Supporting Information

Synthesis of Amorphous and Various Phase-Pure Nanoparticles of Nickel Phosphide with Uniform Sizes *via* a Trioctylphosphine-Mediated Pathway

David Thompson^a, Adam S. Hoffman^b, Zachary R. Mansley^c, Sarah York^a, Feng Wang^a, Yimei Zhu^d, Simon R. Bare^b, and Jingyi Chen^{a*}

^aDepartment of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701,

United States

^bStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States

^cInterdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973,

United States

^dCondensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, United States

*Email: chenj@uark.edu

Amount of TOP	Reaction time	Ni	Р	
(mL/mmol)	(min)	(mol%)	(mol%)	
0.05/0.11	10	-	-	
	30	72	28	
	60	99	1	
	120	98	2	
0.20/0.45	10	98	2	
	30	98	2	
	60	95	5	
	120	96	4	
0.50/1.12	10	94 ± 1	6 ± 1	
	30	87 ± 8	13 ± 8	
	60	86 ± 10	14 ± 10	
	120	74 ± 3	26 ± 3	
1.00/2.24	10	77 ± 6	23 ± 6	
	30	75 ± 4	25 ± 4	
	60	72 ± 3	28 ± 7	
	120	73 ± 3	27 ± 7	

Table S1. Summary of ICP-MS results for the amorphous Ni_xP_y nanoparticles synthesized under different conditions by varying the amount of TOP used and the reaction time.

Amount of TOP	Reaction time	Size from TEM	Formula derived from	
(mL/mmol)	(min)	(nm)	ICP-MS	
0.05/0.11	10	-	-	
	30	7.7 ± 1.0	Ni72P28	
	60	48.4 ± 8.3	Ni99P1	
	120	52.8 ± 8.8	Ni98P2	
0.20/0.45	10	31.6 ± 3.7	Ni98P2	
	30	29.3 ± 2.9	$Ni_{98}P_2$	
	60	33.7 ± 5.4	Ni95P5	
	120	39.8 ± 3.9	Ni96P4	
0.50/1.12	10	21.8 ± 2.5	Ni94P6	
	30	21.0 ± 3.3	Ni87P13	
	60	20.4 ± 3.8	Ni86P14	
	120	12.0 ± 1.0	Ni ₇₆ P ₂₄	
1.00/2.24	10	10.0 ± 1.0	Ni74P26	
	30	12.5 ± 1.0	Ni ₇₂ P ₂₈	
	60	12.7 ± 1.0	Ni ₇₂ P ₂₈	
	120	15.7 ± 2.0	Ni ₇₅ P ₂₅	

Table S2. Summary of the particle size measured from TEM and the formula derived from ICP-MS results for each sample.

Figure S1. LCF analysis of amorphous Ni_xP_y with different compositions using the XAS of metallic Ni and Ni₂P data: (A) Ni₉₈P₂; (B) Ni₉₅P₅; (C) Ni₉₀P₁₀; (D) Ni₈₅P₁₅; (E) Ni₈₀P₂₀; (F) Ni₇₅P₂₅; and (G) Ni₇₀P₃₀.

Ni _x P _y	Ni metal (%)	Ni ₂ P (%)	Ni (%) ^a	P (%) ^b
	from LCF	from LCF		
Ni ₉₈ P ₂	71.5 ± 1.3	30.0 ± 1.2	91.5	8.5
Ni95P5	67.0 ± 1.3	33.2 ± 1.2	89.1	10.9
Ni90P10	42.8 ± 1.9	57.3 ± 1.8	81.0	19.0
Ni85P15	42.8 ± 1.4	57.8 ± 1.3	81.3	18.7
Ni80P20	16.4 ± 1.8	84.5 ± 1.6	72.8	27.2
Ni ₇₅ P ₂₅	23.0 ± 2.1	79.4 ± 2.0	76.0	24.0
Ni70P30	23.4 ± 1.6	77.8 ± 1.5	75.3	24.7

Table S3. Summary of the percentages of Ni and P derived from the LCF analysis of the XANES data of the amorphous Ni_xP_y nanoparticles.

^a: The percentage of Ni is calculated from the LCF results using equation. Ni (%) = Ni metal (%) + Ni₂P (%) × 2/3

^b: The percentage of P is calculated using equation: P(%) = 100 - Ni(%).

Figure S2. Continuous cauchy wavelet transform of a k^2 -weight in *R* space and *k*-range of 3.3-12 for the series of samples from metallic Ni to amorphous Ni_xP_y with different compositions. The intensity scale is the same for each data set.

Figure S3. The real (brightly colored) and imaginary (faded color) components of the Ni K-edge EXAFS results for Ni₉₈P₂ (black), Ni₉₅P₅ (red), Ni₉₀P₁₀ (green), Ni₈₅P₁₅ (blue), Ni₈₀P₂₀ (cyan), Ni₇₅P₂₅ (magenta), Ni₇₀P₃₀ (orange) with their corresponding fits (dashed lines).

Sample	Structure	Scattering Path	R(Å)	CN	σ^2	E ₀ (eV)	Reduced χ ²	R-factor
Metallic Ni (Ref.)		Ni-Ni	2.49	12	•			
Ni ₂ P (Ref.)		Ni-P	2.21	2				
		Ni-Ni	2.61	4				
						-	-	
Ni98P02	<i>fcc</i> Ni	Ni-Ni	2.49 ± 0.00	9.3±0.6	0.007 ± 0.000	6.75±0.45	123.2	0.015
TOP/Ni(acac) ₂ : 0.5								
Rxn. time: 120 min								
							_	
Ni ₉₈ P ₀₂	fcc Ni	Ni-Ni	2.48 ± 0.01	9.1±0.5	0.006 ± 0.000	7.5±0.23	66014	0.011
	Ni ₂ P	Ni-Ni	2.60 ± 0.01	1.5±0.6	0.005 ± 0.000	-2.45 ± 0.83		
	Ni ₂ P	$Ni-P_1$	2.21 ± 0.00	0.4±0.3	0.007 ± 0.001	-2.45 ± 0.83		
	0		• • • • • • •					
$N_{195}P_{05}$	fcc N1	Ni-Ni	2.49 ± 0.00	8.7±0.5	0.007 ± 0.000	6.75±0.45	123.2	0.015
$TOP/Ni(acac)_2$: 2.5								
Rxn. time: 60 min								
NI, D	C N'	NT: NT:	2 49 10 01	0.0+0.5	0.00(+0.000	7.5+0.22	((014	0.011
N195P05	N: D	NI-INI Ni Ni	2.48 ± 0.01	9.8 ± 0.5	0.006 ± 0.000	7.5 ± 0.25	00014	0.011
	Ni ₂ P	Ni-Ni	2.00 ± 0.01 2.21 ±0.00	0.3 ± 0.0	0.003 ± 0.000	-2.43 ± 0.03		
	11121	111-1]	2.21±0.00	0.5±0.2	0.007±0.001	-2.45±0.85		
Ni90P10	<i>fcc</i> Ni	Ni-Ni	2.49±0.00	7.4±0.6	0.007 ± 0.000	6.75±0.45	123.2	0.015
TOP/Ni(acac) ₂ : 5.5	Ni ₂ P	Ni-Ni	2.61±0.01	3.2±0.6	0.006 ± 0.001	-0.46 ± 0.97		0.015
Rxn. time: 10 min	Ni ₂ P	$Ni-P_1$	2.23±0.01	0.9±0.3	0.008±0.002	-0.46±0.97		0.015
Ni ₈₅ P ₁₅	<i>fcc</i> Ni	Ni-Ni	$2.49{\pm}0.00$	$6.2{\pm}0.4$	0.007 ± 0.000	6.75±0.45	123.2	0.015
TOP/Ni(acac) ₂ : 5.5	Ni ₂ P	Ni-Ni	2.61 ± 0.01	2.5±0.5	0.006 ± 0.001	-0.46 ± 0.97		0.015
Rxn. time: 30 min	Ni ₂ P	$Ni-P_1$	2.23 ± 0.01	$1.2{\pm}0.2$	0.008 ± 0.002	-0.46 ± 0.97		0.015
Ni ₈₀ P ₂₀	<i>fcc</i> Ni	Ni-Ni	$2.49{\pm}0.00$	3.5±1.1	0.007 ± 0.000	6.75 ± 0.45	123.2	0.015
TOP/Ni(acac) ₂ : 5.5	Ni ₂ P	Ni-Ni	2.61 ± 0.01	1.4±1.1	0.006 ± 0.001	-0.46 ± 0.97		0.015
Rxn. time: 120 min	Ni ₂ P	$Ni-P_1$	2.23 ± 0.01	$2.4{\pm}0.8$	0.008 ± 0.002	-0.46 ± 0.97		0.015
Ni ₇₅ P ₂₅	<i>fcc</i> Ni	Ni-Ni	2.49 ± 0.00	2.9±0.3	0.007 ± 0.000	6.75±0.45	123.2	0.015
TOP/Ni(acac) ₂ : 11	Ni ₂ P	Ni-Ni	2.61±0.01	1.8 ± 0.3	0.006 ± 0.001	-0.46 ± 0.97		0.015
Rxn. time: 10 min	Ni ₂ P	$Ni-P_1$	2.23±0.01	2.5±0.3	0.008±0.002	-0.46±0.97		0.015
		37: 37:	2 40 / 2 22	2.2 : 0.5	0.007:0.000	6.00.10	102.2	0.017
$N_{170}P_{30}$	JCC N1	Ni-Ni	2.49±0.00	3.3±0.5	$0.00^{-1}\pm0.000$	6.75±0.45	123.2	0.015
TOP/N1(acac) ₂ : 11	Ni ₂ P	Ni-Ni	2.61±0.01	2.4±0.5	0.006 ± 0.001	-0.46±0.97		0.015
Rxn. time: 60 min	Ni ₂ P	$Ni-P_1$	2.23±0.01	3.0±0.3	0.008 ± 0.002	-0.46 ± 0.97		0.015

Table S4. Ni K-edge EXAFS fit results for Ni_xP_y where x and y were the mol% of each sample derived from the ICP-MS results.

Table S5. Ni K-edge EXAFS fit results for crystalline nickel phosphide nanoparticles and their comparison to the bulk crystalline structures.

Sample	Structure	Scattering Path	R(Å)	CN	σ^2	E ₀ (eV)	Reduced χ ²	R-factor
Ni12P5 (ICSD# 108640)	•	Ni-P	2.22	1	-			
		Ni-Ni	2.54	3				
Ni ₁₂ P ₅ nanoparticles	Ni ₁₂ P ₅	Ni-P	2.21 ± 0.03	2.6 ± 0.06	0.006 ± 0.003	-4.1±3.2	6549.3	0.038
		Ni-Ni	$2.50{\pm}0.02$	1.6 ± 0.09	0.005 ± 0.003	-4.1±3.2	6549.3	0.038
Ni ₂ P (ICSD# 27162)	•	Ni-P	2.21	2	-			
		Ni-Ni	2.61	4				
Ni ₂ P nanoparticles	Ni ₂ P	Ni-P	$2.24{\pm}0.02$	$2.2{\pm}0.5$	0.007 ± 0.002	-2.9±1.8	7056.4	0.013
		Ni-Ni	$2.60{\pm}0.01$	3.1±0.7	0.006 ± 0.001	-2.9±1.8	7056.4	0.013
Ni ₅ P ₄ (ISCD# 76671)		Ni-P	2.30	2				
		Ni-Ni	2.65	4				
Ni ₅ P ₄ nanoparticles	Ni ₅ P ₄	Ni-P	$2.29{\pm}0.01$	3.8 ± 0.7	0.006 ± 0.001	$1.9{\pm}1.4$	3270.2	0.006
		Ni-Ni	$2.58{\pm}0.01$	5.2±1.6	0.001 ± 0.003	$1.9{\pm}1.4$	3270.2	0.006

Figure S4. (A) TEM image of $Ni_{69}P_{31}$ nanoparticles (5.0 ± 1.0 nm) synthesized at TOP/Ni(acac)₂ = 56 in 5 mL of TOP and 1 mL of OLAM; (B) TEM image of $Ni_{69}P_{31}$ nanoparticles (3.8 ± 0.6 nm) synthesized at TOP/Ni(acac)₂ = 66 in 6 mL of TOP alone; (C) XRD pattern of the sample in (A); and (D) XRD pattern of the sample in (B). The elemental compositions of the samples were measured by ICP-MS.

Figure S5. (A) UV-vis spectra of the aliquots taken from the reaction where 40 mg bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)₂) was reacted with 6 mL of TOP under argon. For comparison, the UV-vis spectrum of Ni(COD)₂ ($\lambda_{max} = 300$ nm) before TOP was introduced is also provided (dashed line). (B) Calculated UV-vis spectrum of a tetrahedral Ni(II)-TOP₄ complex showing two peaks at 252 and 325 nm, respectively.