Supplementary Information

Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation

Johnson *et al.*

Strain Number	Organism	Genotype	Abbreviation
DTE003	<i>S. enterica</i> serovar Typhimurium LT2	Wild type	WT
CEMS344	<i>S. enterica</i> serovar Typhimurium LT2	∆pduD∷pduD ^{19 - *}	∆ssPduD
CEMS361	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduP::M-pduP ^{18-*}	∆ssPduP
CEMS362	<i>S. enterica</i> serovar Typhimurium LT2	∆pduL::pduL ^{17 - *}	∆ssPduL
CEMS351	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduD::pduD ^{19 - *} ΔpduP::M- pduP ^{18 - *}	∆ssPduDP
ERJ004	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduD::pduD ^{19 -*} ΔpduL::pduL ^{17 -} *	∆ssPduDL
ERJ005	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduP::M-pduP ^{18 - *} ΔpduL::pduL ^{17 - *}	∆ssPduPL
CEMS360	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduD::pduD ^{19 - *} ΔpduP::M- pduP ^{18 - *} ΔpduL::pduL ^{17 - *}	Δ ssPduDPL
CMJS256	<i>S. enterica</i> serovar Typhimurium LT2	ΔpocR	N/A
CEMS179	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduB	N/A
CEMS342	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduM	N/A
CEMS375	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduB∷pduB ^{Δ3 - 30}	∆ssPduB
ERJ035	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduM::M-pduM ^{23 - *}	∆ssPduM
ERJ198	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduM::M-pduM ^{23 - *} ΔpduB::pduB ^{Δ3 - 30}	∆ssPduMB
ERJ116	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduD::pduD ^{19 - *} ΔpduP::M- pduP ^{18 - *} ΔpduL::pduL ^{17 - *} ΔpduB::pduB ^{Δ3 - 30}	∆ssPduDPLB
ERJ039	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduD::pduD ^{19 -*} ΔpduP::M- pduP ^{18 -*} ΔpduL::pduL ^{17 -*} ΔpduM:: M-pduM ^{23 -*}	∆ssPduDPLM
ERJ117	<i>S. enterica</i> serovar Typhimurium LT2	ΔpduD::pduD ^{19 -*} ΔpduP::M- pduP ^{18 -*} ΔpduL::pduL ^{17 -*} ΔpduM:: M-pduM ^{23 -*} ΔpduB::pduB ^{Δ3 - 30}	∆ssPduDPLMB
TUC01	<i>E. coli</i> W3110	gal490 pglΔ8 λcl857 Δ(cro-bioA) int<>cat/sacB	N/A

Supplementary Table S1. Strains used in this study.

Supplementary Table S2. Plasmids used in this study.

Plasmid number	Description	Origin	Resistance
CMJ069	pBAD33t-PduD ^{1 - 20} (ssPduD)-SR- GFPmut2	p15A	Chloramphenicol
EYK208	pBAD33t-PduP ^{1 - 17} (ssPduP)-SR-GFPmut2	p15A	Chloramphenicol
NWKp041	pBAD33t-PduL ¹⁻²⁰ (ssPduL)-SR-GFPmut2	p15A	Chloramphenicol
EYK193	pBAD-PduG-SR-GFPmut2	p15A	Chloramphenicol
NWKp043	pBAD33t-PduO-GS-GFP	p15A	Chloramphenicol
pBJP017	pBAD33t-PduM ^{1 - 23} (ssPduM)-GFPmut2	p15A	Chloramphenicol
pERJ011	pBAD33t-PduB ¹⁻³⁷ (ssPduB with linker)- GS-GFPmut2	p15A	Chloramphenicol
NWKp048	pBAD33t-PduA-GS-GFPmut2	p15A	Chloramphenicol
pCEM100	pBAD33t-PduE ^{1 - 16} (ssPduE)-GS- GFPmut2	p15A	Chloramphenicol
pERJ025	GFPmut2	p15A	Chloramphenicol
pERJ012	pBAD33t-PduB ¹⁻²² (ssPduB without linker)-GS-GFPmut2	p15A	Chloramphenicol
pERJ014	pBAD33t-ssPduE ^{ΔESMV::RQII} -GS-GFPmut2	p15A	Chloramphenicol
pERJ015	pBAD33t-ssPduE ^{∆ESMV::QRIV} -GS-GFPmut2	p15A	Chloramphenicol
pERJ016	pBAD33t-ssPduE ^{∆ESMV∷ETLI} -GS-GFPmut2	p15A	Chloramphenicol
pERJ017	pBAD33t-ssPduL ^{∆QSTV∷ETLI} -GS-GFPmut2	p15A	Chloramphenicol
pERJ018	pBAD33t-ssPduL ^{∆QSTV∷RQII} -GS-GFPmut2	p15A	Chloramphenicol
pERJ019	pBAD33t-ssPduL ^{∆QSTV∷QRIV} -GS-GFPmut2	p15A	Chloramphenicol
pCEM119	pBAD33t-PduM-GS-GFPmut2	p15A	Chloramphenicol
pCEM120	pBAD33t-M-PduM ^{24 - *} -GS-GFPmut2	p15A	Chloramphenicol
pSIM6	λ Red system repressed by cl857	pSC101 <i>repA^{ts}</i>	Ampicillin

Supplementary Table S3. Primers used in this study.

Name	Purpose	Description	Sequence (5' \rightarrow 3')
TMDP021	Sequencing	Amplify from upstream of <i>pduD</i> locus (Fwd)	ggcaacaggttatcgcctgc
TMDP022	Sequencing	Amplify from upstream of <i>pduD</i> locus (Rev)	ccctgcaggctgttcatgc
TMDP072	Sequencing, recombineering	Amplify from upstream of <i>pduD</i> locus (Fwd)	catccagaaagccaagctaacc
TMDP073	Sequencing, recombineering	Amplify from upstream of <i>pduD</i> locus (Rev)	cgtccagcgttttattggtgg
TMDP086	Sequencing	Amplify from upstream of <i>pduP</i> locus (Fwd)	tcatttacagggaaaagtggtcacc
TMDP087	Sequencing	Amplify from upstream of <i>pduP</i> locus (Rev)	tgcgccagaaagccatcg
TMDP088	Sequencing	Amplify from upstream of <i>pduP</i> locus (Fwd)	tgtgacctggcggatgc
TMDP089	Sequencing	Amplify from upstream of <i>pduP</i> locus (Rev)	tgcagagcctgcatttgc
TMDP043	Sequencing	Amplify from upstream of <i>pduL</i> locus (Fwd)	tcagctgcaatctgtgtctgg
TMDP044	Sequencing	Amplify from upstream of <i>pduL</i> locus (Rev)	cagaacagtgctggacagtcg
TMDP081	Sequencing	Amplify from upstream of <i>pduL</i> locus (Fwd)	ctccgtcattgaacctgagc
TMDP082	Sequencing	Amplify from upstream of <i>pduL</i> locus (Rev)	tgagctgtacgcggatgc
oCEM187	Sequencing	Amplify from upstream of pduM locus (Fwd)	cgcagcggcatatccatatgtc
oCEM188	Sequencing	Amplify from upstream of pduM locus (Rev)	cggtaaacagtgatgtggtgcc
oCEM189	Sequencing	Amplify from upstream of pduM locus (Fwd)	gatcgcgggctgattttcaaca
oCEM190	Sequencing	Amplify from upstream of pduM locus (Rev)	gatttttgcgtggagacaaccg
oMPV029	Sequencing	Amplify from upstream of <i>pduB</i> locus (Fwd)	gtgggtgaagtgaaagccgta
oMPV030	Sequencing	Amplify from upstream of <i>pduB</i> locus (Rev)	tccatcgccatcacttcttcg
oERJ006	Sequencing, recombineering	Amplify from upstream of <i>pduB</i> locus (Fwd)	GAAAGCCGTACACGTCA TCCC
oERJ007	Sequencing, recombineering	Amplify from upstream of <i>pduB</i> locus (Rev)	CCTGATTCACAGGGCGT TTCG
oCEM159	Recombineering	Amplify <i>cat/sacB</i> with homology upstream of <i>pduM</i> (Fwd) Amplify <i>cat/sacB</i> with	gccgctggtgccgataacccgcat gcctttgcccggctggtaggcccgc gTGTGACGGAAGAT gatttttgcgtggagacaaccgcgc
oCEM160	Recombineering	homology downstream of pduM (Rev)	ccgtgactcgtgccagatgcatgat ATCAAAGGGAAAA

oCEM171	Recombineering	<i>pduM</i> knockout (Fwd)	ctggtgccgataacccgcatgccttt gcccggctggtaggcccgcgatga aatattcaattaattaagcaggagt aaatcatgcatctggcacgagtca c
oCEM172	Recombineering	<i>pduM</i> knockout (Rev)	gtgactcgtgccagatgcatgattta ctcctgcttaattaattgaatatttcat cgcgggcct
TMDP003	Recombineering	Amplify <i>cat/sacB</i> with homology upstream of <i>pduP</i> (Fwd)	CAGCGTTGAGCAGGAC ATGG
TMDP004	Recombineering	Amplify <i>cat/sacB</i> with homology downstream of <i>pduP</i> (Rev)	CCAGATGTGCTTATTGG TAAAGCGC
TMDP023	Recombineering	Amplify <i>cat/sacB</i> with homology upstream of <i>pduL</i> (Fwd)	aaaatgtccgcgccagaagg
TMDP024	Recombineering	Amplify <i>cat/sacB</i> with homology downstream of <i>pduL</i> (Rev)	cgaagttgcgtaacgctcagc
oCEM161	Recombineering	Amplify <i>pduD</i> ^{ref} with homology upstream of <i>pduD</i> (Fwd)	aaacatccctggcgctcttgatccc aacgagattgattaaggggtgaga aatgaagggcagcgataaacc
oCEM162	Recombineering	Amplify <i>pduD</i> ¹ with homology downstream of <i>pduD</i> (Rev)	gtcccggaccatcgattcaattgcgt cggtattcatggagttatcctttatca aagcgccacgcg
oCEM163	Recombineering	Amplify <i>pduP^{re-*}</i> with homology upstream of <i>pduP</i> (Fwd)	atggacatagcacagaccgccatc gcggctattaacgtgggaactcatc aatgaataccacgccggcg
oCEM164	Recombineering	Amplify <i>pduP</i> ⁷⁸⁻² with homology downstream of <i>pduP</i> (Rev)	accgctgtacaaccgcgtttgtagt gagaaggtattcatcgcgacctca gttagcgaatagaaaagccgttgg
oCEM165	Recombineering	Amplify <i>pduL^{1/-*}</i> with homology upstream of <i>pduL</i> (Fwd)	ggcgaacctcgtacgctttgcattca ttccggcaagcgaggtgaagcgta atgcgccagcgg
oCEM166	Recombineering	Amplify <i>pduL</i> ^{17-*} with homology downstream of <i>pduL</i> (Rev)	atgcagccgggagacaatctcctc gacaatgcgctgcagggtttcgcc gttcatcgcgggcct
oCEM195	Recombineering	Amplify <i>pduB</i> ^{∆3 - 30} with homology upstream of <i>pduB</i> (Fwd)	gccctcacaccgatgtagaaaaa atcttaccgaagggaattagccaat gagccaacctatacgagagacgg ctatgg
NWKo512	Recombineering	Amplify <i>pduB</i> ^{∆3 - 30} with homology downstream of <i>pduB</i> (Rev)	ttcgccagtgcttcaaatcttttcgatc tcatgaatcagcctcgtgggtAtca gatgtaggacggacgatcgtttttcg
oERJ001	Golden Gate cloning	Amplify <i>pduB</i> ¹⁻³⁷ and <i>pduB</i> ¹⁻²² to add Golden Gate overhang (For)	AGTTACGGTCTCacatgag cagcaatgagctggtgg
oERJ002	Golden Gate cloning	Amplify <i>pduB</i> ^{1 - 37} to add Golden Gate overhang	GTCAACGGTCTCAaacca gccgtctctcgtataggttggg

compatible with GS linker (Rev)

		Amplify <i>pduB</i> ^{1 - 22} to add	
oERJ003	Golden Gate cloning	Golden Gate overhang compatible with GS linker	GTCAACGGTCTCAaacctt ccggcgttgccacacg
		(Rev)	
	Caldan Cata	Amplify GFPmut2 to add	
oBJP094	cloning	compatible with $pduM^{1-23}$	gagaagaacttttcactgga
oBJP095	Golden Gate cloning	Amplify oBJP097 to add Golden Gate overhang (Fwd)	attaggtctcacatgaacggcgaa accctgcag
oBJP096	Golden Gate	Amplify oBJP097 to add Golden Gate overhang (Rev)	attaggtctcagctctgggcacggc gatg
oBJP097	Golden Gate cloning	Oligo encoding <i>pduM</i> ¹⁻²³ (<i>ssPduM</i>)	atgaacggcgaaaccctgcagcg cattgtcgaggagattgtctcccgg ctgcatcgccgtgcccagagc
oBJP137	Golden Gate cloning	Amplify GFPmut2 to add Golden Gate overhang and GS linker (Fwd)	AttaGGTCTCAggttctAgtaa aggagaagaacttttcactgg
NWKo569	Golden Gate cloning	Amplify <i>pduA</i> to add Golden Gate overhang (Fwd)	AttGGTCTCACATGCAAC AAGAAGCACTAGG
NWKo570	Golden Gate cloning	Amplify <i>pduA</i> to add Golden Gate overhang and GS linker (Rev)	ATTGGTCTCAGCTGCCtt ggctaattcccttcgg
NWKo506	Golden Gate cloning	Amplify GFPmut2 to add Golden Gate overhang compatible with GS linker (Fwd)	AttGGTCTCACAGCAgtaa aggagaagaacttttcactgg
NWKo507	Golden Gate cloning	Amplify GFPmut2 to add Golden Gate overhang (Rev)	ATTGGTCTCATTTAtttgtat agttcatccatgccatgtg
oCEM207	Golden Gate cloning	Oligo containing <i>pduE</i> ^{1 - 16} (<i>ssPduE</i>), GS linker, and Golden Gate overhangs	tGGTCTCACatgaataccgac gcaattgaatcgatggtccgggac gtattgagccgcGGCAGCTG AGACCa
oCEM208	Golden Gate cloning	Amplify oCEM207 and oCEM266 - 268 to add buffer regions outside of Bsal cut sites (Ewd)	gggtGGTCTCACatga
oCEM209	Golden Gate cloning	Amplify oCEM207 and oCEM266 - 271 to add buffer regions outside of Bsal cut sites (Rev)	gggtGGTCTCAGCTGC
oCEM266	Golden Gate cloning	Oligo containing <i>ssPduE</i> ^{∆ESMV∷ETLI} , GS linker, and Golden Gate overhangs	tGGTCTCACatgaataccgac gcaattGAAACTCTTATTcg ggacgtattgagccgcGGCAG CTGAGACCa
oCEM267	Golden Gate cloning	Oligo containing <i>ssPduE</i> ^{∆ESMV∷QRIV} , GS linker, and Golden Gate overhangs	tGGTCTCACatgaataccgac gcaattCAGCGTATTGTAcg

ggacgtattgagccgcGGCAG CTGAGACCa

oCEM268	Golden Gate cloning	Oligo containing <i>ssPduE</i> ^{∆ESMV∷RQII} , GS linker, and Golden Gate overhangs	tGGTCTCACatgaataccgac gcaattCGTCAGATTATCcg ggacgtattgagccgcGGCAG CTGAGACCa
oCEM265	Golden Gate cloning	Amplify oCEM269 - 271 to add buffer regions outside of Bsal cut sites (Fwd)	gggtGGTCTCACatgg
oCEM269	Golden Gate cloning	Oligo containing <i>ssPduL</i> ^{∆QSTV∷ETLI} , GS linker, and Golden Gate overhangs	tGGTCTCACatggataaagag cttctgGAAACTCTTATTcgt aaagttctcgacgagGGCAGC TGAGACCa
oCEM270	Golden Gate cloning	Oligo containing <i>ssPduL^{ΔQSTV::QRIV},</i> GS linker, and Golden Gate overhangs	tGGTCTCACatggataaagag cttctgCAGCGTATTGTAcgt aaagttctcgacgagGGCAGC TGAGACCa
oCEM271	Golden Gate cloning	Oligo containing <i>ssPduL^{∆QSTV∷RQⅡ},</i> GS linker, and Golden Gate overhangs	tGGTCTCACatggataaagag cttctgCGTCAGATTATCcgt aaagttctcgacgagGGCAGC TGAGACCa
oCEM240	Golden Gate cloning	Amplify <i>pduM</i> to add Golden Gate overhang (Fwd)	AttGGTCTCACATGAACG GCGAAACCCTG
oCEM241	Golden Gate cloning	Amplify <i>pduM</i> and <i>pduM</i> ^{24 - *} to add Golden Gate overhang and GS linker (Rev)	ATTGGTCTCAGCTGCCct cctgcttaattaattgaatattccgcg
oCEM242	Golden Gate cloning	Amplify <i>pduM</i> ^{24 - *} to add Golden Gate overhang (Fwd)	AttGGTCTCACATGACGG CGACGCTGAG

Supplementary Table S4. Number of cells counted per replicate for the puncta counts shown in Figures 3b, 4b, and 5b.

		Cell	s Counted	d per Rep	licate
Genotype	Reporter	1	2	3	Total
WT	ssPduD-GFP	78	69	84	231
WT	ssPduP-GFP	113	79	66	258
WT	ssPduL-GFP	72	142	58	272
WT	PduG-GFP	93	166	106	365
WT	PduO-GFP	160	169	116	445
WT	ssPduM-GFP	211	68	90	369
WT	PduA-GFP	72	66	59	197
∆ssPduD	ssPduD-GFP	69	92	112	273
∆ssPduD	ssPduP-GFP	86	90	103	279
∆ssPduD	ssPduL-GFP	82	70	139	291
∆ssPduD	PduG-GFP	85	71	47	203
∆ssPduD	PduO-GFP	115	118	124	357
∆ssPduD	PduA-GFP	96	95	73	264

∆ssPduP	ssPduD-GFP	45	99	88	232
∆ssPduP	ssPduP-GFP	88	88	74	250
∆ssPduP	ssPduL-GFP	82	130	147	359
∆ssPduP	PduG-GFP	110	118	92	320
∆ssPduP	PduO-GFP	142	65	91	298
∆ssPduP	PduA-GFP	139	44	92	275
∆ssPduL	ssPduD-GFP	77	84	146	307
∆ssPduL	ssPduP-GFP	72	72	126	270
∆ssPduL	ssPduL-GFP	94	82	76	252
∆ssPduL	PduG-GFP	57	59	84	200
∆ssPduL	PduO-GFP	112	73	88	273
∆ssPduL	PduA-GFP	143	155	122	420
∆ssPduDP	ssPduD-GFP	77	105	66	248
∆ssPduDP	ssPduP-GFP	71	117	117	305
∆ssPduDP	ssPduL-GFP	100	120	157	377
∆ssPduDP	PduG-GFP	67	56	146	269
∆ssPduDP	PduO-GFP	70	131	124	325
∆ssPduDP	PduA-GFP	163	66	59	288
∆ssPduDL	ssPduD-GFP	132	69	64	265
∆ssPduDL	ssPduP-GFP	83	74	148	305
∆ssPduDL	ssPduL-GFP	88	101	86	275
∆ssPduDL	PduG-GFP	91	173	83	347
∆ssPduDL	PduO-GFP	81	110	115	306
∆ssPduDL	PduA-GFP	188	94	72	354
∆ssPduPL	ssPduD-GFP	74	97	114	285
∆ssPduPL	ssPduP-GFP	92	93	138	323
∆ssPduPL	ssPduL-GFP	105	62	76	243
∆ssPduPL	PduG-GFP	75	136	99	310
∆ssPduPL	PduO-GFP	70	65	96	231
∆ssPduPL	PduA-GFP	130	127	113	370
∆ssPduDPL	ssPduD-GFP	115	89	113	317
∆ssPduDPL	ssPduP-GFP	79	73	119	271
∆ssPduDPL	ssPduL-GFP	100	93	57	250
∆ssPduDPL	PduG-GFP	95	54	98	247
∆ssPduDPL	PduO-GFP	99	81	134	314
∆ssPduDPL	PduA-GFP	104	108	61	273
∆pduB	ssPduD-GFP	135	214	275	624
∆pduB	ssPduM-GFP	43	104	111	258
∆pduB	PduG-GFP	232	311	233	776
∆pduB	PduA-GFP	40	33	179	252
∆ssPduB	ssPduD-GFP	110	60	172	342
∆ssPduB	ssPduM-GFP	268	108	108	484
∆ssPduB	PduG-GFP	166	53	57	276
∆ssPduB	PduA-GFP	82	124	137	343
∆pduM	ssPduD-GFP	231	205	216	652

∆pduM	ssPduM-GFP	129	168	221	518
∆pduM	PduG-GFP	159	167	157	483
∆pduM	PduA-GFP	149	111	60	320
∆ssPduM	ssPduD-GFP	96	42	108	246
∆ssPduM	ssPduM-GFP	80	92	178	350
∆ssPduM	PduG-GFP	238	119	136	493
∆ssPduM	PduA-GFP	33	50	58	141
∆ssPduMB	ssPduD-GFP	55	76	100	231
∆ssPduMB	ssPduM-GFP	152	52	109	313
∆ssPduMB	PduG-GFP	81	159	55	295
∆ssPduMB	PduA-GFP	68	46	106	220
∆ssPduDPLB	ssPduD-GFP	79	72	127	278
∆ssPduDPLB	ssPduM-GFP	37	113	47	197
∆ssPduDPLB	PduG-GFP	80	84	93	257
∆ssPduDPLB	PduA-GFP	59	46	54	159
∆ssPduDPLM	ssPduD-GFP	103	109	82	294
∆ssPduDPLM	ssPduM-GFP	90	45	91	226
∆ssPduDPLM	PduG-GFP	230	93	161	484
∆ssPduDPLM	PduA-GFP	108	97	88	293
∆ssPduDPLMB	ssPduD-GFP	58	131	132	321
∆ssPduDPLMB	ssPduM-GFP	73	117	88	278
$\Delta ssPduDPLMB$	PduG-GFP	105	140	163	408
∆ssPduDPLMB	PduA-GFP	86	178	208	472

Supplementary Table S5. Designs and results of statistical tests conducted in this study.

Test description	One-factor ANOVA between puncta counts of core reporters expressed in a strain, Bonferroni post-hoc test
Reporters included in test	ssPduD-GFP, ssPduP-GFP, ssPduL-GFP, PduG-GFP, PduO-GFP
F statistic and <i>p</i> value, Δ <i>ssPduD</i>	<i>F</i> = 129.08, <i>p</i> = 1.462×10 ⁻⁸
F statistic and <i>p</i> value, Δ <i>ssPduP</i>	<i>F</i> = 9.41, <i>p</i> = 0.0020
F statistic and <i>p</i> value, Δ <i>ssPduL</i>	<i>F</i> = 7.67, <i>p</i> = 0.0043
F statistic and <i>p</i> value, ΔssPduDP	<i>F</i> = 183.13, <i>p</i> = 2.628×10 ⁻⁹
F statistic and <i>p</i> value, ΔssPduDL	<i>F</i> = 104.58, <i>p</i> = 4.080×10 ⁻⁸
F statistic and <i>p</i> value, ΔssPduPL	<i>F</i> = 4.18, <i>p</i> = 0.0303

F statistic and <i>p</i> value, ΔssPduDPL	<i>F</i> = 27.41, <i>p</i> = 2.278×10 ⁻⁵
Total degrees of freedom	14 (Between groups df = 4, within groups df = 10)
Test description	One-factor ANOVA between puncta counts of different reporters expressed in a strain, Dunnett post-hoc test
Control group	PduA-GFP
Experimental groups	ssPduD-GFP, ssPduM-GFP, PduG-GFP
F statistic and p value, ΔpduM	<i>F</i> = 21.94, <i>p</i> = 3.25×10 ⁻⁴
F statistic and <i>p</i> value, ΔssPduM	<i>F</i> = 25.15, <i>p</i> = 2.00×10 ⁻⁴
F statistic and <i>p</i> value, ∆ssPduDPLB	<i>F</i> = 37.37, <i>p</i> = 4.71×10 ⁻⁵
F statistic and <i>p</i> value, ΔssPduDPLMB	<i>F</i> = 36.12, <i>p</i> = 5.35×10 ⁻⁵
Total degrees of freedom	11 (Between groups df = 3, within groups df = 8)
Control group	ssPduD-GFP
Experimental groups	ssPduM-GFP, PduG-GFP
F statistic and <i>p</i> value, ΔssPduDPLB	<i>F</i> = 0.38, <i>p</i> = 0.70
F statistic and <i>p</i> value, ΔssPduDPLM	<i>F</i> = 0.76, <i>p</i> = 0.51
F statistic and <i>p</i> value, ΔssPduDPLMB	<i>F</i> = 1.62, <i>p</i> = 0.27
Total degrees of freedom	8 (Between groups df = 2, within groups df = 6)
Test description	One-factor ANOVA between puncta counts of PduA-GFP expressed in different strains, Bonferroni post-hoc test
Strains included in test	WT, ΔpduB, ΔssPduB, ΔpduM, ΔssPduM, ΔssPduMB, ΔssPduDPLB, ΔssPduDPLM, ΔssPduDPLMB
F statistic and p value	<i>F</i> = 26.32, <i>p</i> = 2.06×10 ⁻⁸
Total degrees of freedom	26 (Between groups df = 8, within groups df = 18)
Test description	Two-factor ANOVA between puncta counts of reporters expressed in two strains
Strains included in test	Δ ssPduM, Δ pduM
Reporters included in test	ssPduD-GFP, ssPduM-GFP, PduG-GFP, PduA-GFP
<i>F</i> statistic and <i>p</i> value, strains	<i>F</i> = 38.96, <i>p</i> = 1.18×10 ⁻⁵
<i>F</i> statistic and <i>p</i> value, reporters	$F = 38.24, p = 1.59 \times 10^{-7}$

<i>F</i> statistic and <i>p</i> value, interaction	<i>F</i> = 7.17, <i>p</i> = 0.0029
Total degrees of freedom	23 (Between strains df = 1, between reporters df = 3, interaction df = 3, within groups df = 16)
Simple main effects test description	Two-tailed Student's <i>t</i> -test between strains for each reporter
<i>t</i> statistic and <i>p</i> value, ssPduD-GFP	<i>t</i> = 12.31, <i>p</i> = 2.50×10 ⁻⁴
<i>t</i> statistic and <i>p</i> value, ssPduM-GFP	<i>t</i> = 2.21, <i>p</i> = 0.091
<i>t</i> statistic and <i>p</i> value, PduG-GFP	<i>t</i> = 0.76, <i>p</i> = 0.49
<i>t</i> statistic and <i>p</i> value, PduA-GFP	<i>t</i> = 3.06, <i>p</i> = 0.0376
Degrees of freedom, simple main effects <i>t</i> -tests	4

Reporter 1	Reporter 2	p, ∆ssD	p, ∆ssP	p, ∆ssL	p, ∆ssDP	p, ∆ssDL	p, ∆ssPL	p, ∆ssDPL
ssPduD-GFP	ssPduP-GFP	8.65×10 ⁻⁷	1	1	2.01×10 ⁻⁷	1.33×10 ⁻⁷	1	6.84×10⁻⁵
ssPduD-GFP	ssPduL-GFP	8.14×10 ⁻⁷	1	0.3579	8.76×10 ⁻⁹	1.56×10 ⁻⁶	0.130	6.25×10 ⁻³
ssPduD-GFP	PduG-GFP	2.32×10 ⁻⁸	1	1	9.16×10 ⁻⁹	6.03×10 ⁻⁸	1	2.85×10 ⁻⁵
ssPduD-GFP	PduO-GFP	2.77×10 ⁻⁸	4.41×10 ⁻³	0.1545	6.75×10 ⁻⁹	3.57×10 ⁻⁷	1	4.54×10 ⁻³
ssPduP-GFP	ssPduL-GFP	1	1	0.0320	1.28×10 ⁻³	0.0379	1	0.0477
ssPduP-GFP	PduG-GFP	1.03×10 ⁻³	1	1	1.46×10 ⁻³	1	1	1
ssPduP-GFP	PduO-GFP	1.64×10 ⁻³	6.93×10 ⁻³	0.0146	5.96×10 ⁻⁴	1	0.429	0.0687
ssPduL-GFP	PduG-GFP	1.15×10 ⁻³	1	0.0795	1	4.24×10 ⁻³	0.6156	0.0118
ssPduL-GFP	PduO-GFP	1.85×10 ⁻³	0.0322	1	1	0.582	0.0393	1
PduG-GFP	PduO-GFP	1	5.07×10 ⁻³	0.0352	1	0.1284	1	0.0166

Supplementary Table S6. Bonferroni post hoc test from ANOVA used in Figure 3b. This table shows pairwise *p*-values between normalized puncta counts of enzymatic signal sequences and other core reporters in enzymatic signal sequence knockout strains.

Supplementary Figure S1. Optical and fluorescence micrographs of full length PduM and PduM^{24-*} (PduM without its signal sequence) fused to GFPmut2. These constructs were overexpressed both in wild-type (WT) MCP-forming *S. enterica* and in $\Delta pocR$, an assembly-deficient *S. enterica* strain in which all MCP formation is abolished. All scale bars are 1 µm. Similar results were observed across at least three biological replicates of each strain.

Supplementary Figure S2. Predicted hydrophobicity surface of PduE from *S. enterica* LT2. The body of PduE is colored gray, and the signal sequence-like N-terminal motif (ssPduE) is colored in blue, red, and purple. Hydrophilic areas are shown in blue, hydrophobic areas are shown in red, and residues that are predicted to connect ssPduE to the body of PduE are shown in purple and labeled with arrows. This structure was downloaded from the AlphaFold Protein Structure Database and visualized using UCSF Chimera.¹⁻³

Supplementary Figure S3. Anti-GFP western blots of purified MCPs and whole cell lysates from wild-type *Salmonella enterica* overexpressing each signal sequence fused to GFPmut2. Similar results were observed across two independent biological replicates.

Supplementary Figure S4. Coomassie stained SDS-PAGE of MCPs purified from (a) enzymatic signal sequence knockout strains and (b) structural and structural + enzymatic signal sequence knockout strains. Bands corresponding to various Pdu proteins and lysozyme are labeled, and molecular weight markers (MWM) are included on the right side of the gels. Similar results were observed across three technical replicates.

Supplementary Figure S5. Optical and fluorescence micrographs of Pdu MCP core and shell proteins and signal sequences fused to GFPmut2. These constructs were expressed in wild type (WT) *S. enterica*, in $\Delta pocR$, an assembly-deficient strain in which all MCP formation is abolished, and in the enzymatic signal sequence knockout strains. All scale bars are 1 µm. Similar results were observed across at least three biological replicates of each strain.

а																			
ssD-GF	GFP 3.7 ± 0.3		+ 3	4.0 ± 0.2		3.3 ± 0.2		2.74 ± 0.09		3.97 ± 0.08		2.4 0.	2.47 ± 0.09		2.7 ± 0.1		1.75 ± 0.07		
ssP-GFP 4.9 0.2		± 2	2.8 ± 0.4		4.6 ± 0.01		3.3 ± 0.2		2.6 ± 0.3		1.47 ± 0.09		3.3 ± 0.1		1.3 ± 0.2				
ssL-GFP · 3		3.1 0.2	± 2	1.72 0.0	2 ±)4	3.0 ± 0.3		2.7 ± 0.3		1.0 ± 0.1		1.1 0.	8 ± 06	1. 0	9 ± 0.1	1.10 ± 0.03			
PduG-GFP 4.0		± 5	1.3 0.	± 1	± 3.63 : 0.06		2.8 ± 0.2		1.: 0	1.3 ± 1. 0.3 0		1 ± .2	± 2. 2 0		8 ± 1.0 .1 0		00 ± .03		
PduO-GF	۰P	3.3 ± 0.1		1.09 0.0	9 ±)9	3.9 ± 0.3		2.9 0.) ± 1	1.00 ± 0.03		1.1 0.	0 ± 2. 05 0		5 ± 1. .3 (2 ± 0.1		
PduA-GFP		3.8 0.4	± 4	3.1 0.4	± 4	4.0 ± 0.6		2.9 0.	9 ± 1	2.7 0	7 ± .1	1.8 ± 0.1		2. 0	5 ± 0.1	2.1 ± 0.1			
b		Ŵ	Г	∆ss	sD	∆s:	sP	Δs	sL	Δss	sDР	Δs	sDL	Δs	sPL	Δss	DPL		
ssD-GFP	3. (7 ± 0.9 0.3 0.0		92 ± .04	1.1 ± 0.1		2.4 ± 0.1		1.5 0.	62 ± 1.00 03 0.0		0 ± 02	1.05 ± 0.08		1.4 ± 0.2		0.82 0.08	± 3	
PduG-GFP	4. (0 ± 1.0 0.5 0.0		01 ± .02	0.99 ± 0.04		1.81 ± 0.06		1.7 ± 0.2		0.9 0.(7 ± 04	1.04 0.0	1.04 ± 0.04		1.6 ± 0.1		0.90 ± 0.10	
ssM-GFP	4. (7 ± 0.9		94 ± .01	0.96 ± 0.02		2.04 ± 0.07		1.9 0	1.9 ± 0.1		8 ± 1.0° 03 0.0		1 ± 1.5)5 0.3		± 0.94 ± 0.05		± 5	
PduA-GFP	3. (.8 ± 3. 0.4 (6 ±).3	3.3 ± 0.1		3.3 ± 0.5		2.5 ± 0.2		3.1 ± 0.2		2.0 ± 0.3		1.5 ± 0.1		1.8 : 0.2	±	
	2	N.	D	duB	0	- B	Do	dun	Ď.	SM	D50	MB	155F	PLB	Lesol	plm	D35DP1	MB	

Supplementary Figure S6. Means and standard deviations of GFP puncta per cell for (a) strains and reporters shown in the main figure 3b heatmap and (b) strains and reporters shown in the main figures 4b and 5b heatmaps. The values shown in this figure are the means and standard deviations over three biological replicates of at least 30 cells each and are not normalized to wild type puncta counts.

Supplementary Figure S7. Transmission electron micrographs of purified MCPs from (a) strains with two enzymatic signal sequences knocked out and (b) $\Delta ssPduD$ and $\Delta ssPduP$ complemented with overexpressed ssPduD-GFP and ssPduP-GFP. These images are representative of multiple images taken of the same sample, but due to time constraints, cost constraints, and a large number of samples, transmission electron micrographs were only taken of one biological replicate.

Supplementary Figure S8. Optical and fluorescence micrographs of Pdu MCP core and shell proteins and signal sequences fused to GFPmut2. These constructs were expressed in wild type (WT) *S. enterica*, in $\Delta pocR$, an assembly-deficient strain in which all MCP formation is abolished, and in the structural and enzymatic + structural signal sequence knockout strains. All scale bars are 1 µm. Similar results were observed across at least three biological replicates of each strain.

Supplementary Figure S9. Transmission electron micrographs of purified $\Delta ssPduM$, $\Delta pduM$, and $\Delta ssPduDPLM$ MCPs noting the sizes of MCPs over 200 nm in diameter. These images are representative of multiple images taken of the same sample, but due to time constraints, cost constraints, and a large number of samples, transmission electron micrographs were taken of only one biological replicate.

Supplementary References

- 1. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589 (2021).
- 2. Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Res.* **50**, D439–D444 (2022).
- 3. Pettersen, E. F. *et al.* UCSF Chimera—A visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).