
HELP: A computational framework for labelling and predicting
human common and context-specific essential genes
Ilaria Granata1* ID , Lucia Maddalena1 ID , Mario Manzo2 ID , Mario Rosario Guarracino3,4 ID , Maurizio
Giordano1 ID

Supplementary Methods

A Base estimator choice for SVE
In this supplementary section, we report the experience acquired on tuning and comparing, by using the
PyCaret toolset [1], the performance of several classifiers on the binary classification problem of E and NE
genes, which is characterised by a strong unbalancing of class proportions. The experiment was conducted on
the kidney tissue case study. The list of classifiers considered in the comparison includes:

1. classifiers from the PyCaret library: Random Forest Classifier, Extra Tree Classifier, Linear
Discriminant Analysis, Logistic Regression, SVM (with linear kernel), AdaBoost Classifier, Light
Gradient Boosting Machine (LGBM);

2. our splitting voting ensemble method applied each time with a different base classifier from this list:
Random Forest Classifier (sveRF), Extra Tree Classifier (sveET), Linear Discriminant Analysis
(sveLDA), AdaBoost Classifier (sveADA), and Light Gradient Boosting Machine (sveLGBM).

Before comparison, all methods were tuned in their parameters using the PyCaret tune_model facility, using
BA as reference metric. After tuning, the optimised models were applied in a stratified 5-fold cross-validation
on the case-study dataset. The performance measurements are reported in Table B in S1 Text (see
https://github.com/giordamaug/HELP/blob/v2.0/notebooks/compare_models.ipynb for
reproducibility).

B sveLGBM classifier tuning
To identify the best-performing parameters configuration we performed the hyper-parameters optimisation of
sveLGBM by using the Optuna library [2]. The more critical hyper-parameter to set is the number of voters,
i.e. the number of classifiers into which the training samples of the majority class are split uniformly. The
choice of distributing those samples, during training, among the equal classifiers (voters) of the ensemble has
the rationale of solving the strong unbalancing of class labels in the training set. Several other
hyper-parameters need to be set, in particular, those configuring each identical LGBM member of the
ensemble, such as the type of boosting (default gbdt), the learning rate (default 0.1), and the number of
estimators (indeed, each LGBM is on its own and ensemble of decision trees). Due to the large number of
parameters, we decided to explore the optimisation of sveLGBM by using the Optuna library [2] with
boosting type varying in: gbdt, dart); a learning rate varying from 0.001 to 0.1; a number of voters in the
ensemble from 1 to 20 members, and a number of estimators for the LGBM model ranging from 60 to 200.
The objective function calculates a 5-fold stratified cross-validation on the input dataset (Bio+CCcfs+N2V
attributes), and it maximises the BA metric. The results of the optimisation step are reported in Table C in
S1 Text (see https://github.com/giordamaug/HELP/blob/v2.0/notebooks/optuna.ipynb for
reproducibility).

C Comparison with CLEARER
CLEARER [3] was designed to predict cellular (CEG) and organismal essential genes (OEG), using the gene
labels collected in OGEE [4] and DEG [5] databases. The comparison of sveLGBM with CLEARER

September 10, 2024 1/3

https://orcid.org/0000-0002-3450-4667
https://orcid.org/0000-0002-0567-4624
https://orcid.org/0000-0001-8727-9865
https://orcid.org/0000-0003-2870-8134
https://orcid.org/0000-0001-9917-7591
https://github.com/giordamaug/HELP/blob/v2.0/notebooks/compare_models.ipynb
https://github.com/giordamaug/HELP/blob/v2.0/notebooks/optuna.ipynb


predictor was carried out by training both models on those labels with different input data: for the former,
we used as input the Bio+CCcfs+N2V features, while for the latter, we used features presented by
CLEARER’s authors and we applied feature selection by Lasso method, as described in [3]. In the case of
CLEARER, we adopted the RandomForest classifier parameters as indicated in the publicly available code
available at https://github.com/ThomasBeder/CLEARER. We performed a one-shot feature elimination
step on the whole input dataset. With the Lasso method, we reduced the feature space size by one order of
magnitude (from 41635 to 4067 features). Regarding our feature set, we did not accomplish feature
elimination. Indeed, as demonstrated in section E in S2 Text, the reduction of the Bio+CCcfs feature set
discussed here does not imply performance improvements. For both models we carried out a stratified 5-fold
cross-validation on the input dataset (with the same random seed for partitioning). At each validation fold,
while sveLGBM was applied on the unbalanced train/test data, in the case of CLEARER, a data
pre-processing is done to balance the dataset by using SMOTE [6] resampling method.

It should be noted that due to the intersection of genes with attributes and this label in the OGEE-DEG
nomenclatures, in CEG prediction with Hs Features, the distribution of genes was as follows: NE=13743,
E=833. In the prediction with Bio+CCcfs+N2V features, the distribution was NE=13196, E=825.

For obvious reasons of copyright of the CLEARER software, we did not consider it appropriate to make
versions of this code adapted for the purposes of this paper available in public repositories.

D Comparison with DeepHE and EPGAT
In this supplementary section, we report the performance of methods sveLGBM, DeepHE and EPGAT in
predicting E/NE genes in human and three tissue-specific case studies.

We built each prediction model using as input gene attributes the ones described in the reference papers:
in particular, DeepHE exploits DNA sequence features, here called “seq” attributes, in combination with
node2vec-based embedding of PPI network, here called “embed” features (for addressing tissue-specific and
human genes prediction we considered tissue-specific and human PPI, respectively). It should be noted that
the latter feature set is the same as the one used to build our prediction model, while we also added “Bio”
and “CCcfs” information to the information extracted from PPI, as described in paragraph Features’ sets.
For EPGAT, we found out by experiments that the best attribute input in all tissue case studies consisted of
the sublocalisation attribute set, as also the authors stated in their work [7], which was processed during
GAT training according to the topology of the input tissue-specific PPI. Note how, in the case of EPGAT
method, the PPI information is not pre-calculated into embedding vectors to be fed to classifiers, whereas it
is a permanent adjacency matrix of nodes in the layers of the GAT neural network.

Hyper-parameter optimisation of methods was conducted in the following manner: for EPGAT we used
the hyper_search functions provided by authors in the public software, while in the case of sveLGBM we
used the same optimal hyper-parameters found with Optuna [2] library in the experiments of Table E in S1
Text which are also reported in Table C in S1 Text. DeepHE software does not provide any hyper-parameter
optimisation facility, and it uses a fixed configuration of parameters that we suppose is considered optimal by
authors; we only varied the folding parameters, which regulates the amount of undersampling of majority
class samples: in particular to force the DNN underlying model behaving with a higher sensitivity we found
out that a 1:1 folding proportion of NE:E samples was the best choice. For obvious reasons of copyright of
the DeepHE and EPGAT software, we did not consider it appropriate to make versions of those code
adapted for the purposes of this paper available in public repositories.

E Feature importance analysis
We investigated the importance of features in the context of E versus NE genes classification. The
experiment was conducted on kidney-tissue context. The results of this study are reproducible in the
notebook feature_importance.ipynb on the GitHub software distribution.

To this aim, we used the Bio+CCcfs set of attributes: we decided to skip N2V embedding features since
these attributes are automatically extracted by deep learning and the embedding size was already chosen to
optimise the performance of a predictor built upon solely embedding features. In addition, we preferred to
evaluate feature importance ranks when considering Bio and CCcfs set jointly. Importance ranks of
attributes are normalized such that they all sum up to the unity (100% of contribution). Although the two

September 10, 2024 2/3

https://github.com/ThomasBeder/CLEARER


sets have cardinalities different in two orders of magnitudes, we expected that several Bio attributes have
larger importance in the classification than single CCcfs attributes.

We used the optimal hyper-parameters for sveLGBM. We cut off the attributes with an importance rank
lower than 0.25 %. Nine Bio attributes were the top-most important features (Fig I). Except the
Driver_genes_MUT (all) attribute, all the other Driver_genes_* features were less significant (less than
0.25 %). From the importance plot we derived that the global contribution of Bio attributes is 31%, while
the remaining 69% of the contribution was due to the sum of the large number of CCcfs features. The
feature importance analysis here discussed is reproducible by executing the
https://github.com/giordamaug/HELP/feature-importance.ipynb notebook.

We exploited the results of this analysis to reduce the large number of CCcfs features (3305) to those
having ranks greater than 0.001. With this feature reduction (17 Bio + 167 CCcfs attributes), we conducted
a 5-fold cross-validation and evaluated the performance, noticing that the average BA (over ten iterations of
the experiments) degraded by 1-2%.

References
1. Ali M. PyCaret: An open source, low-code machine learning library in Python; 2020. Available from:

https://www.pycaret.org.

2. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A Next-generation Hyperparameter
Optimization Framework. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining; 2019. https://doi.org/10.1145/3292500.3330701

3. Beder T, Aromolaran O, Dönitz J, Tapanelli S, Adedeji EO, Adebiyi E, et al. Identifying essential
genes across eukaryotes by machine learning. NAR Genom Bioinform. 2021;3(4):lqab110.
https://doi.org/10.1093/nargab/lqab110 PMID: PMC8634067

4. Chen WH, Lu G, Chen X, Zhao XM, Bork P. OGEE v2: an update of the online gene essentiality
database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids
Res. 2016;45(D1):D940–D944. https://doi.org/10.1093/nar/gkw1013 PMID: PMC5210522

5. Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, et al. DEG 15, an update of the Database of
Essential Genes that includes built-in analysis tools. Nucleic Acids Res. 2021;49(D1):D677–D686.
https://doi.org/10.1093/nar/gkaa917 PMID: PMC7779065

6. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling
technique. J Artif Int Res. 2002;16(1):321–357. 10.5555/1622407.1622416

7. Schapke J, Tavares A, Recamonde-Mendoza M. EPGAT: Gene Essentiality Prediction With Graph
Attention Networks. IEEE/ACM Trans Comput Biol Bioinform. 2022;19(3):1615–1626.
https://doi.org/10.1109/TCBB.2021.3054738 PMID: 33497339

September 10, 2024 3/3

https://github.com/giordamaug/HELP/feature-importance.ipynb
https://www.pycaret.org
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1093/nargab/lqab110
https://pubmed.ncbi.nlm.nih.gov/PMC8634067/
https://doi.org/10.1093/nar/gkw1013
https://pubmed.ncbi.nlm.nih.gov/PMC5210522/
https://doi.org/10.1093/nar/gkaa917
https://pubmed.ncbi.nlm.nih.gov/PMC7779065/
10.5555/1622407.1622416
https://doi.org/10.1109/TCBB.2021.3054738
https://pubmed.ncbi.nlm.nih.gov/33497339/

	Base estimator choice for SVE
	sveLGBM classifier tuning
	Comparison with CLEARER
	Comparison with DeepHE and EPGAT
	Feature importance analysis

