Supplementary Note 1: kinetic model of transcription and
processing of pre-ribosomal RNA

In this Supplementary Note, we present a chemical kinetics model to describe the
transcription and processing of pre-ribosomal RNA (pre-rRNA) in the 5eU pulse-chase
experiments. Fitting the model to the sequencing and imaging data allows us to extract
effective reaction rates of transcription and processing, which can be used to infer
steady-state properties such as the relative abundance of rRNA precursors.

Kinetic model for 5eU incorporation into pre-rRNA

In the 5eU pulse-chase experiments, the total amount of pre-rRNA can be measured
by imaging the total 5eU intensity in the nucleus (Figure 1). We model the production
of 5eU-labeled pre-rRNA with a two-step process: first, 5eU needs to be uptaken by
the cell into the nucleus; second, the available 5eU is incorporated into pre-rRNA
during transcription. Both steps are described by linear kinetics:
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where ¢, is the amount of nuclear 5eU available for transcription, and ¢, is the amount
of 5eU in pre-rRNA. k, and k, are the reaction rates of 5eU uptake and transcription,
respectively. The Heaviside step functions 0(¢) and 0(t + t,use ) describe the pulse of
5eU, during t € (—tpyises 0)-

The model can be solved analytically to obtain the total 5eU signal in the pre-rRNA:
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Eq.(1) agrees well with the total 5eU signal measured by imaging, with fitting
parameters k, = 0.052 + 0.006 min~* and k, = 0.051 + 0.026 min~* (Figure 1). The fit
allows us to extract the rate of transcription (of rRNA labeled by 5eU) k,c,, with ¢,
given by
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Kinetic model for rRNA processing

Next, we consider the kinetics of rRNA processing as measured by sequencing in the
pulse-chase experiments. For simplicity, we assume the processes to be limited by
reaction rather than diffusion, which allows ignoring spatial degrees of freedom. We
model each cleavage step as a first order reaction with rate k;, with i = 2,3,4,5. k,
corresponds to the cleavage of junctions 01 and 02, k5 junctions 1 and 2, k, junction
3’, and ks junction 4’. The abundance of individual pre-rRNA species is represented by
c;, with i labeling the next cleavage step. The kinetic model is given by
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where ¢; = ¥2_, ¢; is the total amount of pre-rRNA. We fit the model to the cleavage
fraction of each junction as measured by 5eU-sequencing:
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where f; is the fraction of junction i cleaved as measured by sequencing. Junctions 1
and 2 are averaged to obtain f; ,. Junction 3’ is not used in the fit. The definition of f;;
is slightly different from all the other fractions because the cleavage of junction 01 can
no longer be detected once junction 1 is cut, while the cleavage of junction 2 is
detectable in all the later species.

The kinetic model provides an excellent fit to the data (Figure 2). The best-fit
parameters are k, = 0.061 min™", k; = 0.035 min™ ", k, = 0.046 min™", and ks =
0.046 min~". This also allows us to estimate the relative abundance of individual pre-
rRNA species at steady state:
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The abundance of 18S is slightly different since its processing does not involve cutting
junctions 3’ and 4’. We estimate that it is exported at rate k, ~ 30 min™" after the
cleavage of junctions 1 and 2. The relative abundance of 18S is then given by

E5S1 655655 ~ kY k3t k= 22%: 38%: 40%.

This provides an estimate of the fraction of processed versus unprocessed 18S in the
multiphase reaction-diffusion model (Figure 5 in the main text).

Deconvolving the radial distribution of pre-rRNA

The kinetic model allows us to deconvolve the pre-rRNA distribution measured by 5eU
imaging into the distribution of different pre-rRNA species. Let ¢;(r) be the steady-
state radial distribution of pre-rRNA species i (e.g. i is a particular cleavage state),
which is normalized by fooo ¢; (r)4mr?dr = 1. Assuming that pre-rRNA processing is
reaction limited (i.e. diffusion within each phase is much faster than cleavage), the
radial distribution of the total pre-rRNA (since 5eU-imaging labels all the pre-rRNA
species) ¢(r,t) is given by a linear combination of the individual species:
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where y;(t) = is the fraction of pre-rRNA species i at time t. ¢(r, t) is normalized

Thus, the steady-state distribution of individual species can be obtained by solving a
constrained non-negative least squares problem:

subject to f0°° ¢; (r)4nr?dr = 1 and ¢;(r) = 0 for i running over all pre-rRNA species.

Here, we divide rRNA into early (¢,), middle (¢3), late (¢, + ¢5), and cytoplasmic (¢g)
species. The relative abundance y;(t) is predicted by the kinetic model (Figure 3A).
¢(r,t) is measured by 5eU imaging (Figure 3B). Solving the optimization problem gives
the radial distribution function ¢;(r) (Figure 3C) and probability distribution function
4ntr2¢;(r) (Figure 3D), which demonstrate that pre-rRNA processing correlates with its
outward movement.

A similar deconvolution can be done to the RNA FISH measurements. The normalized
FISH signal for junction i is given by
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where ¢;* is the steady-state abundance of species j given in Eq. (4). Solving Eq. (6) for

¢, (r) gives the spatial distribution of intermediates predicted by FISH, which can be
compared with that from 5eU-seq and imaging (Figure 4).

Figures

Figure 1: Fitting the total 5eU signal in the nucleus to the model (Eq. (1)). The fit only
used data in the first two hours after the pulse.

0.8 I ¢
: t
< 061 {
K=
=]
)
g7
) J
0 0.4
':_3
o
=
0.2
]E — Kkinetic model
¢ data
0.0 T r T T :
0 20 40 60 80 100 120

Time 7 (min)

Figure 2: The kinetic model (Eq. (3)) captures the cleavage fraction of nascent rRNA as
measured by 5eU-sequencing.
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Figure 3: Deconvolving the radial distribution of nascent rRNA
(A) rRNA abundance y;(t) as a function of time, obtained from the kinetic model.

(B) the radial distribution of nascent rRNA at different times, obtained by normalizing
the 5eU imaging data.

(C—D) the radial distribution function ¢;(r) (C) and probability distribution function
4ntr2¢;(r) (D) of individual rRNA species, inferred by solving the optimization problem
Eq. (5).
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Figure 4: The radial distribution of early, middle, and late pre-rRNA species as inferred
from 5eU-imaging (top) and FISH (bottom). For 5eU-imaging, the distribution is
inferred by solving the optimization problem Eq. (5). For FISH, the spatial distribution
is obtained by solving Eq. (6) for ¢;(r). The radius of the circles is 0.9 um.
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