv express clonotype 1, 10 cells express clonotype 2, 27 cells express clonotype 3). A grey highlight indicates TCR expressed by the same cells. Source data are provided as a Source Data file. *Ct., cell count. Tconv, T conventional cell; TCR, T-cell receptor; CDR, complimentary-determining region; Ct., Count.*

Supplementary Figure 13 | Total gene and UMI count for CD8⁺ Tconv cells in SJS/TEN blister fluid with one or two TCRαβ. a Violin plots show comparative total UMI and total gene count and **b** expression of housekeeping genes ACTB and B2m in CD8⁺ Tconv cells of SJS/TEN blister fluid (n=15 patients) which express a single (n=44,946 cells) or dual TCRαβ (4,675 cells). The dual TCRαβ population includes cells with two CDR3α and one CDR3β, one CDR3α and two CDR3β, or two CDR3α and two CDR3β. Bounds of the box represent the interquartile range from the 25th to 75th percentile, the center line shows the median expression, and whiskers identify maximum and minimum values to the 10th and 90th percentile, respectively. Outliers are shown. *TCR, T-cell receptor; Tconv, T conventional cell; UMI, unique molecular identifier; CDR, complimentary-determining region*.

Supplementary Figure 14 | Individual TRAV and TRBV scTCR-seq counts on unexpanded cytotoxic CD8⁺ Tconv cluster cells across samples from a single SJS/TEN patient. Individual counts for all identified TRAV and TRBV genes across unexpanded cytotoxic CD8⁺ Tconv from paired affected skin (n=77 cells) and blister fluid (blister fluid 1, n=333 cells; blister fluid 2, n=179 cells; blister fluid 3, n=138 cells) from three anatomical sites from a single SJS/TEN patient. The dominant TRAV and TRBV of the dominantly-expanded cells in the cytotoxic CD8⁺ Tconv cluster in affected skin and blister fluid are highlighted in red. Figure created using VGAS. Source data are provided as a Source Data file. *TCR, T-cell receptor; TRAV, TCR alpha variable; TRBV, TCR beta variable; Tconv, T conventional cell*.

Supplementary Figure 15 | Quality control analysis of the distribution and cell representation in samples pre- and post-filtering at all steps in the filtering of single-cell data. a UMAPs show the distribution of cells removed by or post QC1 (remove hashtag negative/doublets, remove cells with low UMI (<500), <100 genes, and >50% mitochondrial content), QC step 2 (remove cells with a low percentage of ribosomal genes and a high percentage of mitochondrial genes), QC step 3 (remove remaining cells with >10% mitochondrial RNA content), QC step 4 (remove RNA doublets identified by a consensus of bioinformatic algorithms), and QC step 5 (remove cell subsets with <50 cells) across normal skin (n=1 donor), burn blister fluid (n=4 patients), SJS/TEN unaffected and affected skin (n=1 patient), and SJS/TEN blister fluid (n=15 patients). The UMAP post-QC step 5 represents the final cells utilized in this study. **b** The scRNA-defined cell representation in different samples after each step in the QC analysis pipeline. The average expression is shown for patients with multiple samples from the same time point, indicated by an asterisk. Source data are provided as a Source Data file. *DC, dendritic cell; NK, natural killer; MSC, mesenchymal stromal cell; HSC, hematopoietic stem cell; QC, quality control; Mt/Rb, mitochondrial/ribosomal; SJS/TEN, Stevens-Johnson syndrome/toxic epidermal necrolysis.*

							ATIENT HI	ATVPING			SAMDI ING DAV (SINCE	PERC	ENTAGE (DFIMMU	NF SUBSET IN B	LISTER FLUID (%	1
PATIENT	CULPRIT DRUG	REACTION	SEX	AGE	HLA-A	HLA-A	HLA-B	HLA-B	HLA-C	HLA-C	ONSET OF SYMPTOMS)	CD8	CD4	NK	MONOCYTE M	ACROPHAGE	DC
1	ALLOPURINOL	TEN	Σ	67	33:03	33:03	44:03	58:01	03:02	07:01	DAY 6	45.4	2.9	1.8	26.3	20.3	3.4
2	CO-TRIMOXAZOLE	TEN	ш	27	30:04	68:01	44:03	58:02	02:10	06:02	DAY 5	47.6	3.6	3.7	19.2	23.5	1.8
3	LAMOTRIGINE	SIS	щ	19	26:01	32:01	14:01	38:01	08:02	12:03	DAY 3	49	6.2	12.6	25.9	1	3.7
4	CO-TRIMOXAZOLE	TEN	ш	ജ	11:01	24:02	40:01	44:03	03:04	07:01	DAY 2	52.2	6	3.4	26.3	2.9	5.2
5	CO-TRIMOXAZOLE	SIS	ш	40	23:01	30:01	42:02	49:01	07:01	17:01	DAY 4	52.5	12.4	8.3	19.8	4.3	0.2
9	NEVIRAPINE	UNKNOWN	щ	26	03:01	24:07	13:03	35:05	04:01	06:02	DAY 3	71.7	1.4	7.1	17.6	0.1	2.1
7	ALLOPURINOL	SJS/TEN	Σ	25	23:01	30:01	42:01	58:01	07:01	17:01	DAY 6	72	0.2	7.2	14.6	4.6	1.1
8	CO-TRIMOXAZOLE	SJS/TEN	Σ	8	30:01	30:01	42:01	42:02	17:01	17:01	DAY 8	75.8	0	12.1	6.1	1.5	1.5
6	CARBAMAZEPINE	SIS	Σ	74	24:02	31:01	40:01	40:01	03:04	03:04	DAY 3	11	2.8	12	5	2.1	0.9
10	CO-TRIMOXAZOLE	TEN	щ	20	01:01	30:02	08:01	18:01	05:01	07:01	DAY 4	79.8	1.4	17	0.8	0.2	0.4
11	PYRAZINAMIDE	TEN	щ	8	30:02	68:02	07:02	07:02	07:02	07:02	DAY 4	84	0.7	9	2.7	5.8	0.2
12	CO-TRIMOXAZOLE	SIS	ш	20	02:01	31:01	35:20	44:03	04:01	16:01	DAY 3	84.7	2	4.6	5.4	1.5	1.7
13	NEVIRAPINE	TEN	щ	38	30:01	66:01	58:02	81:01	04:01	06:02	DAY 4	86.3	2.1	5.4	4.4	1.6	0.2
14	CO-TRIMOXAZOLE	TEN	Σ	18	01:01	03:01	35:01	44:02	04:01	05:01	DAY 4	86.8	0.4	3.6	6.1	0.5	2.4
15	CARBAMAZEPINE	TEN	щ	8	34:01	66:01	14:01	15:21	04:03	08:02	DAY 2	91	0.4	5.4	1.8	1.3	0

Supplementary Tables

state between clusters are shaded for inactivation/quiescence (grey), IL7R (red), cytotoxicity/proliferation/activation (green), the inflammasome (yellow), and innate-like differentiation (blue). Source data are provided as a Source Data file. Tconv, T conventional cell; FC, fold change; Adj, Hochberg adjusted p value. Supplementary Table 2 | Cluster marker gene signatures of Seurat-defined CD8⁺ Tconv clusters 1-8. The top 25 genes that show significantly (two-tailed Wilcoxon rank sum test, Benjamini Hochberg adjusted p <0.05) increased expression are shown in order of fold change for Seurat-defined CD8+ Tconv clusters 1-8 across cells from normal skin (n=1 donor), burn blister fluid (n=4 patients), and unaffected and affected SJS/TEN skin (n=1 patient) and SJS/TEN blister fluid (n=15 patients; total n=64,358 cells: cluster 1, n=3,295 cells; cluster 2, n=19,761 cells; cluster 3, n=36,428 cells; cluster 4, 60 cells; cluster 5, 3,395 cells; cluster 6, 280 cells; cluster 7, 743 cells; cluster 8, 381 cells). Clusters with <20 cells were removed from cluster marker analyses (n=15 cells). Red font indicates genes below significance. Genes shared or indicative of shared functional

_		a																									-
	tter 8	Adj p value	0.0E+00	7.4E-129	3.1E-239	2.4E-299	2.3E-169	1.1E-98	1.2E-104	9.9E-96	2.0E-162	3.1E-36	0.0E+00	0.0E+00	1.0E-30	0.0E+00	1.6E-113	1.6E-46	8.1E-24	8.1E-19	2.3E-62	2.8E-43	5.2E-190	4.6E-50	6.2E-54	1.8E-28	0.11.0
	nv clus	log 2FC	2.2	1.8	1.8	1.8	1.7	1.6	1.4	1.2	1.2	1.1	1.0	6.0	6.0	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	5
	CD8Tco	Gene	TYROBP	AREG	FCER1G	XCL1	XCL2	CMC1	KLRD1	KLRC3	KLRB1	IFITM3	SH2D1B	TRDC	TXNIP	KLRF1	Clorf162	MATK	FOS	DDIT4	KIR3DL2	BTG1	TMIGD2	TCF7	C1orf21	DUSP1	
	er 7	Adj p val ue	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	2.0E-275	0.01.00
	v clust	log2FC	3.3	3.2	3.2	3.0	2.8	2.4	2.4	2.3	2.3	2.2	2.1	2.1	2.1	2.1	2.0	2.0	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.8	0
	CD8Tcon	Gene	CST3	IVRO BP	FCER1G	5100A8	FITM3	HLA-DRA	AIF1	72	CIQB	CIQA	SAT1	Ę	5100A9	CIQC	CXCL10	HIST1H2AI	RNASE1	SERP ING1	BLUL	FOS	HLA-DRB1	C15orf 48	HIST1H1E	HLA-DQA1	1001
	er 6 (dj p val ue	5.5E-94	6.0E-46	5.6E-55	2.0E-48	1.7E-29	9.2E-48	9.3E-31	1.6E-85	1.8E-15	9.8E-14	5.5E-40	4.2E-79	3.4E-43	8.0E-24	2.5E-24	4.3E-25	1.5E-31	1.5E-16	1.3E-48	4.5E-37	8.5E-57	4.3E-38	3.4E-59	4.6E-26	
0	v cluste	og2FC A	2.1	1.8	1.6	1.6	1.3	1.2	1.2	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9	000
nate-like	D8Tcon	ene I	513	TM3	ROBP	CERIG	ST1H2AI	00A8	Z	(CL10	ST1H1E	Ē	00A6	RPING1	z		, UL	E	VASE1	A-DRA	IQC	IQB	014	IQA	HBS1	S	101
ated In	Ū	o value Ge	E-246 CS	E+00 IFI	5E-84 TY	9E-34 FC	E-145 HI	tE-51 S1	DE-44 LY	tE-29 C)	5E-27 HI	2E-07 S/	7E-21 S1	LE-88 SE	5E-36 TX	7E-13 FT	2E-14 GI	5E-56 AI	tE-06 RI	5E-06 HL	2E-19 C1	00+00 C1	tE-55 CI	3E-43 C1	tE-20 TH	DE-05 FC	r 100 1
me-rel	luster 5	2FC Adj	5 3.8	4 0.0	1 3.6	1 6.9	0 4.4	0 5.4	9.6	9 1.4	9.9	8 2.2	5.9	8 3.1	8	8 1.7	8 1.2	8 7.5	8 5.4	8 2.6	8 2.2	8 0.0	8 5.4	8 1.3	8 3.4	8 5.0	с с
nmaso	conv c	log	1	1	-1	1	3	-1	0	0	ő	Ő	ő	Ő	Ő	Ő	0	Ó	ور 10	0	88	0.0	0	0	0	ő	2
Inflan	CD81	le Gene	NEAT	MALA	CTSD	XIST	RNF21	SYNE2	AKNA	IKZF3	TRAC	NKTR	MY01	CHYH9	USF2	GRK2	IN PP5	GNAS	CNOT(MACF	CCDC	MT-CC	ETS1	CBLB	FMNL	OGT	AAT MC
ve	er 4	Adj p val	2.0E-08	6.7E-07	2.5E-05	1.0E+00	7.0E-08	2.2E-02	1.5E-03	1.3E-02	1.1E-03	1.7E-04	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00	1.0E+00	3.5E-02	1.0E+00	2.3E-01	1.0E+00	1.0E+00	4.6E-04	3.6E-06	9.5E-01	2 OF 01
/inacti	/ cluste	log 2FC	2.2	1.4	1.3	1.2	1.0	1.0	1.0	1.0	6.0	6.0	0.9	6.0	6.0	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	r c
uiescent	D8Tcon	Gene	VREG	L7R	AML	MSD1	31G1	(GS1	SCHFR	GAL53	YD7	SPR15	AUTS2	LEC	ABTB1	KBP5	IK3IP1	AC243829.4	ILA2	AMSN1	CEAL4	SLUL	TOM	RCBTB2	TM2B	VT5E	20.00
ative Q	о	ij p val ue G	D.0E+00 4	D.0E+00 II	D.0E+00 J.	D.0E+00 F	D.0E+00 E	D.0E+00 F	0.0E+00	0.0E+00 L	D.0E+00 F	D.0E+00	0.0E+00 A	D.0E+00 P	D.0E+00 A	D.0E+00 F	0.0E+00 P	0.0E+00 A	D.0E+00 S	0.0E+00 S	D.0E+00 T	0.0E+00	6.4E-184 S	3.6E-152 F	D.0E+00 Г	D.0E+00 N	0.00
orolifer	cluster	g2FC Ac	1.8	1.4	1.4	1.3	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.0	6.0	6.0	0.8	0.8	0.8	0.8	000
/totoxic/	D8Tconv	ene l	NLY	ZMB	IMN1	LRC1	UBA1B	ALNT2	RF1	R2DL4	SALS1	CP5	103	rins	AVCR2	ZMA	127	D27	188	MGN 2	MGB2	MD4	XCL13	ST1H4C	2AFZ	APDH	0.10
ΰ	2 CI	p value G	0E+00 GI	OE+00	0E+00 S1	5E-37 KI	5E-274 TI	0E+00 G	0E+00 PI	0E+00 K	0E+00 L(8E-222 A	0E+00	0E+00 T	0E+00 H	0E+00 G	0E+00 IF	3E-280 CI	0E+00 TI	0E+00 H	0E+00 H	0E+00 TI	0E+00 C:	2E-25 H	0E+00 H	0E+00	00.10
	cluster	SFC Adj	L.8 0.	L.6 0.	L3 0.	L3 4.	L2 72	L.2 0.	L.1 0.	L.1 0.	L.1 0.	L0 13	L.0	.9 0.	.0 0.	.0 0.	.0 0.	.9 4.	.0 0.	.0 0.	.0 0.	0.8	0.8	0.8	0.8	0.8	0
	Tconv o	log				. AI				4	1	81	2		DPB1 (12	-	R14B (1		DPA1 (-	_		1	٥ ۲	
	CD8	ue Gene	0 IL7R	9 CMC1	39 ZFP36	HSPA HSPA	9 FOS	8 JUNB	4 LTB	5 CXCR	32 DUSP	5 DNA	o DUSP	0 TXNIF	D HLA-E	0 ZFP36	I RPL3	5 PPP1	4 EEF14	9 BTG1	2 HLA-I	NUN	0 KLRB:	D RGCC	4 KLRG	8 GZM	CLUE C
active	uster 1	C Adj p va	0.0E+0	7.4E-12	3.1E-25	2.4E-25	2.3E-16	1.1E-9	1.2E-1(9.9E-9(2.0E-16	3.1E-3(0.0E+0	0.0E+0	1.0E-3(0.0E+0	1.6E-13	1.6E-4	8.1E-2	8.1E-1	2.3E-6	2.8E-4	5.2E-15	4.6E-5	6.2E-5	1.8E-2	0 41 0
sent/ins	sonv clt	log2F(2.2	1.8	1.8	1.8	1.7	1.6	1.4	1.2	1.2	1.1	1.0	0.9	0.9	0.8	2 0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	50
Quiesc	CD8Tc	Gene	TYROBP	AREG	FCER1G	XCL1	XCL2	CMC1	KLRD1	KLRC3	KLRB1	IFITM3	SH2D1B	TRDC	TXNIP	KLRF1	Clorf16.	MATK	FOS	DDIT4	KIR3DL2	BTG1	TMIGD2	TCF7	C1orf21	DUSP1	111
		Rank	-	7	m	4	S	9	٢	00	б	9	11	11	13	14	15	16	17	18	61	8	21	22	23	24	ų

Supplementary Table 3 | Differential gene signatures of keratinocytes and CD8⁺ Tconv in affected compared to unaffected skin. The genes in cells of affected skin compared to unaffected SJS/TEN patient skin that show significant (two-tailed Wilcoxon, Hochberg adjusted p <0.05) increased expression are shown in order of fold change. Cells from unaffected skin (keratinocytes, n=331 cells; CD8+ Tconv, n=142 cells) and affected skin (keratinocytes, n=108 cells; CD8+ Tconv, n=356 cells) are time-paired samples from n=1 patient. Red font indicates genes significantly differentially expressed but below the threshold for fold change (0.6 log2FC, 1.5 actual fold change). Source data are provided as a Source Data file. *FDR adj p, False discovery rate adjusted p-value; FC, fold change; Tconv, T conventional cell.*

	Kerating	ocyte signa	ture	CD8+Tc	onv signat	ure
Rank	Gene	FDR adj p	log2FC	Gene	p value	log2FC
1	CD74	1.2E-34	2.0	GNLY	3.0E-06	1.3
2	IFITM3	1.2E-22	1.8	CD27	2.4E-09	0.7
3	IFI6	6.3E-34	1.7	LY6E	3.3E-07	0.7
4	IFITM1	2.8E-33	1.6	PSMB9	4.9E-08	0.6
5	HLA-C	8.7E-12	1.3	RNF213	1.9E-07	0.6
6	HLA-B	5.2E-05	1.1	LAG3	2.1E-07	0.6
7	B2M	1.4E-14	1.1	LIMD2	1.3E-06	0.6
8	KRT6B	4.0E-04	1.1	TIGIT	1.5E-06	0.5
9	LY6E	1.3E-04	0.9	GALNT2	6.5E-07	0.5
10	PSME2	1.0E-07	0.8	IFI6	1.5E-06	0.5
11	TMSB10	1.3E-04	0.8	LYST	2.0E-06	0.5
12	CST3	1.3E-04	0.8	XAF1	9.9E-08	0.4
13	DCD	1.5E-04	0.8	GBP2	2.0E-06	0.4
14	STAT1	4.2E-12	0.8	DCD	6.5E-06	0.4
15	VIM	2.0E-04	0.7	ACP5	1.5E-06	0.4
16	GSTP1	3.7E-03	0.7			
17	IFI27	1.3E-09	0.7			
18	CCL4	8.7E-11	0.7			
19	PSME1	1.3E-02	0.7			
20	PSMB9	2.5E-11	0.6			
21	GAPDH	8.6E-08	0.6			
22	ISG15	5.8E-08	0.6			
23	PTTG1	4.2E-03	0.6			

Supplementary Table 4 | Differential gene signatures of CD8⁺ Tconv expressing dominantly expanded TCR compared to other TCR in affected skin or blister fluid. The genes that show significantly (two-tailed Wilcoxon, Hochberg adjusted p <0.05) increased expression above the threshold for fold-change (0.6log2FC) for dominant TCR+ CD8+ Tconv (affected skin, n=47 cells; blister fluid, n=559 cells) compared to non-dominant TCR+ CD8+ Tconv (affected skin, n=192 cells; blister fluid, n=2441 cells) are shown for single patient. Genes shared in the signature of dominantly-expanded TCR⁺ Tconv between affected skin and blister fluid highlighted blue. Source data are provided as a Source Data file. *TCR, T-cell receptor; FDR adj p, False discovery rate adjusted p-value; FC, fold change; Tconv, T conventional cell.*

	Dominant TC	R in affecte	ed skin	Dominant TC	R in blister	fluid
Rank	Gene	FDR adj p	log2FC	Gene	FDR adj p	log2FC
1	GNLY	1.0E-06	2.7	GNLY	6.3E-117	1.9
2	GZMB	6.1E-04	1.6	LAG3	3.5E-174	1.5
3	KLRC1	3.6E-16	1.4	TIGIT	5.2E-141	1.3
4	GALNT2	3.3E-07	1.4	KLRC1	3.7E-157	1.3
5	LAG3	2.6E-07	1.3	GZMB	1.6E-63	1.1
6	BATF	5.8E-08	1.3	PRF1	6.6E-119	1.1
7	PRF1	2.6E-03	1.2	PHLDA1	6.0E-149	1.0
8	DUSP4	5.3E-06	1.2	GALNT2	1.0E-121	1.0
9	PTMS	2.5E-06	1.1	FCGR3A	3.7E-88	1.0
10	FCGR3A	1.2E-03	1.0	ACP5	4.6E-99	1.0
11	TIGIT	2.3E-03	1.0	NKG7	5.5E-101	1.0
12	ACP5	2.7E-06	1.0	HAVCR2	9.5E-95	0.9
13	LYST	2.2E-05	1.0	IGFLR1	7.9E-120	0.9
14	HAVCR2	3.2E-05	0.9	ENTPD1	2.1E-114	0.8
15	CD27	2.1E-02	0.9	GAPDH	6.4E-107	0.8
16	MT1E	2.9E-03	0.9	KLRD1	6.9E-61	0.8
17	LAYN	1.9E-09	0.9	LYST	2.8E-86	0.8
18	RAB27A	2.5E-05	0.9	PTMS	8.6E-79	0.8
19	SNX9	4.0E-04	0.9	TNFRSF1B	1.0E-73	0.8
20	GAPDH	1.5E-06	0.9	HMOX1	1.5E-144	0.8
21	TNFRSF9	9.5E-10	0.9	LAYN	7.8E-138	0.8
22	CD59	8.6E-06	0.9	РКМ	6.6E-62	0.8
23	AHI1	1.1E-05	0.9	SIRPG	1.0E-72	0.7
24	РКМ	1.5E-02	0.8	CCL4	8.7E-23	0.7
25	PHLDA1	2.6E-02	0.8	TNFRSF9	8.9E-134	0.7
26	CBLB	1.4E-02	0.8	CD27	7.7E-66	0.7
27	MTSS1	1.2E-08	0.8	CBLB	4.8E-66	0.7
28	HMOX1	1.2E-09	0.8	CCL3	4.1E-67	0.7
29	ENTPD1	2.6E-07	0.8	AD000671.2	4.3E-92	0.7
30	AD000671.2	1.2E-03	0.8	ADGRG1	5.5E-128	0.7
31	CTLA4	1.8E-05	0.8	CD63	7.0E-58	0.7
32	CD70	2.2E-10	0.7	LSP1	8.9E-86	0.7
33	LSP1	1.6E-03	0.7	LINC01943	2.2E-82	0.7
34	PPM1G	2.0E-02	0.7	CD8A	1.8E-41	0.6
35	APOBEC3C	4.4E-02	0.6	RHOB	6.1E-128	0.6
36	CD38	2.6E-03	0.6	S100A4	2.5E-49	0.6
37	GEM	7.0E-05	0.6	SERPINB1	2.3E-52	0.6
38	FAM3C	1.2E-03	0.6	LINC01871	2.6E-41	0.6
39				RAB27A	1.9E-60	0.6
40				DUSP4	1.2E-82	0.6
41				AC017002.3	1.3E-90	0.6
42				NEAT1	1.6E-30	0.6
43				IFNG	1.6E-59	0.6
44				SNX9	8.4E-91	0.6
45				ITGA4	2.8E-48	0.6
46				CTLA4	5.9E-65	0.6
47				FAM3C	9.6E-81	0.6
48				PGAM1	4.5E-47	0.6
49				RUNX3	4.2E-50	0.6
50				HPGD	3.5E-61	0.6
51				CD59	8.4E-53	0.6
52				CST7	4.3E-34	0.6

Supplementary Table 5 | Unexpanded clonotypes of the cytotoxic CD8⁺ Tconv cluster with a shared

CDR β sequence with the dominantly-expanded clonotypes. Unexpanded clonotypes from the cytotoxic CD8⁺ Tconv cluster of blister fluids from three different anatomical sites (blister fluid 1, arm, n=333 cells; blister fluid 2, face, n=179 cells; blister fluid 3, foot, n=138 cells) from a single SJS/TEN patient are shown that have the same CDR3 β CASSPDRGGYEQYF sequence as the dominantly-expanded TCR⁺ population or a single mismatch (bold and underlined). The 'dual TCR' column indicates whether an n=1 or n=2 count clonotype is expressed on a dual TCR⁺ cell (yes or no). TCRs expressed on the same dual TCR⁺ cell are indicated by the same symbol (\bigcirc , \blacklozenge , \diamondsuit , \ddagger). Ct. TCR count. Source data are provided as a Source Data file.

Blister fluid 1 (ARM), 333 unexpanded cells from the cytotoxic CD8+ Tconv cluster

TCR	CDR3a	CDR3β	TRAV	TRAJ	TRBV	TRBJ	Ct.	Dual TCR+
1	CAVQAFRQTGANNLFF	CASS <u>H</u> DRGGYEQYF	TRAV20	TRAJ36	TRBV27	TRBJ2-7	1	yes o
2	CALSEVTTSGTYKYIF	CASS <u>H</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1	yes o
3	CVVATNAGGTSYGKLTF	CASSPDRGGYEQYF	TRAV10	TRAJ52	TRBV27	TRBJ2-7	1	yes
4	CALSEVTTSGTYKYIF	CASS <u>R</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1	no
5	CAAIDSWGKLQF	CASS <u>L</u> DRGGYEQYF	TRAV23/DV6	TRAJ24	TRBV11-2	TRBJ2-7	2	yes‡
6	CALSEVRTSGTYKYIF	CASS <u>L</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV11-2	TRBJ2-7	2	yes‡
7	CASSMTSAGNMLTF	CASS <u>V</u> DRGGYEQYF	TRAV23/DV6	TRAJ39	TRBV27	TRBJ2-7	2	yes 🗆
8	CALSEVTTSGTYKYIF	CASS <u>V</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	2	yes 🗆

Blister fluid 2 (FACE), 179 unexpanded cells from the cytotoxic CD8+ Tconv cluster

TCR	CDR3a	CDR3β	TRAV	TRAJ	TRBV	TRBJ	Ct.	Dual TCR+
1	CALSEVTTSGTYKYIF	CASS <u>H</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1	yes o
2	CAVQAFRQTGANNLFF	CASS <u>H</u> DRGGYEQYF	TRAV20	TRAJ36	TRBV27	TRBJ2-7	1	yes o
3	CAADTGGFKTIF	CASSPDRGGYEQYF	TRAV13-1	TRAJ9	TRBV27	TRBJ2-7	1	yes •
4	CIVRVHSGGGADGLTF	CASSPDRGGYEQYF	TRAV26-1	TRAJ45	TRBV27	TRBJ2-7	1	yes •
5	CAVTDNYGQNFVF	CASSPDRGGYEQYF	TRAV25	TRAJ26	TRBV27	TRBJ2-7	1	yes ◊
6	CALSANSGNTPLVF	CASSPDRGGYEQYF	TRAV16	TRAJ29	TRBV27	TRBJ2-7	1	yes ◊
7	CAVQTNAGNNRKLIW	CASSPDRGGYEQYF	TRAV20	TRAJ38	TRBV27	TRBJ2-7	1	yes
8	CAVKYTGANSKLTF	CASSPDRGGYEQYF	TRAV12-2	TRAJ56	TRBV27	TRBJ2-7	1	yes
9	CAAGSSSGTYKYIF	CASSPDRGGYEQYF	TRAV13-1	TRAJ40	TRBV27	TRBJ2-7	1	yes
10	CALSEVTTSGTYKYIF	CASS <u>Y</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	2	no
11	CASSMTSAGNMLTF	CASS <u>V</u> DRGGYEQYF	TRAV23/DV6	TRAJ39	TRBV27	TRBJ2-7	2	yes □
12	CALSEVTTSGTYKYIF	CASS <u>V</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	2	yes 🗆

Blister fluid 3 (FOOT), 138 unexpanded cells from the cytotoxic CD8+ Tconv cluster

TCR	CDR3a	CDR3β	TRAV	TRAJ	TRBV	TRBJ	Ct.	Dual TCR+
1	CALSEVTTSGTYKYIF	CASS <u>H</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1	yes o
2	CAVQAFRQTGANNLFF	CASS <u>H</u> DRGGYEQYF	TRAV20	TRAJ36	TRBV27	TRBJ2-7	1	yes o
3	CAASMTSAGNMLTF	CASS <u>V</u> DRGGYEQYF	TRAV23/DV6	5 TRAJ39	TRBV27	TRBJ2-7	1	yes 🗆
4	CALSEVTTSGTYKYIF	CASS <u>V</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1	yes 🗆
5	CALSEVTTSGTYKYIF	CASS <u>Y</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1	yes
6	CALSEVTTSGTYKYIF	CASS <u>F</u> DRGGYEQYF	TRAV19	TRAJ40	TRBV27	TRBJ2-7	1	no

Consortia

The Australasian Registry for Severe Cutaneous Adverse Reactions (AUS-SCAR)

Jason A Trubiano^{10,11}, Johannes S Kern¹², Michelle S Y Goh¹², Ar Kar Aung¹³, Celia Zubrinich¹⁴ ¹⁰The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia

¹¹Centre for Antibiotic Allergy and Research, Austin Health, Melbourne, Australia

¹²Department of Dermatology, Alfred Health, Melbourne, Australia

¹³Department of General Medicine, Alfred Health, Melbourne, Australia

¹⁴Department of Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia

The African Registry for Severe Cutaneous Adverse Reactions (AFRiSCAR)

Phuti Choshi³, Sarah Pedretti⁴, Rannakoe J Lehloenya⁹, Jonny G Peter^{3,4}, Owen Ngalamika¹⁵, Avumile Mankahla¹⁶, Willie Visser¹⁷, Frans Maruma¹⁸

³Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa

⁴Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa

⁹Department of Medicine, University of Cape Town, Cape Town, South Africa

¹⁵Department of Medicine, University of Zambia, Lusaka, Zambia

¹⁶Department of Dermatology, Walter Sisulu University, Mthatha, South Africa

¹⁷Division of Dermatology, Tygerberg Hospital, Cape Town, South Africa

¹⁸Division of Dermatology, Universitas Academic hospital, Bloemfontein, South Africa