
Supplementary Information for Deep Learning with Photonic Neural Cellular

Automata

Gordon H.Y. Li,1 Christian R. Leefmans,1 James Williams,2

Robert M. Gray,2 Midya Parto,2, 3 and Alireza Marandi1, 2, ∗

1Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA

2Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

3Physics and Informatics Laboratories, NTT Research, Inc., Sunnyvale, California 94085, USA

∗ marandi@caltech.edu

mailto:marandi@caltech.edu

2

BPF 50:50

50:50

FSD FPS

FSD FPS 50:50

50:50

laser

EDFA PPLNBPF

90:10

PID

TCC

IM

FPGA PDPD

PD

0𝑇𝑅

+1𝑇𝑅

+28𝑇𝑅

OSC

FIG. S1. Detailed schematic of experimental setup. BPF: band-pass filter, IM: intensity modulator, FSD: free-space de-

lay stage, FPS: fiber phase-shifter, EDFA: erbium-doped fiber amplifier, PD: photodetector, PPLN: periodically-poled lithium

niobate, TCC: thermocouple controller, PID: proportional integral derivative controller, OSC: oscilloscope, FPGA: field pro-

grammable gate array. Blue lines represent single-mode polarization-maintaining optical fiber paths and black lines represent

electronic connections.

3

FIG. S2. Example of experimentally-obtained time traces in photonic neural cellular automata. Oscilloscope time

traces for a portion of one iteration of one image in the photonic neural cellular automata showing the results of the input

cell states (red line), linear convolution (blue line), and nonlinear activation (green line) compared against the expected values

based on digital simulations (black lines). The peak or maximum amplitudes of each light pulse, which occupy a specific time

bin in the synthetic temporal lattice, agrees well with the expected cell state values and shows that the calibration was accurate.

The time traces for each operation are shifted vertically and corresponding cell lattice sites are aligned horizontally in time for

clarity.

4

a

Photonic hardware implementation

b

iteratio
n
 1

iteratio
n

iteratio
n
 3

…
iteratio

n
 𝑁

initial image of

‘alive’ cells photonic neural network parameters cell-wise 𝐿2 loss

target cell state

local 𝑚-cell

neighborhood

recurrent feedback of cell state

perception

vector

d
en

se lin
ear lay

er

n
o

n
lin

ear activ
atio

n

…

updated

cell state

aliv
e m

ask
in

g

Cellular local update rule encoded by neural network

light interference nonlinear optics

c

FIG. S3. Training method for photonic neural cellular automata. (a) A single iteration of PNCA consists of alive

cells that are encoded into an optical signal, m optical paths encoding a local m-cell neighborhood and perception vector

for each cell, updating the state of each cell according to a local update rule represented by a neural network, and alive cell

masking. (b) Photonic hardware encodes the local update rule, which includes linear operations implemented physically via

light interference, and nonlinear operations implemented physically via nonlinear optics. (c) Backpropagation-through-time

algorithm for training PNCA to learn a local update rule, which upon repeated iteration causes self-organization of cells for an

image classification task. A cell-wise L2 loss is used for optimizing the photonic neural network parameters.

5

FIG. S4. Training progress for photonic neural cellular automata. Cell-wise L2 loss (blue line) and classification

accuracy (orange line) for training PNCA to perform binary image classification of sneakers and trousers classes from fashion-

MNIST dataset.

I. INTRODUCTION TO NEURAL CELLULAR AUTOMATA

In this section, we introduce the principles of Neural Cellular Automata (NCA) and how it differs from conventional

neural network architectures. Cellular Automata (CA) are computational models composed of a lattice of cells with

states that update over time according to simple rules. Crucially, these rules only depend on the local information of

neighboring cell states and every cell follows the same local update rule. For example, consider the simple example

of a CA known as Elementary Cellular Automata Rule 90. It is a discrete-time CA defined over a 1D lattice of cells

with binary states, which we denote by xi(t) ∈ {0, 1} where i ∈ Z is the cell index or lattice site and t ∈ N is the

discrete time step. The lattice extends infinitely in both directions. Rule 90 follows the simple local update rule:

xi(t+1) = xi−1(t)⊕xi+1(t), i.e. a cell’s next state is given by the logical XOR of its neighboring cell states. This local

update rule can also be depicted visually in a truth table as shown in Fig. S5a. The top row shows the local 3-cell

neighborhood cell states for all 8 possible cases, and the bottom row shows the updated cell state. This local update

6

is applied uniformly and simultaneously to all cells in the 1D lattice. The global effect of this local update rule can

be visualized using a space-time diagram with the horizontal axis representing cell lattice sites and the vertical axis

representing successive time steps. An example is shown in Fig. S5b for an initial condition in which only a single cell

is live (has state 1) and all other cells are dead (has state 0). In this case, the space-time diagram is in the shape of

a Sierpinski Triangle fractal. A common theme for CA is that even very simple local update rules can lead to global

complex or emergent phenomena such as fractals, chaos, synchronization, self-organization, and solitons [1]. It has

also been proven that even simple elementary rules are capable of Turing-universal computation [2].

𝑥𝑖−1(𝑡) 𝑥𝑖+1(𝑡)
𝑥𝑖(𝑡)

𝑥𝑖(𝑡 + 1)

a

b

ti
m

e
st

ep

cell lattice site

FIG. S5. Elementary Cellular Automata Rule 90. (a) Truth table for local update rule. (b) Space-time diagram for Rule

90 starting from a single live cell.

However, although CA are capable of universal computation, it is not always obvious how to harness the complex

dynamics in CA to perform useful computational tasks. Indeed, much of the early work in CA focused on studying

human-designed or bespoke local update rules. In general, we can consider a lattice of cells indexed by lattice site

numbers i ∈ N with states xi ∈ Cd, where d is the number of channels for each cell (i.e. each cell state is given by a

d-dimensional vector). Each cell interacts locally in an m-cell neighborhood Mi according to a fixed update rule. We

7

consider discrete-time synchronous updates t ∈ N for cells:

xi(t+ 1) = f(xmi1
(t),xmi2

(t),xmi3
(t), · · ·) , (1)

where mi1,mi2,mi3, · · · ∈ Mi are the lattice sites in the local neighborhood of the ith cell and f :
(
Cd

)m → Cd is the

local update rule.

local 𝑚-cell

neighborhood

perception

vector

updated

cell state

current

cell state

artificial neural network

Neural Cellular Automata with local update rule encoded by deep neural network

recurrent feedback

local 𝑚-cell

neighborhood

perception

vector

updated

cell state

current

cell state

single perceptron neuron

Neural Cellular Automata with local update rule encoded by single perceptron neuron

recurrent feedback

conventional Artificial Neural Network with fully-connected layers

…

…

…

input image

prediction

input layer

hidden layers

output layer

a

b

c

FIG. S6. Network Topology. Examples of Neural Cellular Automata (NCA) encoding the local update rule for Cellular

Automata (CA) using (a) single perceptron neuron or (b) a deep neural network. (c) Conventional artificial neural networks

are feed-forward networks requiring fully-connected layers with global information.

8

The key innovation of the Neural Cellular Automata (NCA) approach is to use modern deep learning techniques

to discover local update rules f that can perform specific tasks [3]. To do this, the cell states are continuous and

the local update rule is encoded by a neural network fθ with parameters θ to be trained. The input to the neural

network is a vector composed of the local m-cell neighborhood. For example, Fig. S6a shows the simplest possible

example in which the local update rule is encoded by a single perceptron neuron, which is parameterized by its

linear input weights. The output of the neuron represents the updated cell state, which undergoes recurrent feedback

for the next time step iteration. Therefore, NCA is a special kind of recurrent neural network. We showed in our

experimental implementation of NCA using photonics that a local update rule encoded by just a single neuron with

3 parameters can still perform surprisingly complex tasks. Fig. S6b shows the more general case in which the local

update rule is encoded by a deeper neural network with more parameters. In order to perform tasks such as image

classification, ancillary steps such as alive cell masking and global averaging for label prediction are required (e.g., see

Supplementary Section III for more details). The NCA can be trained using the standard backpropagation-through-

time algorithm (Fig. S3). It is also common to consider NCA with stochastic updates in which cell states only update

with a given probability during each time step. For simplicity, we consider only deterministic NCA in our work.

In contrast, the typical network topology of a conventional artificial neural network such as Multi-Layer Perceptron

(MLP) is shown in Fig. S6c. It contains an input layer, hidden layer/s, and an output layer arranged in a purely

feed-forward network. The layers are fully-connected and require global information. Therefore, NCA can be very

parameter-efficient compared to MLPs since the number of parameters needed to encode local update rules is generally

far fewer than the number of parameters needed to encode network layers with global information. The process of

self-organization through local interactions in NCA for image classification is fundamentally different to the process

by which MLPs classify images.

II. EXAMPLES OF HOW TO IMPLEMENT PNCA

In this section, we give more examples of how PNCA may be implemented using existing photonic neural network

hardware. We focus on time-multiplexed photonic networks, however, we note that analogous results can be obtained

using spatial or wavelength multiplexing [4]. The general architecture for PNCA is shown in Fig. S7a. Each iteration

consists of an input optical encoding (e.g., setting initial conditions or alive cell masking using electro-optic modulators)

followed by photonic hardware encoding the update rule for cells in a local neighborhood. The key principle of CA

is that cells update according to rules that only depend on local information. Therefore, in PNCA the photonic

9

input encoding

… …
photonic hardware encoding

local update rule

temporal delay lines encoding

local neighbourhood

free space optics optical fiber photonic integrated circuit

SLMlens

bulk nonlinear crystal

…
 VOA

VOA

VOA

nonlinear waveguide nanophotonic waveguide

MZI mesh

a

b

FIG. S7. PNCA architecture. (a) The general architecture for PNCA using time-multiplexing includes input encoding of

optical cells, temporal delay lines to encode the local cell neighborhood, and photonic hardware to encode the local update

rule. (b) The photonic hardware for the local update rule can be implemented using many different methods including free

space optics, optical fiber, and photonic integrated circuits.

hardware only encodes for the local update rule, not the global network weights. The local neighbourhood may be

encoded, for example, using temporal delay lines to specify which cells will interact in the photonic local update

rule. The photonic hardware for the local update rule can be implemented using a myriad of different methods.

10

Notably, it requires minimal or no changes to existing photonic neural network hardware. For example, PNCA can

accommodate any combination of: free space optical neural networks such as coherent [5] or incoherent [6] diffractive

neural networks and bulk nonlinear crystals [7]; fiber-based optical networks such as based on time-delay dynamics [8]

or wavelength-time interleaving [9], and integrated photonic neural networks such as Mach-Zehnder interferometer

meshes [10], cross-bar arrays [11] and nanophotonic nonlinear waveguides [12]. These examples are not an exhaustive

list, but rather intended to show how switching to the PNCA architecture can potentially expand the functionality

of existing photonic neural network hardware.

III. STEP-BY-STEP EXPLANATION OF DATA PROCESSING PROCEDURE

In this section, we give a detailed overview of the steps used to perform self-organized image classification using

the experimentally implemented PNCA. For each input image, we performed the following steps:

1. Pre-processing: prepare the data to be acceptable as input to the PNCA. This step is performed on an external

control computer.

(a) Concatenate the columns of the 28× 28 input image to flatten it into a 784× 1 vector.

This is necessary because our experimental implementation of PNCA only accepts a 1D input sequence.

However, this step can be skipped if the PNCA can accept 2D imputs.

(b) Calculate alive cell mask: any pixel with initial value ≥ 0.1 is labelled as alive and any pixel with initial

value < 0.1 is labelled as dead.

2. Neural Cellular Automata: iterate the local update rule for cells. This step is performed in the photonic

hardware. For each iteration t = 1, 2, · · · , 21:

(a) Alive cell masking: cell values represented by the 784× 1 vector are modulated onto the amplitude of light

pulses. Additionally, the amplitude of any light pulse corresponding to a dead cell is set to 0.

(b) Update cell values: propagate light pulses through the photonic neural network encoding the local update

rule. For example, in this case, it is a single photonic neuron consisting of a multi-arm interferometer and

nonlinear PPLN waveguide.

(c) Feed back cell values: return light pulses back to the start of the network for the next iteration.

In our experiment, this was done optoelectronically by photodetecting the light pulse after the network

11

and then reinjecting it electro-optically. However, the feedback can also be performed all-optically using a

sufficiently long optical delay line.

3. Prediction: assign the output image classification label. This step is performed on an external control computer.

(a) Alive cell average: calculate the average cell value of alive cells (i.e. do not include dead cells) after the

final iteration.

Although this step can also be done in photonic hardware, it is not necessary to perform it fast in real-time

since it is only computed once after all cell update iterations are completed.

(b) Output label: the averaged alive cell value gives the probability of the input image belonging to class 1.

If the value is closer to zero, then the label is class 0 (e.g. sneaker), otherwise the label is class 1 (e.g.

trouser).

In this experiment, we only performed binary (2-class) classification. However, a more general PNCA

classifying more than 2 classes can use the standard softmax activation to assign probabilities and class

labels.

IV. OPTOELECTRONIC VS. ALL-OPTICAL FEEDBACK

In this section, we describe possible implementations of the memory in PNCA. Recurrent feedback is needed to

input cell states between iterations of the local update rule. The first case is an optoelectronic memory making use of

a measurement-feedback scheme. Fig. S8a shows a possible implementation using a time-multiplexed network. Input

cell states and alive masking are performed using an amplitude modulator, e.g. an electro-optic modulator, to set the

amplitude of light pulses representing cells. Time-delayed copies of the pulses are used to implement the local m-cell

neighborhood, which comprises the perception vector that is input to the local update rule. For example, in our

experimental setup (see Experimental realization of PNCA), the local update rule is encoded by a single neuron with

linear weights set by variable optical attenuators and nonlinear activation performed by a periodically-poled lithium

niobate (PPLN) waveguide. Other photonic neural network hardware with more neurons and parameters can also be

used to encode the local update rule (e.g., see Supplementary Section II). The updated cell states are photodetected

and stored on an electronic memory (e.g., FPGA), which are then electro-optically reinjected for the next iteration

of the PNCA. The measurement-feedback scheme is a simple and convenient method for cell state feedback, however,

its speed is ultimately limited by the bandwidth of the optoelectronic conversions. The second case overcomes this

12

PPLN

…

𝑤1

𝑤2

𝑤𝑚

updated

cell state

+𝑇1

+𝑇𝑚

+𝑇2

input cell

state

electronic memory

AM

light

pulse

input state +

alive masking
𝒎-cell

neighborhood
local update rule

PPLN

…

𝑤1

𝑤2

𝑤𝑚

updated

cell state

+𝑇1

+𝑇𝑚

+𝑇2

input cell

state

AM

light

pulse

AM

+𝑇𝑁

optical memory

… …

a

b

FIG. S8. Photonic Neural Cellular Automata Memory. Example of an implementation using: (a) optoelectronic

conversion, electronic memory and amplitude modulator (AM); and (b) all-optical memory and AM.

issue by using an all-optical memory. Fig. S8b shows a possible implementation using a time-multiplexed network.

Input cell states and alive masking are performed using an amplitude modulator (AM) to set the initial amplitude

of light pulses representing cells. This initial AM is used to set the initial conditions (i.e. image pixel values) and is

not active beyond the initial t = 0 iteration. The PNCA computation based on local m-cell neighborhood and local

update rule proceeds similarly as before. The updated cell state pulse passes through an optical memory comprised of

an optical delay line with time delay TN , where N is the number of cells in the network, and an optical amplifier (e.g.,

erbium-doped fiber amplifier or optical parametric amplifier) to compensate the optical loss. A second AM is needed

in this case to perform the alive masking between each iteration in the optical feedback line, which inputs the pulses

for the next iteration. Note that the AMs can also be implemented using previously demonstrated all-optical switches

based on ultrafast nonlinear optics [13] so that it is not limited by electronic bandwidths. Therefore, the entire PNCA

can be implemented all-optically without any electronic bottleneck. This all-optical method requires a long delay line

with delay +TN to ensure that cells in each iteration do not undesirably interfere with cells in subsequent iterations.

The network size N is only limited by the length of available optical fiber.

13

V. COMPARISON TO OTHER OPTICAL NEURAL NETWORKS

Architecture

Image Input Input Input Weight Weight Weight Linear Nonlinear Image Claimed Claimed
Dataset Update Updates Update Update Updates Update Operation Activation Inference Energy Operation
(Image Method per Rate Method per Rate Method Method Time Efficiency Speed
Size) Image Image

PNCA fashion- Electro- 15680 a 12 GHz Variable 0 0 Optical Optical 1.307 µs 5.6 TOPs/J 84 GOPs/s
(this work) MNIST optic optical

(28×28) modulator attenuators

CNN MNIST Electro- 900 11.9 GHz Spectral 1 b 2 Hz Optical Digital >500 ms ∗ N/A 11.321
[9] (30×30) optic waveshaper Electronic TOPs/s

modulator

D2NN MNIST Digital 3 14.989 Spatial 3 422.4 Optical Opto- 20.7 ms c 0.717 114.1
[5] (28×28) micro- kHz light Hz electronic TOPs/J TOPs/s

mirror modulator
display

VCSEL-ONN MNIST VCSEL 15900 d 1 GHz VCSEL 15900 d 1 GHz Opto- Opto- 15.9 µs 140 ∼1 TOPs/s
[14] (28×28) array electronic electronic TOPs/J e

PNN MNIST Digital 8 f 200 Hz Digital 8 f 200 Hz Digital Optical >40 ms ∗ N/A N/A
[7] (14×14) micro- micro- Electronic

mirror mirror
display display

CNN fashion- Variable 169 1 kHz Electrical 4 1.193 Optical + Digital 0.17 s 5 TMACs/J 25 Gb/s
[15] MNIST optical PCM cell MHz g Digital Electronic

(14×14) attenuators Electronic

CNN MNIST Electro- 784 2 GHz Optical 0 0 Optical + Digital >8.1 µs ∗ 58.8 2 TMACs/s
[11] (28×28) optic PCM cell Digital Electronic TMACs/J

modulator Electronic

OONA QuickDraw Image 1 10 Hz Spatial 0 0 Optical + Opto- >5 ms ∗ N/A N/A
[6] (28×28) intensifier light Digital electronic +

modulator Electronic Digital
Electronic

TABLE I. Comparison of state-of-the-art optical neural networks performing image classification.

a Assuming t = 20 iterations (784× 20 = 15680)

b Assuming the waveshaper was only updated once in between the convolutional and fully-connected layers

c Assuming a 3-layer D2NN with DPU working cycle of 6.9 ms including sensor exposure time

d Assuming a 784 → 100 → 10 → 10 3-layer model with arbitrary waveform generator using 5 VCSELs per acquisition

(784× 20 + 100× 2 + 10× 2 = 15900)

e Assuming a compute density of 6 TOPs/mm2/s and a VCSEL chip area of 25× 80µm×80µm

f Assuming 4 independent channels with 2 SHG transformation steps per channel

g Assuming 282 ns write time and 556 erase time per GST cell switching cycle

∗ digital electronic processing time not reported

In this section, we compare the experimentally demonstrated PNCA to other state-of-the-art optical neural networks

14

performing image classification. We consider system-level demonstrations of images with size at least 14 × 14 since

anything smaller is not representative. We compare only the best value for experimentally reported hardware and not

theoretically proposed or future devices. We consider the image inference time, which is the minimum time needed

to classify one image, to be a key figure of merit for photonic hardware accelerators. This can be calculated from

considering the number of input updates and weight updates needed for each image. For example, in the case of

our PNCA, the number of input updates required per image (assuming t = 20 iterations of the local update rule) is

784×20 = 15680. The input update rate is limited by the bandwidth of our electro-optic modulator, which is 12 GHz.

One of the crucial points about PNCA is that there is no weight updates required, so this does not contribute to the

inference time. We ignore the light propagation time since it is almost always negligible compared to the time taken

for input/weight updates. Therefore, the image inference time is 15680/12 GHz = 1.307µs. Another key consideration

is how the linear/nonlinear operations are implemented since using electronics for parts of the computation will add

significant time and overhead, which is usually not reported. The experimental PNCA implements both linear and

nonlinear operations in the optical domain so there is minimal overhead. Besides the equipment control electronics,

optoelectronics was used in storing and reinjecting the cell states between iterations, but this does not affect the

speed of the computation since the time needed to reinject a single cell state is much less than the time taken for a

complete iteration. Similarly, the time taken to output classification labels electronically in the last step is much less

than the time taken to complete all iterations. During each iteration, each cell experiences 1 alive masking operation,

3 MAC operations, and 1 nonlinear activation, hence giving a total of 7 operations per cell (assuming 1 MAC = 2

OPs). Therefore, the current operation speed is 7 OPs ×12 GHz = 84 GOPs/s. The average optical power was 15

mW, so we can estimate the optical energy consumption for the computation as (84 GOPs/s)/15 mW = 5.6 TOPs/J.

However, we note that the power consumption of the control electronics is much higher than the optical power, which

means the overall wall-plug energy efficiency is likely much worse than implied by just the optical energy consumed

during the computation. Interestingly, we see that a higher claimed operation speed does not directly translate into

a faster inference time. The claimed operation speeds often assume full utilization of the photonic hardware, which

ignores important system-level constraints such as input and/or weight updates that can drastically slow the system

when performing a useful image classification task. Our PNCA experimental implementation is the only end-to-end

photonic neural network combining linear optical operations, nonlinear optical operations, fast input update speeds,

static weights, and no electronic bottleneck.

15

VI. χ(2) NONLINEAR OPTICAL ACTIVATION FUNCTIONS

In this section, we describe the equations governing the pump-depleted second harmonic generation (SHG) in the

periodically-poled lithium niobate (PPLN) waveguide used for nonlinear activations in the main text experiments.

SHG arises due to the second-order (χ(2)) parametric processes in non-centrosymmetric crystals such as lithium

niobate. This χ(2) nonlinearity is of the ultrafast variety with an effectively instantaneous response time, which is only

limited in practice by the phase-matching bandwidth of the device. Unlike other slower optical nonlinearities [16, 17]

that are incoherent, the PPLN waveguide can correctly handle both positive and negative valued input light amplitudes

and is a completely travelling-wave process (no resonator required). In its simplest form, the SHG process is governed

by the nonlinear coupled-mode equations [18] in Eq. 2:

d

dz
A(z) = −iκ∗A∗(z)B(z) exp(−i2∆z) , (2a)

d

dz
B(z) = −iκ [A(z)]

2
exp(i2∆z) , (2b)

where A(z) is the amplitude of the fundamental harmonic light of frequency ω, B(z) is the amplitude of the second

harmonic light of frequency 2ω, κ is the nonlinear coupling coefficient, ∆ is the phase-mismatch parameter between

the ω and 2ω light waves, and z is the propagation distance along the waveguide’s longitudinal direction. In the case

of our experiments, the input value is encoded onto the coherent light amplitude of the fundamental harmonic wave

and we restrict our attention to only real-valued inputs. Solving the initial value problem Eq. 2 with A(0) = A0

and B(0) = 0 for a waveguide of length L gives the nonlinear activation function, g : R → R, as the output

fundamental harmonic light amplitude A(L) = g(A0). Suppose that [A
+(z), B+(z)] with A+(0) = A0 and B+(0) = 0

is a solution to Eq. 2 with initial values A+(0) = A0 and B+(0) = 0. Then, by direct substitution, we see that

[A−(z) = −A+(z), B−(z) = B+(z)] is also a solution with initial values A−(0) = −A0 and B−(0) = 0. Therefore,

the nonlinear activation function g(·) is an anti-symmetric (odd) function, i.e. g(−x) = −g(x) for x ∈ R. For example,

in the simplified case of continuous-wave light and perfect phase-matching (∆ = 0), the exact analytical solution to

the initial value problem Eq. 2 with A(0) = A0 and B(0) = 0 is:

A(z) = A0sech(κA0z), B(z) = −iA0tanh(κA0z) . (3)

Clearly, the nonlinear activation function A(L) = g(A0) is anti-symmetric (odd) for this simple case. Alternatively,

we could also use the second harmonic output B(L) = f(A0) if we desire a symmetric (even) nonlinear activation

16

function, however, the output would be at a different frequency to the input. The case for short laser pulses is more

complicated and can only be solved numerically, e.g. see Ref. [12].

VII. SIGNAL-TO-NOISE RATIO

In this section, we elaborate on the signal-to-noise (SNR) of the PNCA and the maximum noise tolerance. A key

point for PNCA is that the information (e.g. image class label) is encoded in the global or collective cell states, and

not necessarily reliant on any individual cell. Therefore, we can assign the alive cell average as the relevant “signal”

and track its evolution across iterations for a specific image class. The noise can then be considered as the standard

deviation of the alive cell average distribution. For example, Fig. S9(a) shows the SNR at different iterations of the

experimentally demonstrated PNCA (see main text Fig. 4) for fashionMNIST trouser images. Initially, the SNR is

low since the alive cell states are the same as the input image pixel values and have a large variance. Interestingly, the

SNR increases during the first few iterations before decreasing and eventually plateauing. This is because the most

rapid changes due to the self-organizing behaviour occur in the first few iterations.

We can also study how the noise from specific optical operations impacts the classification accuracy. In our

experimental implementation of PNCA, we carefully characterized the noise (see main text Fig. 3), which can be

a b

FIG. S9. Noise Properties of PNCA (a) Signal-to-noise ratio at each iteration of the experimentally demonstrated PNCA

tested on fashionMNIST trouser images. (b) Simulated PNCA accuracy for binary image classification of fashionMNIST sneaker

and trouser images when the convolution noise standard deviation is varied.

17

considered typical of photonic hardware. We showed that PNCA was robust to this level of noise. To determine the

maximum degree of noise robustness, we now simulate the PNCA classification accuracy for the same task of binary

image classification of fashionMNIST sneaker and trouser images as the noise is increased. For simplicity, we vary

only the standard deviation σ of the noise of the linear operations (convolutions) since it is the dominant noise source,

and keep the input and nonlinear activation noise fixed (as shown in main text Fig. 3). The accuracy for different

levels of noise σ is shown in Fig 9(b). The PNCA maintains near-perfect binary classification accuracy up to σ ≈ 0.1,

which is > 3 times the actual experimental noise level of σ = 0.0327. The PNCA maintains > 90% accuracy up to

> 5 times the experimental noise level. The PNCA doesn’t completely fail until σ ≈ 0.35, which is > 10 times the

experimental noise level. This emphasizes the fact that the noise properties of specific operations acting on individual

cells are not straightforwardly correlated with the emergent global properties of the alive cell averages.

[1] S. Wolfram, Statistical mechanics of cellular automata, Reviews of modern physics 55, 601 (1983).

[2] M. Cook et al., Universality in elementary cellular automata, Complex systems 15, 1 (2004).

[3] E. Randazzo, A. Mordvintsev, E. Niklasson, M. Levin, and S. Greydanus, Self-classifying mnist digits, Distill 5, e00027

(2020).

[4] L. Yuan, Q. Lin, M. Xiao, and S. Fan, Synthetic dimension in photonics, Optica 5, 1396 (2018).

[5] T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie, Y. Li, J. Fan, H. Wu, L. Fang, and Q. Dai, Large-scale neuromorphic optoelectronic

computing with a reconfigurable diffractive processing unit, Nature Photonics 15, 367 (2021).

[6] T. Wang, M. M. Sohoni, L. G. Wright, M. M. Stein, S.-Y. Ma, T. Onodera, M. G. Anderson, and P. L. McMahon, Image

sensing with multilayer nonlinear optical neural networks, Nature Photonics 17, 408 (2023).

[7] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, and P. L. McMahon, Deep physical neural

networks trained with backpropagation, Nature 601, 549 (2022).

[8] G. H. Li, C. R. Leefmans, J. Williams, and A. Marandi, Photonic elementary cellular automata for simulation of complex

phenomena, Light: Science & Applications 12, 132 (2023).

[9] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, et al.,

11 tops photonic convolutional accelerator for optical neural networks, Nature 589, 44 (2021).

[10] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund,

et al., Deep learning with coherent nanophotonic circuits, Nature Photonics 11, 441 (2017).

[11] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja,

et al., Parallel convolutional processing using an integrated photonic tensor core, Nature 589, 52 (2021).

18

[12] G. H. Y. Li, R. Sekine, R. Nehra, R. M. Gray, L. Ledezma, Q. Guo, and A. Marandi, All-optical ultrafast relu function

for energy-efficient nanophotonic deep learning, Nanophotonics 12, 847 (2022).

[13] Q. Guo, R. Sekine, L. Ledezma, R. Nehra, D. J. Dean, A. Roy, R. M. Gray, S. Jahani, and A. Marandi, Femtojoule

femtosecond all-optical switching in lithium niobate nanophotonics, Nature Photonics 16, 625 (2022).

[14] Z. Chen, A. Sludds, R. Davis III, I. Christen, L. Bernstein, L. Ateshian, T. Heuser, N. Heermeier, J. A. Lott, S. Reitzenstein,

et al., Deep learning with coherent vcsel neural networks, Nature Photonics 17, 723 (2023).

[15] W. Zhou, B. Dong, N. Farmakidis, X. Li, N. Youngblood, K. Huang, Y. He, C. David Wright, W. H. Pernice, and

H. Bhaskaran, In-memory photonic dot-product engine with electrically programmable weight banks, Nature Communi-

cations 14, 2887 (2023).

[16] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. Pernice, All-optical spiking neurosynaptic networks

with self-learning capabilities, Nature 569, 208 (2019).

[17] F. Ashtiani, A. J. Geers, and F. Aflatouni, An on-chip photonic deep neural network for image classification, Nature 606,

501 (2022).

[18] T. Suhara and M. Fujimura, Waveguide nonlinear-optic devices, Vol. 11 (Springer Science & Business Media, 2013).

	Supplementary Information for Deep Learning with Photonic Neural Cellular Automata
	Introduction to Neural Cellular Automata
	Examples of how to implement PNCA
	Step-by-step explanation of data processing procedure
	Optoelectronic vs. All-Optical Feedback
	Comparison to other optical neural networks
	(2) Nonlinear Optical Activation Functions
	Signal-to-Noise Ratio
	References

