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Fig A. ucsEGs PPI enrichment. PPI networks built through STRING [1] using the ucsEGs computed
for Kidney (A), Lung (B) and Brain (C). The nodes are coloured according to the enriched terms shown in
the associated tables. The significant (False Discovery Rate, FDR < 0.05) non-redundant terms were ranked
by the number of enriching genes (Count in the network: no. of enriching genes/no. of genes annotated for
the term). The edges were built with all the STRING information except “Text mining".
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Fig B. Disease-specific ucsEGs. Diagram representing disease-specific (Non-Small-Cell Lung Cancer
NSCLC and Lung Neuroendocrine Tumour NET) and lung ucsEGs intersections by ADaM, FiPer, and
HELP labelling. Each row represents the set of ucsEGs for each labelling. The last row reports the number
of genes resulting from the intersections. The last column on the right indicates the number of ucsEGs for
each set, with the dark grey shadow representing the corresponding histogram.
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Fig C. Reactome pathway enrichment of lung NET-specific EGs. The significantly enriched
pathways are shown on the y axis; the color bar indicates the significance in terms of False Discovery Rate
(FDR)-adjusted p-value, while the dot size indicates the number of genes in the input set found in the
pathway. On the x axis the Fold Enrichment, namely the percentage of genes in the input list annotated in a
pathway divided by the corresponding percentage in the background human genes.
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Fig D. Differential expression of NSCLC ucsEGs. The boxplots show the expression levels of the eight
NSCLC-specific EGs in the two NSCLC subtypes, LUAD and LUSC, and normal samples, as collected in
OncoDB. The significance of the average difference between the two populations was evaluated with a
Student’s t-test using the OncoDB platform tool for the differential expression analysis. The legends indicate
the colours associated with the groups and the number of samples in brackets.
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Fig E. Boxplots of the generic Human Bio attribute values for the E, aE, and sNE classes. The
stars on the top indicate the significance of the Wilcoxon test for each pair of comparisons (**** ≤ 0.0001,
*** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05, ns = not significant). In favour of visualisation, the values have been
signed-square-root transformed.
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Fig F. Boxplots of the context-specific Bio attribute values of the three tissues investigated for
the E, aE, and sNE classes. The stars on the top indicate the significance of the Wilcoxon test for each
pair of comparisons (**** ≤ 0.0001, *** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05, ns = not significant). The Driver
genes attributes were not shown as having small ranges of values and poor statistics. In favour of
visualisation, the values have been signed-square-root transformed.
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Fig G. Random extraction of the intermediate class. A) For each generic attribute (taken as an
example from the Kidney dataset) and cs attributes from the three tissues, 100 random partitions of 3000
genes from the sNE groups have been extracted and compared to the rest of the sNE genes. For each tissue,
the 100 partitions were fixed. Wilcoxon test was performed to evaluate the statistical significance (p-value)
and verify whether the groups come from the same population for each pair of comparisons (**** ≤ 0.0001,
*** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05, ns = not significant). The table indicates the number of partitions for each
attribute and for each significance level indicated in the column header. The level of significance given by
comparing aE vs sNE, and indicated in Figs E and F, was also shown by the orange text "aE". B) The
histogram shows the number of attributes (x-axis) for which the partitions are simultaneously significant.
The count of partitions (y-axis) for each frequency is also shown on the bars. C) The line plot shows the
mean of -log10(p-value) and the standard deviation from Wilcoxon tests between different percentages of aE
mixed with sNE genes (to 3000 genes) obtained with 10 iterations and the rest of sNE genes for some
attributes indicated in the legend.
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Fig H. Intersection of Gene Families and Biological Processes enrichment among E, aE and
sNE genes. The Venn diagrams show the intersection of Gene Families (gf) and Gene-Ontology Biological
Processes (BP) enriched by E, aE or sNE genes among the three tissue contexts under study (A-C; E-G), as
well as the intersection of Gene Families (gf) and Gene-Ontology Biological Processes (BP) enriched by genes
of the three classes in one context (here Kidney tissue as example) (D and H). The number of genes
composing each set is shown in brackets.
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Fig I. Feature importance analysis. Bio+CCcfs attributes importance calculated by training a
sveLGBM model on the entire dataset. The plot cuts-off feature with importance lower than 0.25 %.
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Table A. Collected genomic, transcriptomic, epigenetic, functional and evolutionary features of
genes. (cs) indicates the context-specific attributes.

Category Attribute Description Data Source

Structure
Gene length Gene End (bp) - Gene Start (bp) biomaRt R package

v2.54 [2]GC content % of Guanosine + Citosine
Transcripts count No. of transcripts/gene

Expression

GTEX_* (cs) Gene median expression in the con-
text of interest

GTEX portal [3]

UP_tissue Count of annotated expression in
tissues

DAVID [4]

OncoDB_expression
(cs)

Differential Gene Expression in can-
cer

OncoDB [5]

HPA_* (cs) Normalised transcript expression
summarised per gene in the con-
text of interest

HPA [6]

Function &
Localisation

GO-MF No. of GO-MF annotations

DAVID [4]
GO-BP No. of GO-BP annotations
GO-CC No. of GO-CC annotations
KEGG No. of KEGG pathway annotations
REACTOME No. of REACTOME pathway an-

notations
CCcfs Subcellular localisation confidence

score
COMPARTMENTS
[7]

Interaction

BIOGRID No. of BIOGRID interactions an-
notations DAVID [4]

UCSC_TFBS Transcription factors binding sites
prediction

Conservation Orthologs count No. of orthologous/gene NCBI [8]

Association
with Disease

Driver_genes_MUT
(cs)

No. of predictions as ’MUT driver’
in cancer DriverDBv3 [9]

Driver_genes_CNV
(cs)

No. of predictions as ’CNV driver’
in cancer

Driver_genes_MET
(cs)

No. of predictions as ’Methylation
driver’ in cancer

Gene-Disease associa-
tion

No. of associations with diseases DisGeNet [10]

Table B. Comparison of classifiers on prediction in “E vs NE” problem in the Kidney case
study. Ranking of methods is based on the Balanced Accuracy metric. All methods with “sve” prefix are
our meta-learning model proposal with a different base classifier as member of the ensemble. All other
methods are provided by the PyCaret library. All models where trained with Bio+CCcfs+N2V attributes of
genes. CPU times are measured on Apple M2 with 16GB RAM.

Model Accuracy ROC-AUC Sensitivity Specificity BA TT (Sec)
sveLGBM 0.850100 0.951200 0.914800 0.845000 0.879900 14.608000
sveADA 0.856900 0.945400 0.901100 0.853500 0.877300 13.146000
sveET 0.866600 0.936400 0.852700 0.867600 0.860200 3.588000
sveRF 0.883200 0.938600 0.832000 0.887200 0.859600 3.008000
Random Forest Classifier 0.810200 0.903600 0.830800 0.808600 0.819700 0.916000
Extra Trees Classifier 0.826100 0.871100 0.761800 0.831100 0.796500 0.758000
Linear Discriminant Analysis 0.945500 0.931800 0.619100 0.970900 0.795000 6.512000
sveLDA 0.740800 0.856100 0.837800 0.733300 0.785500 5.074000
Logistic Regression 0.899400 0.842400 0.627200 0.920500 0.773900 1.572000
SVM - Linear Kernel 0.885200 0.827900 0.600700 0.907300 0.754000 19.138000
Ada Boost Classifier 0.943700 0.928900 0.492500 0.978700 0.735600 4.790000
Light Gradient Boosting Machine 0.947900 0.940600 0.474100 0.984700 0.729400 2.174000
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Table C. sveLGBM tuning of parameters with Optuna library [11]. Optimiziation was carried out
on “E vs NE” classification problem with a stratified 5-fold cross-validation with Bio+CCcfs+N2V features
by maximising BA metric.

Trial no. boosting_type learning_rate n_estimators n_voters BA
37 gbdt 0.094505 200 13 0.893151
15 gbdt 0.098300 140 10 0.891459
44 gbdt 0.076452 200 12 0.890954
43 gbdt 0.075168 200 12 0.890826
41 gbdt 0.078591 200 13 0.890602
33 gbdt 0.098020 180 13 0.890241
31 gbdt 0.059095 160 11 0.889936
34 gbdt 0.085756 200 13 0.889739
22 gbdt 0.063759 180 9 0.889298
30 gbdt 0.054934 160 12 0.889146
36 gbdt 0.076796 200 14 0.889028
23 gbdt 0.065602 160 9 0.888994
42 gbdt 0.076634 200 16 0.888759
40 gbdt 0.044127 180 10 0.888419
4 gbdt 0.088891 140 15 0.888175
39 gbdt 0.098960 140 14 0.887998
49 gbdt 0.057674 200 16 0.887826
11 gbdt 0.059871 180 15 0.886745
47 gbdt 0.049777 200 14 0.886566
29 gbdt 0.042902 180 9 0.886259
32 gbdt 0.052158 140 11 0.885557
... ... ... ... ... ...
5 gbdt 0.001175 100 7 0.500000

Table D. Classification performance metrics adopted in the experiments. They are defined in
terms of the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN), where the first class in each binary task (e.g. class E in the “E vs NE” classification task) is assumed
as the positive class.

Metric Description Formula
Accuracy % of correctly classified samples TP+TN

TP+FP+FN+TN
Specificity (TNR) % of negative samples correctly classified TN

TN+FP
Sensitivity (TPR) % of positive samples correctly classified TP

TP+FN
Balanced Accuracy (BA) Average of Specificity and Sensitivity 1

2 (Sensitivity + Specificity)
ROC-AUC Area Under the Receiver Operating

∫ 1
0 Sensitivity(x)dx,

Characteristic curve x = 1 − Specificity
CM Confusion Matrix TN FP

FN TP

Apart from the confusion matrix, all the metrics assume values in [0,1], except ROC-AUC, which ranges in [0.5,1];
higher values indicate better performance.
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Table E. “E vs NE” classification performance based on HELP labelling. (A) Kidney, (B) Lung,
(C) Brain tissues, and (D) Human. Averages and errors of metrics are obtained on fifty measurements related
to ten times iterated 5-fold cross-validation. The averaged Confusion Matrix (CM) is also shown.

feature Bio N2V CCcfs Bio+CCcfs Bio+CCcfs+N2V
(A) Kidney

ROC-AUC 0.914±0.007 0.929±0.008 0.940±0.008 0.956±0.005 0.958±0.006
Accuracy 0.795±0.007 0.845±0.006 0.861±0.006 0.877±0.005 0.880±0.005

BA 0.832±0.010 0.854±0.013 0.867±0.012 0.887±0.010 0.892±0.009
Sensitivity 0.875±0.020 0.864±0.027 0.873±0.023 0.899±0.020 0.905±0.019
Specificity 0.789±0.007 0.843±0.007 0.861±0.006 0.876±0.005 0.878±0.005

CM
pred NE E

tr
ue NE 12618.1 3375.9

E 155.3 1086.7

pred NE E

tr
ue NE 13486.2 2507.8

E 169.0 1073.0

pred NE E

tr
ue NE 13763.9 2230.1

E 157.7 1084.3

pred NE E

tr
ue NE 14003.7 1990.3

E 125.2 1116.8

pred NE E

tr
ue NE 14041.4 1952.6

E 117.8 1124.2
(B) Lung

ROC-AUC 0.918±0.006 0.931±0.008 0.941±0.006 0.957±0.005 0.959±0.005
Accuracy 0.800±0.007 0.852±0.005 0.845±0.014 0.878±0.005 0.882±0.005

BA 0.839±0.010 0.857±0.011 0.864±0.011 0.891±0.009 0.895±0.009
Sensitivity 0.884±0.019 0.863±0.022 0.885±0.031 0.905±0.017 0.910±0.018
Specificity 0.793±0.008 0.851±0.005 0.842±0.017 0.876±0.005 0.879±0.005

CM
pred NE E

tr
ue NE 12701.7 3308.3

E 142.2 1081.8

pred NE E

tr
ue NE 13619.7 2390.3

E 168.2 1055.8

pred NE E

tr
ue NE 13486.1 2523.9

E 140.9 1083.1

pred NE E

tr
ue NE 14021.9 1988.1

E 116.0 1108.0

pred NE E

tr
ue NE 14078.9 1931.1

E 109.7 1114.3
(C) Brain

ROC-AUC 0.916±0.006 0.932±0.007 0.942±0.007 0.958±0.005 0.960±0.005
Accuracy 0.801±0.006 0.852±0.007 0.847±0.014 0.882±0.006 0.883±0.006

BA 0.833±0.008 0.859±0.011 0.866±0.011 0.893±0.008 0.895±0.008
Sensitivity 0.869±0.019 0.868±0.024 0.888±0.031 0.906±0.019 0.910±0.018
Specificity 0.796±0.007 0.850±0.008 0.844±0.017 0.880±0.007 0.881±0.007

CM
pred NE E

tr
ue NE 12747.1 3262.9

E 161.4 1072.6

pred NE E

tr
ue NE 13612.7 2397.3

E 162.7 1071.3

pred NE E

tr
ue NE 13512.1 2497.9

E 137.7 1096.3

pred NE E
tr

ue NE 14094.4 1915.6
E 116.2 1117.8

pred NE E

tr
ue NE 14104.2 1905.8

E 111.1 1122.9
(D) Human

ROC-AUC 0.909±0.008 0.912±0.010 0.942±0.008 0.957±0.006 0.957±0.007
Accuracy 0.790±0.008 0.822±0.007 0.843±0.006 0.878±0.007 0.877±0.007

BA 0.825±0.011 0.831±0.012 0.867±0.011 0.889±0.011 0.888±0.013
Sensitivity 0.865±0.022 0.842±0.023 0.896±0.021 0.903±0.020 0.902±0.023
Specificity 0.784±0.009 0.820±0.007 0.839±0.007 0.876±0.007 0.875±0.007

CM
pred NE E

tr
ue NE 12541.8 3450.2

E 167.7 1074.3

pred NE E

tr
ue NE 13113.1 2878.9

E 196.0 1046.0

pred NE E

tr
ue NE 13418.7 2573.3

E 129.3 1112.7

pred NE E

tr
ue NE 14003.3 1988.7

E 120.8 1121.2

pred NE E

tr
ue NE 13987.9 2004.1

E 121.4 1120.6

Table F. Comparison of sveLGBM and CLEARER on OGEE+DEG labelling for the prediction
of cEGs. Hs Features refer to the features collected for Homo Sapiens EGs prediction presented in the
work [12]. sveLGBM hyperparameters: n_voters=16, learning_rate=0.1, n_estimators=200,
boosting_type=’gbdt’. CLEARER hyperparameter: RF n_estimators=500 as in [12].

method sveLGBM (HELP) RandomForest (CLEARER)
Bio+CCcfs+N2V Hs Features

metric reduced by lasso
ROC-AUC 0.9728±0.0051 0.9682±0.0024
Accuracy 0.9111±0.0068 0.9625±0.0025
BA 0.9130±0.0144 0.7844±0.0123
Sensitivity 0.9152±0.0359 0.5834±0.0240
Specificity 0.9108±0.0090 0.9854±0.0019

CM
pred E NE

tr
ue E 755 70

NE 1177 12019

pred E NE

tr
ue E 486 347

NE 200 13543
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Table G. Comparison of sveLGBM, DeepHE and EPGAT predictions on HELP labelling for
Kidney-, Lung-, Brain-specific EGs, and cEGs (Human). EPGAT running with PPI input and
sublocalisation attributes. EPGAT hyper-parameters are optimised by using the provided tuning function.
DeepHE running with DNA sequencing extracted features plus node2vec embedding 120-sized features
extracted from the PPI. HELP running with Bio+CCcfs + N2V embedding 120-sized features extracted from
the PPI.

Kidney Lung
metric EPGAT DeepHE sveLGBM EPGAT DeepHE sveLGBM
AUC 0.902±0.007 0.921±0.016 0.957±0.006 0.913±0.009 0.916±0.021 0.958±0.005
Acc. 0.834±0.028 0.845±0.016 0.894±0.004 0.843±0.032 0.845±0.023 0.895±0.004
BA 0.824±0.012 0.845±0.016 0.890±0.009 0.832±0.014 0.845±0.023 0.892±0.010

Sens. 0.813±0.045 0.866±0.02 0.886±0.019 0.819±0.051 0.877±0.029 0.889±0.020
Spec. 0.835±0.033 0.824±0.024 0.894±0.004 0.845±0.037 0.812±0.028 0.895±0.005

Brain Human
metric EPGAT DeepHE sveLGBM EPGAT DeepHE sveLGBM
AUC 0.908±0.012 0.921±0.009 0.959±0.005 0.880±0.017 0.91±0.02 0.957±0.007
Acc. 0.857±0.022 0.847±0.012 0.898±0.006 0.784±0.043 0.83±0.027 0.891±0.006
BA 0.833±0.008 0.847±0.012 0.894±0.009 0.798±0.020 0.83±0.027 0.886±0.013

Sens. 0.806±0.027 0.884±0.022 0.890±0.019 0.815±0.063 0.898±0.037 0.880±0.024
Spec. 0.861±0.026 0.811±0.024 0.898±0.006 0.781±0.050 0.762±0.047 0.892±0.007

Table H. Optimal hyper-parameters of sveLGBM, DeepHE and EPGAT methods used in
comparison of Table G.

method Kidney Lung Brain Human

EPGAT

epochs=1000,
lr=0.005,
weight_decay=0.0005,
h_feats=[8,1],
heads=[8,1],
dropout=0.4

epochs=1000,
lr=0.005,
weight_decay=0.0005,
h_feats=[8,1],
heads=[8,1],
dropout=0.4

epochs=1000,
lr=0.00057,
weight_decay=0.000247,
h_feats=[32,8, 1],
heads=[8,4,1],
dropout=0.137

epochs=1000,
lr=0.0023,
weight_decay=0.000126,
h_feats=[64,1],
heads=[4,1],
dropout=0.34

DeepHE epochs=50, batch_size=32, dropout=0.2, h_feats=[128,256,512], folding=1
sveLGBM n_voters=13, n_estimators=200, boosting_type=gbdt, learning_rate=0.1

Table I. “E vs sNE”, “E vs aE” and “aE vs sNE” classification performance based on HELP
labelling. The case study is Kidney tissue using Bio+CCcfs+N2V features. Averages and errors of metrics
are obtained on fifty measurements related to ten times iterated 5-fold cross-validation. The averaged
Confusion Matrix (CM) is also shown.

problem E vs sNE E vs aE aE vs sNE
ROC-AUC 0.973±0.004 0.895±0.009 0.751±0.010
Accuracy 0.915±0.005 0.797±0.012 0.713±0.007

BA 0.915±0.007 0.813±0.012 0.687±0.010
Sensitivity 0.916±0.016 0.849±0.021 0.644±0.019
Specificity 0.915±0.005 0.776±0.016 0.729±0.008

CM
pred sNE E

tr
ue sNE11790.0 1096.0

E 104.8 1137.2

pred aE E

tr
ue aE 2412.3 695.7

E 187.7 1054.3

pred sNE aE

tr
ue sNE9396.4 3489.6

aE 1106.2 2001.8
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