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Supplementary Methods 

 

Functional Magnetic Resonance Imaging (fMRI) Processing: As in our prior work15,20, we 

leveraged data from the ABCC Collection 3165 processed with the ABCD-BIDS pipeline17 

which included distortion correction and alignment, Advanced Normalization Tools (ANTS21) 

denoising, FreeSurfer22 segmentation, and surface and volume registration with rigid-body 

transformation23. Following this, further processing was done using the DCAN BOLD 

Processing (DBP) pipeline which includes de-meaning and de-trending of fMRI data with 

respect to time, denoising using a general linear model with regressors for signal and movement, 

bandpass filtering between 0.008 and 0.09 Hz using a 2nd order Butterworth filter, applying the 

DBP respiratory motion filter (18.582–25.726 breaths per minute), and applying DBP motion 

censoring (frames exceeding an FD threshold of 0.2 mm or failing to pass outlier detection at +/− 

3 standard deviations were discarded). We then concatenated cleaned time series data for resting-

state and task-based scans as in previous work15,20 to maximize the data available for analysis. 

We excluded participants who had fewer than 600 remaining TRs after motion censoring, as well 

as those who failed ABCD quality control for their T1 or resting-state fMRI scan.  

 

 

Multivariate classification model training and testing:  Prior to model training and testing, we 

eliminated siblings from training and testing subsamples to avoid leakage of family structure 

across subsamples, yielding a total sample of n = 6,437 (discovery: n = 3240, 50.46% female; 
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replication: n = 3197, 49.13% female) for all multivariate classification analyses. Before 

beginning our 2F-CV procedure, we first split the data between the matched discovery and 

replication samples according to the previously defined ABCD Reproducible Matched 

Samples20,22. Then, separately within the discovery and replication samples, we performed 2F-

CV as follows (see Figure S1 in Shanmugan et al.12 for a visual depiction of our nested 2F-CV 

procedure, here applied separately to matched discovery and replication samples). For the outer 

2F-CV loop, we trained and tested the SVM model using split-half subsets separately within 

either the discovery or replication sample. After training the model in one half of the data and 

testing its performance in the other held-out half of the data, we then repeated this procedure in 

reverse. Prior to model training, covariates for age, site, and in-scanner head motion (mean 

fractional displacement) were regressed from each feature, separately in the training and testing 

sets to avoid leakage. To determine whether classification accuracy was driven by the choice of 

split, we repeated this analysis using 100 permuted splits of the data, each time randomly 

dividing the discovery and replication samples into independent training and testing sets.  

Inner 2F-CV loops were used to determine the optimal tuning parameter C by further 

randomly dividing the training set of the outer 2F-CV loop into two subsamples. The first split-

half subsample was used to train the SVM model with each of 15 possible C parameter values: 

[2-5, 2-4, … , 28, 29]. These models were each tested in the second held-out subsample as in our 

previous work12. We then repeated this procedure using the second subsample for training and 

the first subsample for testing, calculating the average held-out classification accuracy across the 

two subsamples for each value of the parameter C. The optimal C parameter value was selected 

as the C with the highest average held-out classification accuracy, and this optimal C parameter 

was used to train the models within the outer 2F-CV loop. It is worth noting that even the 
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smallest subdivisions of the data in our nested 2F-CV procedure still contained over one 

thousand participants each at a minimum, yielding sufficient statistical power to train and test 

our machine learning models using the most conservative possible (fewest folds) cross-validation 

approach. 

 

Evaluation of Feature Importance:  To evaluate the relative importance of each feature within 

the SVM model, we first extracted feature weights for each network loading at each vertex and 

averaged these weights across the 100 randomly permuted splits of the data. Then, to avoid 

challenges with interpretation due to the covariance structure among feature weights, we applied 

the Haufe transformation28 to invert the models prior to feature weight interpretation. Next, we 

averaged the Haufe-transformed weight maps across the training and testing sets from the outer 

loop of the matched samples 2F-CV procedure. As in our univariate analysis, spatial maps of 

SVM weights were compared across samples using spin-based permutation testing27.  

 

 

Analysis of gene expression: Details on gene processing, including sample assignment, probe 

selection, gene information reannotation, data filtering, data normalization, and gene filtering are 

described in Arnatkeviciute et al.30. Given that just two out of six donor brains contained samples 

from both the left and right hemispheres, we restricted gene expression and chromosomal 

enrichment analyses to the left hemisphere, thus ensuring maximum sampling of probes30. 

Consistent with our prior work12, genes were assigned to each chromosome according to 

annotation by Richiardi et al.34, and we calculated the median ranks for 24 non-overlapping gene 

sets which included autosomal chromosomes 1-22 and sex chromosomes X and Y.  We then 
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compared the calculated median rank within each chromosomal gene set to a same-sized null 

distribution of median ranks calculated from 1,000 non-parametric permutations in which the 

original ranked list was randomly reordered. The corresponding p-value from this permutation 

test was calculated as the proportion of permutations with a more extreme value than the median 

rank of the true data and was not further corrected for multiple comparisons in line with prior 

studies using these methods12,31.  

As regional differences in the spatial pattern of gene expression may reflect regional 

differences in the cellular composition of each cortical area31, we also investigated cell-type-

specific gene enrichments to probe the convergent and divergent patterns of discrete underlying 

gene sets, as in our prior work12. We again used ranked gene lists and nonparametric permutation 

testing as in our chromosomal enrichment analyses to test whether the spatial pattern of a cell-

type-specific gene set was non-randomly associated with the spatial pattern of sex differences in 

functional topography. Gene sets for each cell type were first categorized according to prior 

work31. We then applied previously-determined, finer-grained neuronal subclass assignments35 to 

obtain a more nuanced understanding of cytoarchitecture. In both analyses, only brain-expressed 

genes31 defined by expression levels in the Human Protein Atlas36,37 were considered. To test the 

relationship between the spatial pattern of sex differences in PFN topography and the spatial 

patterns of gene expression for a given gene set in each ranked gene list, we quantified the 

degree of spatial correspondence using the median gene set rank as in prior studies12,31–33.  
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Supplementary Figures 

 

Figure S1. Flow diagram depicting data inclusion and exclusion. Participants from the 
Adolescent Brain Cognitive Development (ABCD) Study®16 baseline assessment (n = 11,878) 
were drawn from the ABCD BIDS Community Collection (ABCC, ABCD-316517). Participants 
were excluded for having incomplete data or excessive head motion. The matched samples were 
then split into discovery and replication samples according to the ABCD Reproducible Matched 
Samples (ARMS17). Siblings were excluded from the discovery and replication sets separately to 
avoid leakage across subsamples during two-fold cross-validation, yielding a total of n = 3,240 
participants in the discovery sample and n = 3,197 participants in the replication sample. 
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Figure S2. Univariate analyses identify significant sex differences in association networks. 
A GAM was fit at each vertex to evaluate the association between sex and network loadings. 
Age, site, and head motion were included as covariates with age modeled using a penalized spine 
and site modeled as a random effect. Multiple comparisons were accounted for by controlling the 
false discovery rate (Q<0.05). Significant vertices are shown for each of the 17 PFNs. 
 
 
 



 

 
 
Figure S3. Univariate analysis identifies significant sex differences in association networks 
in both discovery dataset and replication dataset. A GAM was fit at each vertex to evaluate 
associations between sex and PFN network loadings. Age, site, and motion were included as 
covariates with age modeled using a penalized spine and site modeled as a random effect. 
Multiple comparisons within each network were accounted for by controlling the false discovery 
rate (Q<0.05). The number of significant vertices for each network category was summed 
separately for males and females (e.g., the “DM” bar represents the number of vertices with 
significant sex effects in networks 1, 8, and 12). Sex differences were greatest in association 
networks in both the discovery (A) and replication (B) samples. Abbreviations: FP = Fronto-
Parietal; VA = Ventral Attention; DA = Dorsal Attention; DM = Default Mode; AU = Auditory; 
SM = Somatomotor; VS = Visual; F = Female; M = Male.  



 

 
 
Figure S4. Univariate analysis identifies significant sex differences in association networks 
in the replication sample. We summed the absolute sex effect across 17 networks to examine 
the overall effect of sex at a given vertex within the replication sample. Brain areas with the 
greatest sex effects are found in association cortices. 
 
 
 
 
 
 
 
 
 



 

 
 

 
 
Figure S5. Support vector machines (SVMs) accurately classify participant sex from PFN 
functional topography in the replication dataset. SVMs were trained with nested two-fold 
cross-validation (2F-CV) to classify participants’ sex (male or female) based on PFN functional 
topography. (A) Depiction of the average ROC curve from 100 SVM models with permuted 
split-half train-test participant assignments. Average area under the ROC curve was 0.96; 
average sensitivity and specificity were 0.87 and 0.87, respectively. Inset histogram shows the 
null distribution of classification accuracies where participant sex was randomized, with the 
average accuracy from true (non-randomized) data represented by the dashed red line. (B) The 
absolute value of the feature weights were summed at each location across the cortex, revealing 
that association cortices contributed most to the classification of sex. (C) Positive and negative 
feature weights were summed separately across all vertices in each network to identify which 
networks contributed most to the classification. Association networks, namely the fronto-
parietal, ventral attention, and default mode networks, were identified as the most important 
contributors for classification. (D) Hexplot shows agreement between the absolute summed 
weights from the multivariate SVM analysis and loadings from the mass univariate generalized 
additive model analysis in the discovery sample (r = 0.82; pspin  < 0.001). Abbreviations: FP = 
Fronto-Parietal; VA = Ventral Attention; DA = Dorsal Attention; DM = Default Mode; AU = 
Auditory; SM = Somatomotor; VS = Visual; F = Female; M = Male. 
  



 

 
 
 
 

 
Figure S6. Comparison of support vector machine (SVM) feature weights across samples. 
The hexplot shows agreement between discovery and replication samples in the association 
between sex and network loadings from the SVM models (r = 0.93; pspin  < 0.001). 
  



 

 
Figure S7. Alignment between sex differences in PFN topography and expression of X-
linked genes within replication dataset. We compared the absolute summed Z-scores from our 
univariate models to gene expression data from the Allen Human Brain Atlas parcellated to the 
Schaefer1000 atlas. Point range plots show the median and SE rank of each chromosomal or cell-
type gene set. Nonsignificant enrichments are shown by the dashed lines. (A) Cortical areas with 
the greatest sex differences in functional topography were enriched in expression of X-linked 
genes. (B) Cell-type-specific enrichment analyses with cell types assigned via the neuronal 
subclass assignments determined by Lake et al.32 Regions with prominent sex differences in PFN 
topography were enriched in gene sets related to astrocytes and excitatory neurons, such as Ex1, 
Ex5b, Ex2, Ast, Ex8, and Ex3e. Abbreviations: Ast = astrocyte; Ast_cer = cerebellar-specific 
astrocytes; End = endothelial cells; Ex = excitatory neuron; Gran = cerebellar granule cells; In = 
inhibitory neuron; Mic = microglia; Oli = oligodendrocytes; OPC = oligodendrocyte progenitor 
cells; OPC_Cer = cerebellar-specific oligodendrocyte progenitor cells; Per = pericytes; Purk = 
cerebellar Purkinje cells. 
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