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Appendix A: General RCS with XEB theory

We show in this appendix that, under quite general
conditions (see Eq. (A10)), the effect of noise in XEB
can be approximated as a global depolarizing channel.
We use this to write an XEB estimator from any smooth
and O(1) function f(pj) of the ideal probabilities pj .

It is non-trivial but true that the density of probabili-
ties from a Haar random pure quantum state is uniform
in the probability simplex [1–3]

dP (p1, . . . , pD) = (N − 1)! dp1 · · · dpD , (A1)

where D = 2n for n qubits. The corresponding marginal
distribution for any one probability pj is the Porter-
Thomas (exponential or beta) distribution [4]. That is,
for all j we have

dP (pj) = (D − 1)(1− pj)D−2dpj (A2)

→ De−Dpjdpj . (A3)

In the previous expression the bitstring index j is fixed,
and the distribution is over quantum states sampled uni-
formly in Hilbert space (Haar measure).

One can sample a vector of the probabilities corre-
sponding to a Haar random pure quantum state by
sampling D probabilities according to the distribution
of Eq. (A3), and then normalizing the result so that∑
j pj = 1 [1, 2, 5]. Note that the sum of the independent

pj is already
∑
j pj = 1+O(1/

√
D) before normalization.

That is, for large D the normalization introduces a small
correlation between the previously independent pj that
can be typically ignored.

Approximate sampling of a random quantum circuit
can be described by the probabilities

pFj = Fpj + (1− F )Ξj (A4)

where F corresponds to the fidelity, pj is the ideal or
simulated probability for the jth bitstring output of the
quantum circuit, and Ξj is a function over bitstrings
corresponding to the effect of noise. In the quantum
case, ρ is the output of an experiment, pFj = 〈j| ρ |j〉,
F = 〈ψ| ρ |ψ〉 where |ψ〉 is the ideal noiseless output, and
Ξ is defined by the equation ρ = F |ψ〉〈ψ| + (1 − F )Ξ.
Note that

∑
j Ξj = 1. For simplicity we sometimes de-

note Ξj = 1/D, the global depolarizing channel.
In cross-entropy benchmarking (XEB) we use the ex-

pectation value of a random variable f(pj), which is de-
fined as a function of the ideal probabilities pj . That is,
we associate the real value f(pj) to each sampled bit-
string |j〉. We require f(pj) to be O(1) and f smooth.
For linear XEB f(pj) = Dpj − 1 and for log XEB
f(pj) = log(Dpj) + Euler constant [6]. In the follow-
ing we assume that the output distribution is sufficiently
close to the Porter-Thomas distribution, see Refs. [4, 6]
and below.

The expectation value of f(pj) when sampling with
noisy probabilities pFj is∑

j

pFj f(pj) = F
∑
j

pjf(pj) + (1− F )
∑
j

Ξjf(pj) .

The sum on the left hand side is an expectation value
estimated with RCS sampling, within a statistical error
O(1/

√
k) where k is the size of the sample. We explain

below how to obtain the value of the two sums in the
right hand size analytically for large circuits. Therefore
solving for F we obtain an estimator of the fidelity for
any function f(pj) as specified above.

Consider first the term pjf(pj). The expectation value
over random circuits for fixed j is

〈〈pjf(pj)〉〉 = D

∫ ∞
0

dp e−Dp pf(p) , (A5)

where 〈〈·〉〉 is the average over random circuits. Note
that from the assumptions on f above it also follows that
〈〈pjf(pj)〉〉 is O(1/D). Furthermore, the variance over
random circuits for fixed j is

Var(pf(p)) ∈ O

(
1

D2

)
. (A6)

We saw above that the probabilities pj are almost inde-
pendent. Treating the sum over j as a sum of indepen-
dent and identically distributed (i.i.d.) random variables,
we have, by the central limit theorem,∑

j

pjf(pj) = D2

∫ ∞
0

dp e−Dp pf(p) + O

(
1√
D

)
(A7)

Now we consider the term Ξjf(pj). We assume that,
when averaged over random circuits for fixed j, the ran-
dom variables Ξj and f(pj) are independent. Therefore

〈〈Ξjf(pj)〉〉 = 〈〈Ξj〉〉 〈〈f(p)〉〉 , (A8)

where

〈〈f(p)〉〉 = D

∫ ∞
0

dp e−Dp f(p) . (A9)

We also assume that

〈〈Ξj〉〉 ∈ O

(
1

D

)
. (A10)

Therefore

Var(Ξjf(pj)) ∈ O

(
1

D2

)
. (A11)

Treating again the sum over j as a sum of i.i.d. random
variables we obtain∑

j

Ξjf(pj) = 〈〈f(p)〉〉
∑
j

〈〈Ξj〉〉+ O

(
1√
D

)
(A12)

= 〈〈f(p)〉〉+ O

(
1√
D

)
, (A13)
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where we used
∑
j Ξj = 1. We conclude that the aver-

aged effect of noise Ξj can be approximated as a totally
depolarizing channel.

For linear XEB we have f(p) = Dp− 1 and therefore∑
j

pjf(pj) = D2

∫ ∞
0

dp e−Dp p(Dp− 1) + O

(
1√
D

)

= 1 + O

(
1√
D

)
(A14)∑

j

Ξjf(pj) = D

∫ ∞
0

dp e−Dp (Dp− 1) + O

(
1√
D

)

= 0 + O

(
1√
D

)
. (A15)

We obtain the same result for log XEB f(pj) =
log(Dpj) + Euler constant [6]. Therefore we have

F ' 〈Dp− 1〉experiment (A16)

' 〈log(Dpj) + Euler constant〉experiment . (A17)

We now check numerically at what depth the output
distribution becomes Porter-Thomas. Figure 1 shows
that the probabilities pj truly follow a Porter-Thomas
distribution (as measured by the Kolmogorov-Smirnov
test) only if the linear XEB is exponentially close to its
limit value. The scaling in the x axis comes from the
variance (see also Ref. [6])

Var (lin XEB) ' D2 Var
(
p2j
)

=
2

D
. (A18)

Nevertheless, we find numerically and experimentally
that XEB serves as an estimator of fidelity before this
point, and closer to the transition point in Fig. 1a of
the main text, as we don’t require exponential O(1/

√
D)

precision for this estimation.

Appendix B: Device characterization and
benchmarking

1. Gate Optimization

The gate fidelities of the quantum processor are care-
fully optimized through a series of steps. The first step
involves shaping of the flux pulses used to realize the
iSWAP-like gates, schematically shown in Fig. 2A. Here
the computational states of two qubits, |10〉 and |01〉, are
brought into resonance by pulsing the qubit frequencies
ω1 and ω2 to nearly identical values. An inter-qubit cou-
pling g is then pulsed to a maximum value of gmax ∼ −13
MHz over tp = 20 ns to enable a complete population
transfer from |10〉 to |01〉.

An important error channel for such a two-qubit gate
is the off-resonant oscillation between the |11〉 and |02〉
(as well as |20〉) states, which may result in apprecia-
ble leakage outside the computational space at the end
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FIG. 1. The y-axis is the Kolmogorov-Smirnov p−value be-
tween the probabilities pj at a given depth and the Porter-
Thomas distribution. The x axis is the distance of linear
XEB to the ideal value in units of standard deviation. Each
point corresponds to a different circuit size (with number of
qubits ranging from n = 8 to n = 25) for a given fixed depth.
Lighter points correspond to datapoints outside the 90% two-
sided confidence interval. For all the instances, the pattern
ABCDCDAB is used.

of the pulses. One possible strategy for mitigating leak-
age is through simultaneous optimization of gmax and tp
such that the minima in leakage and iSWAP angle er-
rors are synchronized [7]. However, due to the spread
in qubit anharmonicities, such an optimization needs to
be done for each individual qubit pair and is therefore
a time-consuming process. An alternative method is to
increase the rise time of the coupler pulse such that the
transitions |11〉 ↔ |02〉 and |11〉 ↔ |20〉 are both adia-
batic, thereby eliminating the need for synchronization.
The leakage rates per iSWAP gate rl, measured using a
method adapted from Floquet calibration and applied to
the two-exitation subspace [8], are shown in the bottom
panel of Fig. 2A. We observe that for short rise times
in the coupler pulse (tr = 0 ns), rl in excess of 10−3 is
observed for most qubit pairs. The leakage rate is sup-
pressed as tr is increased to 2 ns, although outlier qubit
pairs with rl > 10−3 are still observed. For tr = 4 ns,
all pairs tested show rl < 4× 10−4. We therefore employ
tr = 4 ns for experiments described in this work.

The pulse shape optimization of the iSWAP-like gates
has led to a reduction in two-qubit cycle Pauli errors rp
in parallel two-qubit XEB from an initial median value
of 1.01× 10−2 to 8.4× 10−3, as shown in Fig. 2B. In the
same plot, we show two additional optimization steps
that have further improved gate fidelities: By optimizing
qubit frequency placements on the 2D grid [9] to miti-
gate cross-talk and coupling to two-level system (TLS)
defects, we reduce rp to 6.5×10−3. Finally, rp is reduced
to only 5.9 × 10−3 by shortening the execution time for
the single-qubit gates from 25 ns to 18 ns.

After minimizing the cycle errors in two-qubit parallel
XEB experiments, we benchmark performance of larger
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FIG. 2. Gate fidelity optimizations. (A) Upper panel:
Schematic showing the flux pulses which detune the qubit
frequencies (ω1 and ω2) and the inter-qubit coupling g during
the iSWAP-like gate. A cosine filter with a rise time tr is ap-
plied to the pulse on g. Lower panel: Integrated histograms
of leakage per iSWAP-like gate, measured with three differ-
ent values of tr. Each histogram includes an identical set of
19 qubit pairs. (B) Integrated histograms of two-qubit Pauli
error per cycle (which includes contributions from two single-
qubit gates and one iSWAP-like gate) obtained from parallel
XEB taken after different optimization steps indicated by the
legend. Each histogram includes all qubit pairs on the quan-
tum device. The median values of different histograms are
quoted within the parentheses of the legend.

system sizes by performing a 4-qubit XEB experiment
on ten different choices of 4 qubits across the quantum
processor. We detect a substantial difference between
the measured four-qubit cycle error and the predicted
four-qubit cycle error based on two-qubit XEB measure-
ments, as shown in the left panel of Fig. 3A. The average
4-qubit cycle errors are over 30% higher than predicted
values. Through further characterizations, this discrep-
ancy is understood to be arising from distortions in qubit
flux pulses which lead to a slow settling of the qubit
frequencies even after the pulses have nominally ended
(a.k.a. “z-tails”). To mitigate the impact of z-tails, we
pad the moments between the two-qubit gates and single-
qubit gates in the random circuits by an idling time. The
right panel of Fig. 3A shows the average difference be-
tween the measured and predicted four-qubit XEB cycle
errors as a function of the padding time, where we ob-
serve that a padding time of 4 ns is sufficient to reduce
the difference to nearly 0. This additional padding time
has been applied to experiments described in this work.

Having reached agreements between two-qubit and
four-qubit XEB experiments, we compare two-qubit par-
allel XEB predictions with 16-qubit XEB experiments.
The initial result is shown in Fig. 3B, where we again
find that the measured 16-qubit XEB cycle errors are
24% higher than predictions, even with padding between
single- and two-qubit gates. To reduce this discrepancy,
we have re-optimized the qubit frequency placements and
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FIG. 3. Mitigating impact of z-tails. (A) Left panel: Com-
parison between the cycle Pauli error of a 4-qubit XEB ex-
periment and the prediction from parallel 2-qubit XEB ex-
periments. Horizontal axis corresponds to different 4-qubit
choices. Dashed line indicates the mean values of the mea-
sured and predicted errors. Right panel: Mean difference
between the measured and predicted 4Q XEB cycle errors
as a function of padding times after the iSWAP-like gates.
(B) Left panel: Comparison between the cycle Pauli error of
a 16-qubit XEB experiment and the prediction from parallel
2-qubit XEB experiments. Horizontal axis corresponds to dif-
ferent 16-qubit choices. Dashed line indicates the mean values
of the measured and predicted errors. Right panel: Same as
the left panel but with median qubit detunings during the
iSWAP-like gate reduced from 80 MHz to 40 MHz.

reduced the detunings of the qubits during the iSWAP-
like gates by a factor of two. The 16-qubit parallel
XEB cycle errors measured after this qubit frequency
re-optimization agrees closely with the predicted values
from two-qubit parallel XEB measurements.

2. Benchmarking of gates and readout

In order to construct the error model for a random
circuit, we use several experiments to predict the er-
ror rate of each element. The single qubit error is cal-
ibrated through Randomized Benchmarking using only
π/2-pulses Fig. 5A. For the RB, we use 5 different depths
logarithmically spaced up to a thousand Clifford, with 10
random Clifford circuit instances with 600 repetition per
number of cycles and circuit. The two-qubit dressed er-
ror is measured through parallel XEB after optimizing
for a phased-fSim model Fig. 5C. We used 20 random
circuit instances, with 10 linearly spaced depths up to
150 cycles. The readout error is measured by preparing
a random bitstring state and measuring the probability
of wrong labeling of each qubit Fig. 5B. The error is
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averaged between the measurement error of the state |0〉
and |1〉. Finally, T1 and T2 echo, used for the idling on
the edges of each patches, is measured through a standard
population decay experiment and echo measurement Fig.
5D and E. respectively. Finally Fig. 5F shows the im-
provement over the results from [6] with the dashed line
reporting the average fidelity achieved at the time. Every
aspect of the experiment has improved, with a notable
contribution from readout fidelity.

In Fig. 6, we report the angles of the iSWAP-like gate
measured with parallel XEB. We note that the c-phase
of the gate is now closer to π/10 compared to π/6 in [6].

Appendix C: Additional experimental data

1. RCS experiment on a 70 qubits device: SYC-70

In this section, we present the RCS experiment on a
70-qubits device characterized in Fig. 4. Figure 7 shows
experiments without phase matching (similar to [6]) and
with phase matching (similar to what is presented in the
main text of this manuscript). In the Table I of the main
text we report the estimated fidelity for the experiment
without phase matching.

When performing a two-qubit gate, the actual unitary
applied to the qubits differs from the ideal fSim by extra
single-qubit Z-rotations from two sources: 1) the qubits
are detuned during the gate, and 2) the qubit interac-
tion Hamiltonian terms are not time-independent but
rather oscillate due to the frequency difference between
the qubits. The rotations arising from (1) do not depend
on the time when the gate is applied, but the rotations
arising from (2) do depend on this time, with a time-
dependent phase γ(t) = 2π(f1 − f0)t.

When running quantum circuits, we typically imple-
ment Z-rotations as “virtual” gates by changing the
phase of applied microwave pulses. This is equivalent to
a circuit-level transformation where Z gates are pushed
through the circuit by commuting them past other gates.
The extra Z rotations associated with fSim gates can also
be handled in this way by compiling them into the pulse
sequence; in this case we say the fSim gates are “phase-
matched”. We can also ignore these extra Z rotations
when compiling and then account for them in simula-
tion by applying the appropriate time-dependent unitary
for each gate instead of the ideal fSim unitary; in this
case we say the fSim gate is not phase-matched. Note
that Z-rotations only commute through fSim when θ is 0
or π/2, that is, for c-phase-like or iSWAP-like gates. If
the gate is not exactly iSWAP-like, then commuting Z-
rotations through it for phase-matching introduces some
error, which we can see in the slightly lower XEB fidelity
when using phase-matched gates.

2. Adding noise

In order to probe the noise induced phase transition,
we artificially increase the single qubit error rate by
adding random rotations after each layer of single qubit
gates in the circuit run on the hardware. The random
single qubit gates are of the form:

U = ZzZaXxZ−a (C1)

where z and x are sampled from a normal distribution
centered on zero and with a standard deviation given by
the injected noise amplitude. The axis a is randomly
sampled from a normal distribution centered on −1 with
a standard deviation of 1. In order to avoid correlated
noise, the random gates are different from layer to layer
in a single circuit and from circuit to circuit. These extra
gates are not used in the classical simulation. Figure 8 A
shows the insertion of the random single qubit gates is
done on each single qubit layer of a random circuit. In
Figure 8 B we verify that adding these extra single qubit
gates results in an average noise that scales as the square
of the error angle, as expected.

3. Noise phase transition extended data

In this appendix, we show the full dataset used for the
characterization of the noise induced phase transitions
identified in the main text. See Figs. 9 and 10.

4. Weak-link model with local noise

We performed an experiment corroborating the be-
haviour of the weak-link model under local noise, see
main text and Sec. D 3. We rewrite Eq. (2) in main text
splitting the contribution of the left and right fidelities
as

linear XEB = λd/TF dleft + λd/TF dright + (FleftFright)
d .
(C2)

We increases the noise only on the right side of the chain.
We see that for low noise the last term dominates and
the linear XEB decreases proportionally to the added
error. However, for sufficiently large noise in the right
side, the linear XEB becomes independent on the added
noise. The reason is that the two last terms in Eq. (C2)
become negligible compared to the first term.

We probe this behavior experimentally on a chain of 20
qubits with a weak-link applied with a period of T = 8.
In Fig. 11 we indeed observe that initially the fidelity
decays linearly with the added noise. For very strong
noise however the linear XEB plateaus at some value,
indicating an insensitivity to added noise on the right
side.
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FIG. 4. Benchmarking of the device for SYC-70: Benchmarking of the random circuits elements. A: Single qubit Pauli
error rate measured with Randomized Benchmarking. B: Readout error rate measured by preparing random bitstrings and
averaging the errors over the bitstrings. C: Two qubit Pauli error rate measured with parallel 2-qubit XEB. D and E: T1 and
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Appendix D: Linear XEB via population dynamics

1. Population dynamics for the uniformly random
single qubit gate ensemble

The linear XEB over circuits may be written as

XEB(d) = 2nC − 1, (D1)

C =
∑
z

〈z|Uρ0U† |z〉 〈z| E
[
Uρ0U

†] |z〉 , (D2)

where E corresponds to a noisy evolution channel. We
now explain how its average can be calculated via popu-
lation dynamics [10–14].

Consider first a noise free evolution. Note that the
average probability has the form of an out-of-time or-
dered correlator, C =

∑
z Tr{Ozρ0(d)Ozρ0(d)} where

Oz = |z〉 〈z|, and |z〉 = ⊗ni=1 |zi〉 , zi = {0, 1} is an n
qubit computational basis state. It can be described in
terms of two copies of the evolution ρ0(d) ⊗ ρ0(d). Af-
ter averaging over uniformly random (Haar) single qubit

gates the dynamics in such doubled operator space is
fully described in terms of two invariants: identity oper-
ator 11 and B = (1/3)

∑
α=x,y,z σ

α ⊗ σα, where σα are
Pauli operators.

The average dynamics of a pair of identical operators
O(d)⊗O(d) in the n qubit system subject to a circuit
consisting of cycles with two-qubit gates can be described
by a time dependent distribution P ({vi}, d) over an n
bit register {vi}, vi ∈ {0, 1} corresponding to {11i,Bi},
respectively. That is,

O(d)⊗O(d) =
∑
{vi}

P ({vi}, d)
⊗
i

((1− vi)11i + Bivi) .

(D3)

For operators which satisfy O2 = 1 (true for Pauli
operators) the coefficients are normalized probabilities∑
{vi} P ({vi}, d) = 1. Each two-qubit gate defines a

Markov process with the update matrix,

P ({vi}, d+ 1) =
∑
v′jv
′
k

Ωvjvk,v′jv′kP ({v′i}, d) . (D4)
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where the indexes j and k correspond to the qubits in-
volved in the corresponding two-qubit gate.

We can take the two-qubit gate to be approximately
equal to an iSWAP, Uij = exp

(
−iπ4 (XiXj + YiYj)

)
, for

which the population dynamics update corresponds to

Ω̂(i,j) =


1 0 0 0
0 0 1

3
2
9

0 1
3 0 2

9
0 2

3
2
3

5
9

 . (D5)
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Elements of the matrix Ω̂ correspond to the transition
probabilities between different configurations induced by
the application of a two-qubit gate. Ω̂10,01 corresponds
to B hopping from one qubit to another (Ω10,01 = 1

3 for
iSWAP) whereas Ω10,11 corresponds to creation of a new
B (Ω10,11 = 2

3 for iSWAP).
The contribution of each configuration to XEB is de-

termined by individual invariants, (11i,Bi)→ (1, 1/3) as

XEB = 2n
∑
{vi}

1

3
∑
vi
P ({vi}, d)− 1. (D6)

To include the effects of noise the two-qubit gate

update rules need to be supplemented with the noise-
induced decay rules at each two qubit gate [13],

11i11j → 11i11j , (D7)

Bi11j → exp(−16

15
p2)Bi11j , (D8)

BiBj → exp(−16

15
p2)BiBj , (D9)

where p2 is the two-qubit depolarizing error.

2. Convergence of population dynamics to
Porter-Thomas

The initial state for population dynamics is obtained
by averaging the initial bitstring ρ0 =

∏
i(11i + Zi)/2

over the first layer of single qubit gates. The result of
this averaging is

∏
i(11i + Bi)/4. It can be interpreted

as equal weight distribution P ({vi}, 0) = 1/2n over all
configurations {vi}. After the first layer of one qubit
gates XEB = (4/3)n.

In a multi-qubit system a layer of gates corresponds to
the evolution under Ω̂(i,j) applied to each pair of qubits
subject to a gate of the layer. The circuit can be char-
acterized by a transfer matrix T̂ that consists of a prod-
uct of the layers that appears periodically, such that the
whole circuit corresponds to T̂ d.

There are two steady states of this Markov chain: (i)
the vacuum {vi = 0} for all i, (ii) the thermal state that
corresponds to P ({vi}) =

∏
i p(vi), where p(0) = 1/4

and p(1) = 3/4. At long times in the noise free Porter-
Thomas limit, C = 2/(2n + 1), and XEB ≈ 1. Note that



9

error per cycle, ε × n
0.2 0.4

error per cycle, ε × n
0.1 0.2 0.3 0.05 0.10 0.15

error per cycle, ε × n
0.20

10-th cycle
18-th cycle
26-th cycle

14-th cycle
26-th cycle
38-th cycle

20-th cycle
38-th cycle
56-th cycle

X
E

B
 ra

tio
 (p

re
d.

/m
ea

s.
)

lin
ea

r X
E

B
100

10-1

10-2

10-3

100

10-1

measured

predicted

T = 8 T = 12 T = 18A

B

C

D

E

F

FIG. 9. Weak-link model: See main text Fig. 3 for more details. The first row shows the measured XEB value as a function
of the error per cycle. In the strong noise regime, the measured XEB value is far from the expected value, whereas in the
weak noise regime, and sufficient depth, the measured value is correctly predicted by the component fidelity of the circuit. The
second row shows the XEB ratio.

the vacuum configuration 11⊗n does not evolve, and in the
presence of noise in the long depth limit the vacuum is
the only remaining configuration. This produces the only
non-vanishing contribution to C, resulting in XEB=0.

3. Weak-link model analytical solution

In this section we provide details justifying Eq. (2) of
the main text. We consider an example that can be an-
alyzed analytically: a chain with a weak link connecting
its two halves A and B, that was introduced in the main
text. At the weak link a two-qubit gate is applied only ev-
ery T cycles. We describe the dynamics of XEB using the
population dynamics formalism introduced in Ref. [13].

We assume T is long enough to establish the “ther-
mal” (or Porter-Thomas) state in each half of the chain
independently. We introduce probabilities of four pos-
sible population dynamics configurations after time T :
g00, g01, g10, g11 corresponding to both halves in the vac-
uum state, one half in the vacuum state and one in the

thermal state and both halves in the thermal state. Ini-
tially all four configurations gij give order one contribu-
tions to linear XEB, despite having exponentially differ-

ent probability in the {vi} basis, due to the term 1/3
∑
vi

in Eq. D6.
A single application of the weak link gate after T cycles

updates these probabilities as follows,

g00(d+ T ) = g00(d) , (D10)

g01(d+ T ) = FT/2
1

4
g01(d) , (D11)

g10(d+ T ) = FT/2
1

4
g10(d) , (D12)

g11(d+ T ) ' FT g11(d) , (D13)

where as before F is the fidelity per layer for the whole
chain excluding the weak link, and the factor 1/4 comes
from the two-qubit iSWAP gate. In the last equation we
drop the contributions of g10 and g01 to g11 because it
adds only an exponentially small contribution to XEB.
This is because the initial thermal + vacuum state has ex-
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ponentially smaller probability, as explained above. We
therefore find

XEB(mT ) = FmT + 2

(
1

4
FT/2

)m
. (D14)

This gives a criteria for XEB to serve as a good fidelity
estimate for the chain with weak link,

FT >
1

16
. (D15)

4. Numerical analysis of the phase transitions

In this section we provide numerical simulations of
XEB dynamics justifying the analysis of the data in the
main text. Linear XEB is calculated numerically using
the exact mapping on population dynamics introduced
above, see Eq. (D6). The time dependence of weights
P ({vi}, d) is computed by applying the transfer matrices

corresponding to each two-qubit gate, Eq. (D4). This
method requires memory that scales exponentially as 2n

because we evolve the full probability vector. At the
same time it predicts the dynamics of the average linear
XEB in the presence of noise and is quadratically more
efficient than direct simulation of a noisy density matrix.
Without loss of generality we simulate a simplified model
of the noise including only single qubit noise applied to
each qubit after each layer of two qubit gates.

We first demonstrate the finite size critical scaling near
the dynamical transition. Fig. 12 is a numerical analog of
Fig. 2a of the main text, showing the depth dependence
of linear XEB for a fixed error rate per qubit ε = 0.01
and different size chains. The scaling of linear XEB with
the system size changes from growth to decay at the tran-
sition point, whose value is approximately size indepen-
dent. See Sec. E for an analytical description of this
phase transition.

The noise induced phase transition (NIPT) is charac-
terized by the change in the depth dependence of the or-
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ever, for strong enough noise, the linear XEB saturates for all
depths. For this experiment we have taken a single dataset
without extra error, and added coherent errors in the simula-
tion of the circuit for the linear XEB calculation.

der parameter Θ ≡ exp(−εnd)/XEB. Fig. 13 shows the
depth dependence of Θ for different values of the error
per cycle 0 ≤ εn ≤ 1.34. At low error the order pa-
rameter converges to a constant, whereas in the presence
of a sufficiently large error per cycle the order parame-
ter converges to zero. See also Sec. E for an analytical
description of this phase transition.

In the case of the weak link model introduced in the
main text and in Sec. D 3, where the system is split into
two parts with the gates entangling the two parts applied
sufficiently rarely, there is a less data intensive procedure
to identify the NIPT. This relies on the crossing point of
the order parameter Θ as a function of εn for different
depths of the circuit (separated by a circuit period), as
shown in Fig. 14. This procedure was used to identify the
transition experimentally in Fig. 3 of the main text, and
works well for weak link frequency 1/T < 1 in 1D. In the
absence of the weak link time dependence of the order
parameter the method illustrated in Fig. 13 was used to
identify the transition point. Numerical simulations for
2D circuits give similar results for the order parameter.
The extracted transition points are summarized in the
phase diagram presented in Fig. 3 G of the main text.

We also compare the transition point in linear XEB
for a uniformly random ensemble of single qubit gates
introduced above to the discrete single qubit gate set
used in the experiment. The latter maps onto population
dynamics in a space of three states per qubit and is more
costly to implement, requiring memory 3n. Fig. 15 shows
a comparison of the NIPT location for 16 qubit systems
of two different geometries: a chain and a 4 × 4 system.
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The role of the ensemble of single qubit gates does not
appear to be significant for the NIPT point.

Appendix E: XEB phase diagram

1. XEB phase diagram in 1D

The population dynamics explained in Sec. D model
the average dynamics for quantum circuits with a Markov
chain. We focus on the case of uniformly random single
qubit gate ensemble which results in a Markov chain with
two states per site. In the absence of noise, this Markov
chain has two steady configurations: the “thermal” or
Porter-Thomas configuration; and the trivial “vacuum”
configuration corresponding to the state normalization.
After a short initial time, the state of a 1D circuit will
be dominated by configurations with segments in the vac-
uum state and segments in the thermal configuration. We
denote this configurations as gσ1,...,σn where σk = {0, 1}
denotes the vacuum and thermal state respectively.

This model is a generalization of the the weak-link
model of Sec. D 3. Repeating the arguments of that sec-
tion we obtain the following population dynamics update
equation for multi-segment configurations

gσ1,...,σn(d+ 1)

= e−ε
∑
i σi2−

∑
i(σi−σi+1)

2

gσ1,...,σn(d) . (E1)

The factor e−ε accounts for the fidelity decay with noise
strength ε for a segment in the σ = 1 thermal state. The
factor of 1/2 between any two consecutive segments in
different states comes from the application of an iSWAP,
see Sec. D, which happens every two circuit cycles in
1D. This equation reproduces Eqs. (D10) to (D13) of the
weak-link model with n = 2 and T = 2.

The initial state corresponds to an equal population of
all configurations, gσ1,...,σn = 2−n, as obtained by gener-
alizing the initial state given in Sec. D 2. The linear XEB
at depth d, which we denote by XEB in this section, is
given by

XEB + 1 = 2n
∑
{σi}

gσ1,...,σn(d) . (E2)

Equation (E1) can be solved for large n by a transfer
matrix method. We will use the solution for a system of
size n and depth d to express the solution of size n + 1
at the same depth d. Let’s define

Zn(σ, d) = 2n
∑

{σi},i<n

gσ1,...,σn−1,σ(d) . (E3)

From Eq. (E1) we obtain,

Zn+1(σ, d) = e−εσd
∑

σn={0,1}

2−(σn−σ)
2dZn(σn, d) . (E4)
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Equation (E4) must be solved with the boundary condi-
tion,

Z1(σ, d) = e−εσd . (E5)

The linear XEB is

XEB + 1 =
∑
σ

Zn(σ, t) . (E6)

We solve Eq. (E4) in the large n or continuous limit,
approximating Zn+1(σ, d) ≈ Zn(d) + ∂nZn(σ, d). Using
the initial condition Eq. (E5) and substituting the result
into Eq. (E6) we obtain,

XEB(n, d) + 1 = 2e−
εnd
2

(
coshnδd +

2−d

δd
sinhnδd

)
,

(E7)

δd ≡
√
ε2d2

4
+ 2−2d . (E8)

Note that in the absence of noise ε→ 0 we obtain

XEB(n, d) + 1 = 2en2
−d
. (E9)

This result is consistent with Ref. [15] which shows that
1D random circuits anticoncentrate in logarithmic depth.

As explained in the main text, it is natural to introduce
the scaling noise variable

f ≡ εn . (E10)

To study the XEB phase diagram this variable is kept
constant as n→∞. We also introduce the scaling depth
variable

α =
d

log2 n
. (E11)

Including these substitutions the expression for XEB
takes the form

XEB(n;α, f) + 1

= 2e−
fα log2 n

2

(
cosh ∆ +

n1−α

∆
sinh ∆

)
, (E12)

where

∆ ≡

√
f2α2 log2

2 n

4
+ n2(1−α) . (E13)

We can now explain the different phases of XEB by
writing the Eq. (E12) for fixed f and α in the thermo-
dynamic limit n→∞. At low depth α < 1, before anti-
concentration, the second term under the square root in
the Eq. (E13) for ∆ dominates. We obtain

XEB(n;α, f) = n−
fα
ln 4

(
2en

1−α
)
− 1 . (E14)

This result differs from the noise-free limit Eq. (E9) by a
noise-dependent algebraic prefactor whose exponent de-
pends smoothly on noise.

After anticoncentration, α > 1, the first term in
Eq. (E13) dominates in the thermodynamic limit n→∞.
We obtain

XEB(n;α, f) = n−
fα
ln 2 +

2n1−α

fα log2 n
, (E15)

Clearly Eqs. (E14) and (E15) cannot be merged to each
other by an analytic function, which indicates that α = 1
is a phase transition line. Indeed for α = 1 Eq. (E14) is
algebraic whereas Eq. (E15) is logarithmic. This is in
sharp contrast with the noise-free Eq. (E9) which does
not have any singularity at α = 1.

Equation (E15) describes another phase transition de-
fined by the noise induced phase transition line

fc(α) =
α− 1

α
ln 2 . (E16)

This line separates the weak and strong noise regimes.
Note that the depth required in 1D for entanglement to
spread across all the qubits is α ' n/ log2 n, and then
fc ' ln 2. In the weak noise regime f < fc we obtain the
XEB

XEB(n;α, f) = n−
fα
ln 2 = e−εnd , (E17)

which coincides with the circuit fidelity F d. In the oppo-
site regime f > fc we obtain the XEB

XEB(n;α, f) =
2n1−α

fα log2 n
, (E18)

which is much larger than the circuit fidelity.

2. XEB phase diagram in 2D and higher
dimensions

The 1D update equation for multi-segment configura-
tions Eq. (E1) can be generalized to higher dimensions
as

gσ1,...,σn(d+ 1)

= e−ε
∑
i σi4−

1
2·κ

∑
〈ij〉(σi−σj)

2

gσ1,...,σn(d). (E19)

where 〈i, j〉 denotes the nearest neighbors on the D di-
mensional lattice and κ is the number of neighbors per
qubit. The factor of 1/4 in the second term comes
from the application of an iSWAP, as in Eq. (E1) and
Eqs. (D10) to (D13). The exponent of 1/4 counts the
number of segments in different states, devided by 2 be-
cause we count neighbors twice in the sum, and devided
by κ because an ISWAP is applied between two segments
every κ circuit cycles. The initial conditions and the ex-
pression of linear cross-entropy is the same as in 1D case.
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The noise induced phase transition that we are inter-
ested in resides at d � 1. There we can expand the
populations state around the two stationary configura-
tions with all σi = 0 (vacuum) or all σi = 1 (thermal),
using the so-called dilute flipped spin expansion. This
gives the equation

XEB + 1 '∑
k

1

k!
e−εkd

( n
4d

)k
+
∑
k

1

k!
e−ε(n−k)d

( n
4d

)k
, (E20)

where the first and second term in the right-hand-side
correspond to the expansion around σ = 0 and σ = 1
respectively, and the index k describes the total number
of the flipped spins. The usual combinatorial factor k! is
needed to avoid the over-counting of same configurations.
We can rewrite this equation as

XEB + 1

= exp
[
e−εd

( n
4d

)]
+ e−εnd exp

[
eεd
( n

4d

)]
, (E21)

which generalizes Eq. (E8) to higher dimensions.
Similarly to the one dimensional case, we introduce the

scaling variables

α =
d

log4 n
, f = εn . (E22)

In order the study the XEB phase diagram, we consider
the thermodynamic limit n → ∞ at fixed α and f . We
find

XEB + 1 = exp
[
n1−αe−

fα log4 n
n

]
+ e−fα log4 n exp

[
n1−αe

fα log4 n
n

]
(E23)

' exp
(
n1−α

) (
1 + e−fα log4 n

)
(E24)

= exp
(
n1−α

) (
1 + n−

fα
ln 4

)
. (E25)

We note that the first factor

exp
(
n1−α

)
= en2

−2d

(E26)

describes the convergence to anticoncentration, in accor-
dance to Eq. (E9) and Ref. [15]. The second factor is

1 + n−
fα
ln 4 = 1 + e−εnd . (E27)

In contrast with the one dimensional case, Eq. (E25)
does not have any singularity at finite f and α = 1,
and therefore does not exhibit a phase transition in the
convergence to anticoncentration. We explain below how
this phase transition appears due to a boundary effect.

The noise induced phase transition line at α > 1 has a
similar form to Eq. (E16),

fc(α) =
α− 1

α
ln 4 , (E28)

and terminates at α = 1. The XEB value in the weak and
strong noise regimes of this first order phase transition is
similar to the one dimensional case

XEB =

{
n1−α, f > fc(α)

n−
fα
ln 4 = e−εnd, f < fc(α)

(E29)

In the weak noise regime f < fc(α) the value of the
linear XEB is the circuit fidelity, as expected. We can
trace this contribution to the thermal or Porter-Thomas
state in the second term of Eq. (E20). In the strong
noise regime f > fc(α) the value of the linear XEB is
dominated by local correlations above the vacuum which
we can trace to the first term in Eq. (E20). This is the
situation studied in Refs. [14, 16, 17].

In the above analysis we neglected the existence of the
boundary for a finite lattice. In the case of a regular lat-
tice boundary qubits have a different number of nearest
neighbours from the bulk qubits. As we will see, bound-
ary qubits dominate the convergence to the thermal state
and the behavior of XEB is qualitatively different.

We focus on the 2D case for simplicity. The presence
of the boundary with r nearest neighbours adds the fol-
lowing boundary contribution to the XEB Eq. (E21)

exp

(
e−εd

cr
√
n

4t·r/4

)
, (E30)

where cr
√
n is the lattice perimeter and the exponent

r/4 in the 1/4 factor accounts for the fact that in the
boundary an iSWAP is applied every r/4 circuit cycles
in 2D. In a regular 2D lattice each qubit in the boundary
has r = 3 nearest neighbours, while in the Sycamore
device lattice the number of neighbours in the boundary
is r = 2. In the thermodynamic limit n → ∞ at fixed α
and f Eq. (E25) gets modified to

XEB + 1 ' en
1−α+c2n

1−α
2
(

1 + n−
fα
ln 4

)
. (E31)

Remarkably, the boundary introduces a phase transi-
tion at α = 1 even without noise, in contrast to the one
dimensional case. This phase transition arises from the
competition between the two terms in the exponent of
the prefactor, n1−α and n(1−α)/2. Note that Ref. [15],
which studies the convergence to anticoncentration, con-
siders circuits without boundaries that do not exhibit this
phase transition. The noise induced phase transition gets
displaced to

fc(α) =
α− 1

α
ln 2 . (E32)

Note that this is the same condition as the 1D case with
boundary studied in the previous section.

As mentioned in the main text the noise induced phase
transition is loosely analogous to Freederiks transitions
in liquid crystals [18]. Here we clarify this analogy fur-
ther. Freederiks transition is a result of a competition
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between anchoring of the orientation of molecules in a
nematic liquid crystal by its boundary and an electric
field that tends to align the molecules in a perpendicular
direction. The transition is controlled by a field magni-
tude that scales inversely proportionally to the size of the
crystal. In the case of the noise induced phase transition
this is analogous to the competition between a uniform
configuration of the respective Ising model and some con-
figuration that has a small number of domain walls. Fur-
thermore the effect of noise is similar to a field, which
induces the transition at the point that scales inversely
proportionally to the system size.

Appendix F: Noisy phase transition and spoofing

The existence of the noise induced phase transition in
the noisy random circuit dynamics discussed in the main
text has important implications for the effectiveness of
the so called spoofing algorithms [14, 16, 17]. Indeed,
building up this theory, we give below a lower bound for
the error per cycle below which spoofing algorithms can
not match the experimental XEB. This boundary can
also be interpreted as a first order phase transition.

Spoofing algorithms aim to generate bitstrings from
a distribution that maximizes the value of XEB with-
out resorting to the exponential cost of full simulation
of the quantum evolution, i.e. ideally with polynomial
cost. These algorithms can be broadly split into two
stages [14]: (i) approximation of the wave function, (ii)
sampling of bitstrings to maximize XEB. We analyze step
(i) first.

1. Spoofing in the weak-link model

Consider the weak-link model of Eq. (2) of the main
text. The spoofing in this case corresponds to the elim-
ination of entangling gates across the weak link. The
omission of an iSWAP gate introduces a new two qubit
operation into the population dynamics, corresponds to

replacing Ω̂(i,j) → Ω̂
(i,j)
omitted in Eq. (D4),

Ω̂
(i,j)
omitted =

 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3

 . (F1)

The system of equations for the dynamics of the weak-
link model Sec. D 3, Eq. (D13) is modified as follows,

g00(d+ T ) = g00(d), (F2)

g01(d+ T ) =
1

4
g01(d), (F3)

g10(d+ T ) =
1

4
g10(d), (F4)

g11(d+ T ) ' 1

4
g11(d). (F5)

Notice that g11 is no longer constant even at F = 1. The
resulting linear XEB after mT cycles reads

〈Dpsim(s)− 1〉spoof = 3
1

4m
. (F6)

We compare this to XEB of the noisy circuit with sys-
tem fidelity ≈ FmT . Note that if the fidelity per cycle is
smaller than FTcs = 1/4, the classical algorithm that omits
the iSWAP gate in the weak link obtains a larger XEB
value. This is different from the transition point of the
corresponding noise induced phase transition, FTc = 1/16
from Eq. (2) of the main text. This means that XEB is
a good estimator of fidelity already for F > FTc , but
nonetheless a spoofing algorithm could produce an XEB
higher than experiment while F ≤ FTcs.

2. Spoofing for general models

The result of Eq. (F6) can be extended naturally to
general spoofing algorithms and models using the for-
malism of population dynamics, see Sec. D. Spoofing al-
gorithms can exploit two different contributions to cross
entropy. The first is given by the small potential overlap
that spoofing can still maintain with the ideal Porter-
Thomas state, including some amount of global corre-
lations. The ideal Porter-Thomas state is given by g11
in the weak-link model above, and this contribution is
modelled as removing two-qubit gates, as in Eqs. (F1)
and (F5). In the general case, we can break the full cir-
cuit into subsystems, each with a manageable number
of qubits, typically ∼ n/2 [6, 14, 19]. This is done by
removing two-qubit gates along the cut that separates
both subsystems. Each iSWAP gate removed lowers this
contribution to XEB by a factor of 1/4 [6, 19]. This con-
tribution then scales as 1/4νd, where ν is the number of
gates along the cut, and d is the depth. Given the sig-
nificant number of gates along any suitable cut [6], this
contribution is subdominant compared to the second con-
tribution which we study next.

The dominant contribution from spoofing algorithms
to XEB is that they can potentially capture finite-depth
local correlations outside the thermal or Porter-Thomas
state [14, 16, 17]. In the weak-link model above, these fi-
nite depth local correlations are modelled by the vacuum-
“thermal” and “thermal”-vacuum states, g01 and g10.
Their exponential decay for increasing depth is given in
this model by Eqs. (F3) and (F4).

In the general case, the thermal or Porter-Thomas
state is the stationary eigenstate of a Markov chain mod-
eling the dynamics when averaging over circuits, as ex-
plained in the population dynamics Sec. D. The mag-
nitude of finite-depth local correlations outside of the
Porter-Thomas state can be bounded by the difference
between the noiseless XEB value at finite depth and the
asymptotic value. This gives the equation

〈Dpsim(s)− 1〉spoof . XEB− C(n) , (F7)
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FIG. 16. Logarithm of XEB−C(n) as a function of the num-
ber of cycles d for random noise-free Clifford circuits. Dif-
ferent colors correspond to different number of qubits. For
all simulations, the Sycamore layout and the pattern ABCD-
CDAB is used. Here C(n) is the asymptotic value of the XEB
for n qubits. The horizontal dotted gray line corresponds to
scale of the numerical error from the statistics resolution limit
of 1/

√
M , where M = 6.14 × 109 is the number of samples

used.

where

C(n) =
1− 2−n

1 + 2−n
' 1 (F8)

is the asymptotic value of XEB for given n. The XEB
value will converge exponentially with depth as

XEB− C(n) ∝ λd . (F9)

We extract the decay rate λ from numerical simula-
tions, see Fig. 16. We obtain a decay rate λ ≈ e−1.95.
This is a much faster decay rate than the decay of fi-
delity observed in the experiments reported here. Note
that we omit the non-Clifford gates for the numerics used
in Fig. 16 so we can scale up to 512 qubits. This can be
done because it does not affect the average value of XEB
for the ensemble of circuits, as shown in Sec. H 5. The
discrete gate set used here, together with the iSWAP
gate [4, 13, 19, 20], gives a faster convergence than other
gate sets. In particular, we obtain a faster convergence
than the estimation of Sec. E 2 which uses a uniformly
random single qubit gate ensemble [11, 12].

As we will see below, the post-processing stage (ii) of a
spoofing algorithm can only affect a multiplicative factor,
and not the exponential decay rate.

3. Linear XEB amplification with post-processing

A specific spoofing algorithm discussed in Ref. [14] ap-
proximates in step (i) the wave function by taking a prod-
uct of two subsystem wave functions, each of size roughly
half of the full system. This corresponds to omitting from
the circuit all gates entangling the two subsystems. In
the post-processing step (ii) the output bitstrings are cho-
sen to maximize the approximate probabilities, instead
of sampling the resulting approximate wave function. In
Ref. [14] an average XEB corresponding to this procedure
was estimated numerically.

The post-processing stage (ii) in Ref. [14] is done sort-
ing the probabilities within each subsystem, which incurs
an exponential cost ∼ 2n/2. This is doable for relatively
small subsystems. The number of distinct bitstrings to
be produced has to match the number in the experiment
k ∼ 106 � D, see Sec. I 2.

In what follows we show that the linear XEB is upper
bounded by

〈Dpsim(s)− 1〉spoof .

ln(DL/kL) ln(DR/kR)× λd, (F10)

where DL and DR are the Hilbert space dimensions for
the left and right subsystems respectively, and kL and kR
are number of samples from left and right subsystems.
Note that D = DLDR and k = kLkR. It is important to
emphasize that the enhancement of XEB is at most loga-
rithmic in the size of the Hilbert space of each subsystem
(linear in the respective number of qubits). Contemplat-
ing equation (F10) it may be tempting to split the Hilbert
space into r > 2 subsystems and expect an enhanced fac-
tor ∝ (lnD1/r)r. However, while using more subsystems
could in principle increase the post-processing multiplica-
tive prefactor, it would result in a worse approximation
because it ignores correlations between the subsystems.

For the parameters of the experiment in Fig. 4 of the
main text, d = 24, n = 70 and lnλ ' −1.95, the upper
bound on spoofing XEB (F10) is well below the value in
the experiment. This indicates that spoofing cannot be
successful.

We now describe the derivation of the optimal the pre-
exponential multiplicative factor in Eq. (F10). Consider
M random numbers wi, i = {1, ...,M} sampled from a
joint probability density P(w1, w2, ..., wM ). Consider the
sorted list of wi : w1 > w2 > .... The probability density
for the kth term in the list, or k-th order statistic, is
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Pk(w) =
1

(k − 1)!(M − k)!

∑
S

k−1∏
r=1

∫ ∞
w

dwr

M∏
q=k+1

∫ w

0

dwqP(S(w1, w2, ..., wM )), (F11)

where the sum is over all permutations of wi. Identifying
wj with a bitstring probability and M with the dimension
of the respective Hilbert space, the XEB is given by the
following average,

〈w〉 =
1

k

k∑
k′=1

〈w〉k′ , (F12)

〈w〉k′ =

∫ ∞
0

dwwPk′(w). (F13)

At the depths considered experimentally, each subsys-
tem reaches the Porter-Thomas or exponential distribu-
tion. Then the corresponding k-th order statistic has
probability density

Pk(w) =

D!

(k − 1)!(D − k)!
De−kDw

(
1− e−Dw

)D−k
. (F14)

Substituting this into the expression for 〈w〉, Eq. (F13),
we find for k � 1,

D〈w〉 = ln(D/k). (F15)

This expression is the origin of the logarithmic factors in
Eq. (F10). Note that is natural to expect this, because
the probability to find a state on the tail of probability
distribution decays exponentially.

This is the optimal enhancement from the stage (ii) of
the spoofing algorithm if stage (i) is able to reproduce the
wave function of each subsystem. Therefore we obtain

〈Dpsim(s)− 1〉spoof . λdD
1

k

∑
k′,k′′

〈w〉Lk′〈w〉Rk′′ , (F16)

where the sum over k′, k′′ includes k terms in total and
is defined to maximize the right hand side of Eq. (F16).
Using Eq. (F16) we find that the maximum corresponds
to a linear configuration such that lnDL/kL = lnDR/kR.

4. Logarithmic XEB amplification with
post-processing

It is worthwhile to consider the spoofing of the loga-
rithmic XEB, see Eq. (A17) for a formal definition. Log-
arithmic XEB is less sensitive to rare spikes of the wave
function amplitude in the bistrsing basis.

The first step of the XEB amplification in Ref. [14],
and in the previous section, is to devide the system in two

subsections. The ideal wave function is a superposition of
products of left |ψL,i〉 and right |ψR,i〉 wave functions [19],

|ψ〉 ' 1√
N

∑
i

|ψL,i〉 |ψR,i〉 . (F17)

Using the analysis similar to the previous subsection we
obtain a bound on logarithmic XEB after stage (ii) of the
spoofing algorithm

log XEBspoof ' ln

[
1 +

1

N
ln(DL/kL) ln(DR/kR)

]
.

(F18)

Note that for large N � 1 logarithmic XEB of the
bitstrings produced by spoofing gives the same result as
linear XEB.

Appendix G: Simulation of random circuit sampling
using tensor network contraction

Tensor network contraction has been used extensively
in the simulation of RCS over the last few years [21–28].
Given a quantum circuit, it is straightforward to generate
a tensor network whose contraction yields one or many
of its output amplitudes. In this tensor network, each
one-qubit gate is expressed by a rank-2 tensor, each two-
qubit gate is expressed by a rank-4 tensor, and the input
state |0〉⊗n is expressed by the tensor product of n rank-1
tensors.

The time and memory complexities of the contraction
of such a tensor network depend strongly on the order in
which tensors are contracted. Its time complexity has a
lower bound related to the treewidth of the line graph of
the tensor network [21]. Ref. [29] introduced a method to
alleviate the memory requirements for the contraction of
a tensor network at the expense of a larger time complex-
ity. This method involves “slicing” (that is, projecting)
certain carefully chosen indices in the tensor network to
the different values in their support. Each slice yields
a tensor network that requires less memory to be con-
tracted, although one has to contract a number of ten-
sor networks that scales exponentially in the number of
indices sliced. Refs. [23, 24] made substantial improve-
ments in the optimization of contraction orderings and
choice of slices.

Slices are useful to lower the memory requirement of
a large tensor network contraction. In the context of
simulating RCS, slices can also help reduce the computa-
tion time while reducing the fidelity of the output state.
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This was introduced in Ref. [19], where it was shown that
summing over a fraction f of slice or projection instances
results in an output state of fidelity f with respect to the
f = 1 ideal state. This, naturally, results in a decrease
of the computation time by a factor f . This method was
validated in more generic settings in Refs. [30] and [24]
and we apply it in our time estimates for a target fidelity
equal to the estimated experimental fidelity.

Works described up to this point mostly focused on
the contraction of an independent tensor network per
output bitstring, which results in a simulation runtime
that scales linearly in the number of bitstrings sampled.
Specifically, an algorithm to sample from the output dis-
tribution of a quantum circuit is as follows: 1) sample bit-
strings uniformly at random; 2) calculate the ideal prob-
abilities for these bitstrings; 3) perform rejection sam-
pling to select a subset of these bitstrings as the output.
The frugal rejection sampling proposed in Ref. [19] re-
quires computing only about 10 probabilities per output
bitstring sampled. We can calculate the probabilities of
&10 very similar bitstrings with just one contraction, and
as we will only select one using rejection sampling and
the probabilities are still uncorrelated, the result is the
same as the algorithm above [30].

Ref. [27] introduced a method to compute amplitudes
of a large number of uncorrelated bitstrings with a much
lower overhead than linear. This implies the sparsifica-
tion of the output of the tensor network as output tensors
are being contracted: only those tensor entries that will
lead to the computation of an amplitude of a bitstring
in a pre-specified set are kept. In addition, Ref. [27]
managed to make use of a special property of the fSim
gate [6] in order to propagate the slicing of certain in-
dices to other “related” indices at no extra cost. These
two advancements allowed Ref. [27] to simulate sampling
1 million uncorrelated bitstrings from the largest circuit
of Ref. [6] in 15 hours using 512 NVIDIA Tesla V100
SXM3 GPUs with 32GB of RAM each.

Similarly, Ref. [26] introduced dynamic programming
techniques to reuse certain computations across the dif-
ferent instances of the slices taken over a tensor net-
work. This allowed them to simulate the largest circuit of
Ref. [6] in 14.5 days using 32 NVIDIA Tesla V100 GPUs
with 16GB of RAM each.

In the present work we incorporate all of these advance-
ments into a highly efficient simulated annealing opti-
mizer in order to further reduce the time estimates for the
simulation of RCS experiments. This goal is achieved by
co-optimizing both the tensor network contraction order-
ing and the slices to use to reduce the memory footprint
of the contraction.

In our protocol, the tensor network contraction is rep-
resented as an ordered list I of indices in the tensor net-
work, which are contracted from the first to the last. If
an index is contracted between two tensors, all indices
between them are then contracted at the same time (re-
gardless of their position in I). This ensures that, for
any I, there is one and only one tensor network contrac-

tion (however, multiple I may correspond to the same
contraction). Similarly, indices that are sliced are repre-
sented as an ordered list S of indices of the tensor network
and a number α. That is, an index i in the tensor network
is sliced only if it appears in S at a position αi ≤ α.

At the beginning of the protocol, a random ordering of
the indices I is chosen, as well as a random ordering of
indices S. At any moment of the simulation, it is always
guaranteed that α is large enough to allow the tensor
network contraction induced by I to fit in memory.

The co-optimization of I and S is done in steps, with I
being optimized at every step (while S is kept constant),
and S at every 10 steps (while I is kept constant). A
move for I consists in swapping two randomly chosen in-
dices in I, which will induce a new contraction ordering.
Similarly, a move for S consists in swapping two indices in
S, and α is chosen as the smallest position such that the
contraction ordering induced by I fits in memory. The
indices swapped are chosen at random, one of them from
the set of indices with αi ≤ α and the second one from
the set of indices with αi > α. Since increasing α can
only reduce the memory footprint, α can be efficiently
found by bisection.

Every time I or S are changed, the new FLOP count
(including the overhead induced by the slicing) is com-
puted. The FLOP count is computed by creating a “slic-
ing tree“ where each node correspond to a bifurcation
created by slicing a given index. Therefore, the slicing
tree will have α levels and 2α leaves, with each leaf cor-
responding to a specific projection of indices. The order
of the slicing tree is determined by the order in which
they appear in the contraction ordering induced by I,
with the root being the first index sliced. To reduce the
computational cost, every time there is a bifurcation, the
state of the contraction (including any intermediate ten-
sors) is cached (checkpoint). When a new projection is
computed, it is enough to unwind the contraction up to
the last checkpoint, avoiding the calculation of intermedi-
ate tensors that are guaranteed to be the same. Once the
new FLOP count is computed, the move is accepted by
using the Metropolis-Hastings algorithm, with an inverse
temperature linearly changing from 10−5 to 105.

Let us consider now the set M of uncorrelated bit-
strings to sample. Each tensor can have “internal” in-
dices (i.e., indices that eventually are contracted) and
“sparse” indices. Such sparse indices will not have all the
possible combination of values, but only those combina-
tions compatible with M (i.e., only valid projected bit-
strings). Therefore, if a tensor has k internal indices and
m sparse indices, its memory footprint can not be larger
than (and, in the worst, case equal to) 2k min{2m, |M|}.
In our protocol, we always assume the worst case sce-
nario.

In a similar way, we can compute the cost of contract-
ing two tensors with sparse indices. More precisely, the
contraction cost will be equal to the contraction cost
without any sparse indices, multiplied by the total num-
ber of compatible projections that can be created com-
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bining the sparse indices of the two tensors. Note that
the calculation of the exact contraction cost involves the
knowledge ofM and the projected bitstrings in both con-
tracted tensors. However, keeping track of all the pro-
jected bitstrings is computational demanding. To avoid
this bottleneck, we approximate the number of combined
projected bitstrings as min{2m′ , |M|}, where m′ is the
number of sparse indices in the tensor resulting from the
contraction of the two initial tensors. While this approx-
imation does not take into account the structure ofM, it
gives an asymptotically tight upper bound of the actual
cost.

All these techniques allow us to reduce the number of
FLOPs required for the noisy simulated sampling of 1
million bitstrings from the hardest circuit of Ref. [6] by
about an order of magnitude compared to the require-
ments of Refs. [27] and [26] when using a similar cluster
with similar GPUs. When running on a Google Cloud
CPU with 12 TB of memory, we estimate FLOP counts
about two orders of magnitude lower than in Refs. [27]
and [26]. We estimate a runtime of 2 days using a single
CPU with a 20% FLOP efficiency, similar to the effi-
ciency found in Refs. [23, 24, 27]. Table I of the main
text shows the runtime estimates for the simulation of
the experiments of Refs. [6, 31, 32] and the present work
when run on the Frontier supercomputer.

Appendix H: Bounds to approximate tensor
representations

The most promising numerical methods for more ef-
ficient approximations to random circuit sampling are
based on approximate tensor representations [23, 33, 34].
Let’s write the state on n qubits as

|ψ〉 =
∑

j1,j2,...,jn

ψj1,j2,...,jn |j1, j2, . . . , jn〉 . (H1)

We study the simplest but illustrative case where the
state is approximated with two tensors M (1) and M (2)

as [34]

ψ̃j1,j2,...,jn =

χ∑
α=1

M
(1)
j1,j2,...,jl,α

M
(2)
α,jl+1,jr+2,...,jn

. (H2)

The index α is called a virtual index and χ is called the
bond dimension. The state is broken into qubits on the
left [1 . . l] and the right [r + 1 . . n], with the virtual
index encoding the entanglement between these spaces.
The size of the two sub-Hilbert spaces are respectively
D1 = 2l and D2 = 2n−l.

Given a quantum state |ψ〉 and bond dimension χ, the
best approximation of the form (H2) can be found keep-
ing the largest χ singular values (Schmidt coefficients)
of a matrix with entries corresponding to the amplitudes
of |ψ〉, and row and column dimensions corresponding to

the left and right spaces. This gives the approximation

|ψ̃〉 =
1√∑χ
α=1 S

2
α

χ∑
α=1

Sα |lα〉 |rα〉 , (H3)

based on the Schmidt decomposition, where the Schmidt
coefficients S are ordered from large to small. This rep-
resentation is exact if the bond dimension is larger than
the Schmidt rank.

For approximate matrix-product state (MPS) simula-
tions [33, 34], the initial state is a product state with
Schmidt rank equal zero. Gates involving only qubits
on the left (or right) merely modify the tensor M (1)

(or M (2)) without affecting the Schmidt rank. However,
multi-qubit gates applied on qubits belonging to both left
and right partition, generally increase the Schmidt rank.
The truncation of the quantum state to a fixed bond di-
mension χ � 2min(l,n−l) eventually reduces the fidelity
to F = |〈ψ|ψ̃〉|2 =

∑χ
α=1 S

2
α.

We quantify the fidelity for random Haar states in
Sec. H 1 and arbitrary states in Sec. H 2. We also show
that linear XEB remains a good estimator of fidelity in
this case, see Sec. H 4 [35]. We provide both numerical
and analytical bounds on the bond dimension χ required
to achieve a given fidelity for the simulation of RCS using
MPS methods. We give a precise method to compute this
lower bound, see Sec. H 5. We also pinpoint the number
of cycles of a sharp transition to the “typical” (quasi-
maximum) entanglement in Sec. H 6 (see also Ref. [36]).

In order to be of any practical use, χ must be much
smaller than the Hilbert space dimension of the halves,
with χ . 103 for most realistic implementations. Fig. 22
shows the required χ to reach a fidelity of F ≈ 10−4,
as a function of the number of qubits and cycles. The
reported memory footprint is the required memory to
store two complex arrays of sizes 2n/2×χ. For 70 qubits
and 24 cycles, the bond dimension χ required is of the
order of 107 (with 35 qubits in each half), which is well
beyond the capacity of Frontier.

1. Fidelity for Haar random states

The output state of a sufficiently deep quantum ran-
dom circuit can often be approximated as a Haar random
state. Therefore, we can explain the fidelity obtained
with representation (H2) using the distribution of sin-
gular values of a complex matrix with Gaussian entries [3]
and dimension D1×D2, where D1 (D2) is the dimension
of the left (right) Hilbert space. We extend the study of
Ref. [34] to the case D1 6= D2, and we assume without
loss of generality D1 ≤ D2.

Let S denote singular values and s =
√
D1S denote

normalized singular values. The distribution of the nor-
malized singular values follows the Marčenko–Pastur dis-
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tribution [37]

pλ(s) =
1

π

√
(λ2+ − s2)(s2 − λ2−)

λs
, (H4)

with D1 ≤ D2, λ = D1/D2, λ± = (1 ±
√
λ) and s ∈

[λ−, λ+]. For λ = 1, pλ(s) reduces to:

p(s) =
1

π

√
4− s2. (H5)

For a given bond dimension χ the fraction of singular
values is r = χ/D1. Let us define the cumulative distri-
bution of singular values

Cλ(s′) =

∫ λ+

s′
ds pλ(s) (H6)

Note that r = Cλ(s′) is the fraction of singular values
up to a given normalized singular value s′, starting from
the largest singular values. Therefore, the normalized
singular value corresponding to a given fraction r is:

sλ(r) = C−1λ (r). (H7)

For λ = 1 one obtains [34]

sλ=1(r) = 2 cos

(
1

2
A−1(πr)

)
, (H8)

where A(θ) = θ − sin θ.
The fidelity for a given fraction r of singular values is

given by

Fλ(r) =

∫ λ+

s(r)

ds s2pλ(s). (H9)

Recalling that

dsλ(r)

dr
=
dC−1λ (r)

dr
=

1
dCλ
ds

∣∣
s=sλ(r)

= − 1

pλ(sλ(r))
,

one also gets an alternative expression

Fλ(r′) = −
∫ 0

r′
dr

1

pλ(sλ(r))
s2λ(r) pλ(sλ(r))

=

∫ r′

0

dr s2λ(r) . (H10)

For χ� D1 we have

Fλ(χ/D1) ≤ dFλ(r)

dr

∣∣∣∣
r=0

χ

D1
= λ2+

χ

D1
, (H11)

where we used the fact that Fλ is a monotoni-
cally increasing and strictly concave function (that is,
d2Fλ/dr2 = −2sλ(r)/pλ(sλ(r)) ≤ 0). For λ = 1 [34],
the bound reduces to Fλ=1 ≤ 4χ√

D
. This gives an up-

per bound for the fidelity of a single projection into the
ansatz of Eq. (H2) once the ideal state is sufficiently en-
tangled.

2. Fidelity bound for arbitrary states

The fidelity of a Schmidt-decomposed state as in
Eq. (H3) is

F =

χ∑
α=1

S2
α. (H12)

Using the Jensen’s inequality, it follows that

χ2

(
1

χ

χ∑
α=1

S2
α

)2

≤ χ
χ∑
α=1

S4
α (H13)

and therefore

F ≤

√√√√χ

χ∑
α=1

S4
α ≤

√
χ tr ρ2L, (H14)

with tr ρ2L =
∑D1

α=1 S
4
α being the reduced purity after

tracing out the qubits on the right. Using exact numerics
for small systems (see Fig. 17), one can find a tighter
bound

F . Fλ
(
χ tr ρ2L

)
≤ λ2+ χ tr ρ2L, (H15)

with Fλ being the fidelity for Haar random states, see
Eq. (H10), and the average is at fixed depth. Equa-
tions (H14) and (H15) gives an upper bound for the fi-
delity of a single projection for an arbitrary quantum
state in the form (H2).

We can compare the numerical bound Eq. (H15)
with the fidelity for Haar random states Eq. (H11) for

D1 =
√
D. The average purity for a Haar random state

when D1 =
√
D is:

〈〈tr ρ2L〉〉 =

D1∑
α=1

〈〈S4
α〉〉 =

1

D2
1

D1∑
α=1

〈〈s4α〉〉

=
1

D1

∫ 2

0

s4
1

π

√
4− s2ds =

2√
D
. (H16)

Therefore, for small χ/
√
D, the numerical bound

Eq. (H15) is only twice larger than the correct fidelity
in this case.

3. Open and close simulations using approximate
tensor representations

As described in [34], approximated tensor representa-
tions can be used to sample bitstrings with a given target
fidelity F . More precisely, authors of [34] present two dif-
ferent protocols: “open” and “close” simulations.

For open simulations at fixed bond dimension χ, the
circuit C is split in k sub-circuits such that C =
Ck · · · C1C0. Starting from the initial state |ψ0〉 = |0〉,
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FIG. 17. Numerical fidelity bound. The plot compares the
exact fidelity F for different Sycamore layouts of different
sizes, depths, and bond dimensions χ to the numerical upper-
bound Fλ

(
χ trρ2L

)
, with Fλ and trρ2L being respectively the

fidelity in the Haar limit and the reduced purity. The dotted-
gray line corresponds to the bound Fλ

(
χ trρ2L

)
≤ λ2

+χ trρ2L ≤
4χ trρ2L. For all the instances, the pattern ABCDCDAB is
used, and the qubits are partitioned in two equal halves using
a diagonal cut.

a new approximate state |ψ̃1〉 is obtained by truncat-
ing the state |ψ1〉 = C1 |ψ0〉 using its χ largest singular

values {Sα,1} only. The approximate state |ψ̃1〉 is then

evolved to get |ψ2〉 = C2 |ψ̃1〉, which is again truncated
to its largest χ singular values to obtain the approximate
state |ψ̃2〉. Calling fk = | 〈ψk|ψ̃k〉 |2 =

∑χ
α=1 S

2
α,k the

partial fidelity of the approximate state |ψ̃k〉, Ref. [34]
shows that, for random circuits, the final fidelity can be
expressed as the product of all the partial fidelity, that
is F = | 〈ψ̃k|C|ψ0〉 |2 = f1f2 · · · fk.

For a large number of qubits, computing |ψi〉 =
Ci |ψi−1〉 and finding its singular values to get the ap-

proximate state |ψ̃i〉 is numerically intractable. To over-
come this limitation, authors of [34] introduce a varia-

tional approach to compute |ψ̃i〉 without the need of the

intermediate state Ci |ψ̃i−1〉 and without explicitly com-
puting its singular values. More precisely, for any Ci, a
new random approximate tensor |φ̃i〉 of bond dimension
χ is used to compute the objective:

f̃i(|φ̃i〉) = | 〈ψ̃i−1|C|φ̃i〉 |2. (H17)

Recalling that both |ψ̃i−1〉 and |φ̃i〉 are MPS of bond

dimension χ, computing f̃i for sufficiently shallow Ci and
small χ is doable even for a large number of qubits [34].
Using the update strategy proposed in [34], one can find

|ψ̃i〉 as

|ψ̃i〉 = argmax
|φ̃i〉

f̃i(|φ̃i〉). (H18)
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FIG. 18. Fidelity for close simulations F1F2 (see App. H 3),
compared to the exact fidelity F . The bond dimension is
fixed to χ = 8. Each point correspond to a different circuit,
with the average being performed over bitstrings. Circuits are
split in three parts of |C1| = 8, |CM | = 4 and |C2| = 8 cycles
respectively. For all the instances, the pattern ABCDCDAB
is used, and the qubits are partitioned in two equal halves
using a diagonal cut.

Because the quantum system becomes more and more
entangled by applying the sub-circuits Ci, one ex-
pects that fi+1 ≤ fi, reaching the saturation value of
Fλ(χ/D1) when the quantum state reaches the random
Haar limit.

Close simulations at fixed bond dimension χ are useful
to sample bitstrings with an improved target fidelity than
the corresponding open simulations with the same bond
dimension. To start, the circuit is split in three parts
C = C2CMC1. Using the open simulation protocol, the
approximate state |Ψ̃1〉 is computed by using |0〉 as initial
state and C1 as circuit. Similarly, the approximate state
|Ψ̃2(x)〉 is computed by using the open simulation proto-

col with |x〉 as initial circuit and C†2 as circuit. Finally,
the approximate amplitude ãx is computed as:

ãx = 〈Ψ2(x)|CM |Ψ1〉 . (H19)

As discussed in [34], ãx can be seen as amplitudes ex-
tracted from a quantum state with a fidelity F = F1F2,
with F1 and F2 being the fidelity of |Ψ̃1〉 and the average

fidelity of |Ψ̃2(x)〉 respectively. Because both |0〉 and |x〉
are MPS with bond dimension 0, F1F2 might be larger
than the fidelity one obtains with the open simulation
protocol. However, unlike the open simulation, multiple
runs are needed to get the required number of bitstrings.

Fig. 18 shows the fidelity of amplitudes sampled using
the close simulation protocol at fixed bond dimension
χ = 8, compared to the exact fidelity. Each point corre-
spond to a different circuit, and circuits are split so that
C1 and C2 contain 8 cycles while CM contains 4 cycles.
The average is performed over bitstrings.
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4. XEB for approximate tensor representations

We now explain why, at sufficiently large depth, XEB
is still a good estimator of fidelity for approximate tensor
representations. The optimal approximate tensor repre-
sentation Eq. (H3) is based on the Schmidt decomposi-
tion, that is

|ψ̃〉 =
1√
F

χ∑
α=1

Sα |να〉 , (H20)

where |να〉 = |lα〉 |rα〉 and F =
∑χ
α=1 S

2
α is the fidelity.

We first show that in the limit of large depth the left
and right singular vectors {|lα〉} and {|rα〉} are Haar ran-
dom states. Note that these are the singular vectors of
a matrix M with Gaussian entries (a Haar random ma-
trix), see App. H 1. For any unitaries U and V we also
have that UMV † is a matrix with Gaussian entries. This
implies that the distribution of singular vectors is invari-
ant under unitary transformation, that is, the singular
vectors are Haar random. Therefore, we approximate
the singular vectors as having i.i.d Gaussian random real
and imaginary parts.

We first give an explanation for why XEB is a good
estimator of fidelity in this case, followed by a formal
proof. We can write

|ψ〉 =
√
F |ψ̃〉+

√
1− F |⊥〉 (H21)

where

|⊥〉 =
1√

1− F

D1∑
α=χ+1

Sα |να〉 . (H22)

In the case of linear XEB, f(pj) = Dpj , we have

D
∑
j

p̃jpj = F
∑
j

Dp̃2j + (1− F )D
∑
j

p̃j ⊥j

+
√
F (1− F )D

∑
j

2Re(〈j|ψ̃〉 〈⊥|j〉) , (H23)

where pj are the ideal probabilities pj = | 〈j|ψ〉 |2 and

p̃j = | 〈j|ψ̃〉 |2. For D1 � χ � 1 both |ψ̃〉 and |⊥〉
converge to independent Haar random states. Therefore

D
∑
j

p̃2j ' 2 (H24)

D
∑
j

p̃j ⊥j' D2 〈〈p̃j ⊥j〉〉

' D2 〈〈p̃j〉〉 〈〈⊥j〉〉 ' 1 (H25)

2D
∑
j

Re(〈j|ψ̃〉 〈⊥|j〉) ' 0 , (H26)

where 〈〈·〉〉 denotes average over random states |ψ〉 (or
circuits, see App. A). Therefore

D
∑
j

p̃jpj ' F , (H27)
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FIG. 19. The plot compares the exact fidelity F to the linear
XEB for close simulations with a fixed bond dimension of
χ = 8. Circuits for the close simulations are split in three
parts of |C1| = 8, |CM | = 4 and |C2| = 8 cycles respectively.
The error is obtained by averaging over multiple circuits. For
all the instances, the pattern ABCDCDAB is used.

as we wanted.
We note that for very small χ, such as χ = 1, linear

XEB overestimates the fidelity. Indeed, in this case we
have

D
∑
j

p̃2j = D
∑
a,b

| 〈a|lα〉 |4| 〈b|rα〉 |4 ' 4 . (H28)

Nevertheless, this case is uninteresting for simulations, as
F ' λ2+/D1 corresponds to a very small fidelity. Numer-
ical results for small quantum systems, Fig. 19, confirm
the correspondence between exact fidelity and the XEB
for approximate quantum states using close simulations.

We now give a detailed proof. Below till the end of
this subsection, for the simplicity of notation, we will use
E[·] to denote the average over states 〈〈·〉〉.

We recall that for a L×L random β−Haar distributed
unitary Q (β = 1 for real and β = 2 for complex and
β = 4 for quaternion unitaries) with entries qi,j we have
the following expectations (see Table IV in [38]):

expectation values

E[|qi,j |4] = β+2
L(βL+2)

E[|qi,jqi,k|2] = β
L(βL+2)

We remind the reader that the exact and approxima-
tion outputs (from Eqs. (H3) and (H20)) are

|ψ〉 :=

√
D∑

α=1

Sα|lα〉 ⊗ |rα〉 :=

√
D∑

α=1

Sα|να〉

|ψ̃〉 :=
1√
F

χ∑
α=1

Sα|lα〉 ⊗ |rα〉 :=
1√
F

χ∑
α=1

Sα|να〉 .
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Let pj := |〈j|ψ〉|2 and p̃j := |〈j|ψ̃〉|2. We have 〈j|ψ〉 =∑√D
α=1 Sα〈j|να〉

pj =

∣∣∣∣∣∣
√
D∑

α=1

Sα〈j|να〉

∣∣∣∣∣∣
2

=

√
D∑

α,β=1

SαSβ 〈j|να〉〈νβ |j〉 ,

p̃j =
1

F

∣∣∣∣∣
χ∑
α=1

Sα〈j|να〉

∣∣∣∣∣
2

=
1

F

χ∑
α,β=1

SαSβ 〈j|να〉〈νβ |j〉 .

As stated above 〈j|να〉 = 〈j|(|lα〉⊗|rα〉) = vαwα is simply
a product of two complex numbers, where vα and wα
represent an entry of |lα〉 and |rα〉 respectively.

Lemma 1. DE
[∑

j pj p̃j

]
− 1 ≈ F + O(1/

√
D), where

the expectation is over the random haar vectors |lα〉 and
|rα〉 and singular values Sα.

Proof. We first compute E[pj p̃j ]. Treating singular values
as independent from the vectors we have

E[pj p̃j ] = 1
F

∑√D
α,β=1

∑χ
c,d=1{E[SαSβScSd]×

E[〈j|να〉〈νβ |j〉〈j|νc〉〈νd|j〉]}

= 1
F

∑√D
α,β=1

∑χ
c,d=1 E{[SαSβScSd]×

E[vαwαvβwβvcwcvdwd]} . (H29)

First of all the vectors |lα〉 and |rα〉 are independent and
power of their entries vanish over the complex field be-
cause of the invariance of Haar measure. Let

gj,χ,D := 1
F

∑√D
α,β=1

∑χ
c,d=1{E[SαSβScSd] E[vαvcvβvd]×

E[wαwcwβwd]}. (H30)

The non-zero contributions in the sum are three cases:

case 1: α = β 6= c = d

case 2: α = d 6= c = β

case 3: α = d = c = β

Before we indulge in computing these cases one by one,
let us focus on the expectation with respect to the entries
as the entries of a Haar unitary have correlations. When
α = β 6= c = d and vα and vc do not belong to the
same row of the unitary matrix induced by singular value
decomposition whose columns are |lα〉, we have

E[|v(1)α |2|v(2)c |2] =
1

D

√
D(
√
D − 1)

1

D
=

1

D
(1− 1√

D
).

However, when α = β 6= c = d and vα and vc come from
the same row or column of the unitary matrix, then from
the second row of the Table above we have

E[|v(1)α |2|v(1)c |2] =
1

D

√
D

β
√
D
(
β
√
D + 1

)
=

1

D

β(
β
√
D + 1

)
=

1

D
√
D

(
1− 1

β
√
D

)
. (H31)

The latter is of lower order. We ignore the terms of lower
order below and proceed to calculate the three cases by
assuming that the entries do not come from the same row
or column of the inducing random haar unitary matrix.

Recall from the asymptotic scaling of the purity
Eq. (H16) that

∑χ
c=1 E[S4

c ] ≤ 2/
√
D.

Case 1: α = β 6= c = d. We have up to O(1/
√
D)

from Eq. (H30)

gj,χ,D =
1

F

√
D∑

α=1,α6=c

χ∑
c=1

E[S2
αS

2
c ] E[|vα|2|vc|2] E[|wα|2|wc|2]

=
1

FD2

√
D∑

α=1,α 6=c

χ∑
c=1

E[S2
αS

2
c ]

=
1

FD2

√D∑
α=1

χ∑
c=1

E[S2
αS

2
c ]−

χ∑
c=1

E[S4
c ]


=

1

FD2

F √D∑
α=1

E[S2
α]−

χ∑
c=1

E[S4
c ]


=

1

FD2

F √D∑
α=1

E[S2
α]−O(1/

√
D)


=

1

D2

(
1−O(1/

√
D)
)
. (H32)

Case 2: α = d 6= c = β. We have up to O(1/
√
D)

from Eq. (H30)

gj,χ,D =
1

F

χ∑
α=1,α6=c

χ∑
c=1

E[S2
αS

2
c ] E[|vα|2|vc|2] E[|wα|2|wc|2]

=
1

FD2

χ∑
α=1,α 6=c

χ∑
c=1

E[S2
αS

2
c ]

=
1

FD2

(
χ∑
α=1

χ∑
c=1

E[S2
αS

2
c ]−

χ∑
c=1

E[S4
c ]

)

=
1

FD2

(
χ∑
α=1

χ∑
c=1

E[S2
αS

2
c ]−O(1/

√
D)

)

=
1

FD2

(
F

χ∑
α=1

E[S2
c ]−O(1/

√
D)

)

=
1

D2

(
χ∑
α=1

E[S2
α]−O(1/

√
D)

)

=
F

D2

(
1−O(1/

√
D)
)
.

Case 3: α = β = c = d. From Eq. (H30) and the first
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row of the Table above, we have

gj,χ,D =
1

F

χ∑
c=1

E[S4
c ] E[|vc|4]E[|wc|4]

=
1

F

(
β + 2

2
√
D(
√
D + 1)

)2 χ∑
c=1

E[S4
c ]

≈ 4

D2

∑χ
c=1 E[S4

c ]

F

(
1− 2

D1/2

)
= O(D−5/2). (H33)

We can now compute the desired result. First of all
from Eq. (H29) and the above 3 cases we have

E
∑
j

p̃jpj =
1

D
+
F

D
+O(D−3/2) .

Therefore,

DE

∑
j

p̃jpj

− 1 = F +O(1/
√
D), (H34)

which proves our result.

We now consider the special case of χ = 1 where the
approximate state |ψ̃〉 is taken to be a product state.

Corollary 1. When χ = 1, then DE
[∑

j p̃jpj

]
− 1 =

3F +O(F/
√
D).

Proof. In this case

E[pj p̃j ] =

√
D∑

α,β=1

E[SαSβ ] E[vαwαvβwβ |v1|2|w1|2] (H35)

The only non-zero contributions come from α = β = 1
and α, β ≥ 2. We have

E[pj p̃j ] = E[S2
1 ] E[|v1|4|w1|4]

+

√
D∑

α,β=2

E[SαSβ ] E[vαwαvβwβ |v1|2|w1|2]

= F E[|v1|4]E[|w1|4]

+

√
D∑

α=2

E[S2
α] E[|vα|2]E[|wα|2]E[|v1|2]E[|w1|2]

= F E[|v1|4]E[|w1|4] +
1

D2
(1− F )

= F

(
β + 2

2
√
D(
√
D + 1)

)2

+
1

D2
(1− F )

= F
4

D2

1(
1 + 1/

√
D
)2 +

1

D2
(1− F )

= F
4

D2

(
1− 2/

√
D
)

+
1

D2
(1− F )

=
3F

D2
+

1

D2
+O(F D−5/2).

We conclude the desired final result

D
∑
j

E[pj p̃j ] = 3F + 1 +O(F D−1/2).

5. Quantifying entanglement with Clifford circuits

We derived an analytical and numerical bound on the
fidelity of the tensor product approximation, Eqs. (H14)
and (H15), which depend on the reduced purity. We now
study the reduced purity growth rate. The average Pauli
error between the fsim gates used in the experiment and
the Clifford gate iSWAP−1 is ∼ 1%. For the purposes of
quantifying reduced purity growth we therefore approx-
imate fsim gates with iSWAP−1. The one-qubit gates
are ZpX1/2Z−p with p ∈ {−1,−1/4,−1/2, . . . , 3/4} [39].
We can study a related ensemble of Clifford circuits by
reducing the parameter p of the one-qubit gates to the
set p ∈ {−1,−1/2, 0, 1/2}. Note that the reduced pu-
rity produced by Clifford circuits is efficient to calculate
numerically [40].

Consider the average purity of the reduced state
〈〈tr ρ2L〉〉, where ρL is the partial trace of |ψ〉 on the left
qubits. We now show that layer by layer this average is
the same for the random circuits and the corresponding
Clifford circuits of the previous paragraph. One intuition
why this might be true is that Clifford circuits are a two-
design. Nevertheless, we are interesting in the growth
rate, not the average over Clifford circuits. Therefore,
we use a different technique.

First note that tr ρ2L can be written as∑
zL

〈zL|
∑
zR

〈zR| ρ |zR〉 |zL〉 ⊗ 〈zL|
∑
zR

〈zR| ρ |zR〉 |zL〉 ,

where {zL} ({zR}) is a basis for the left (right) patch.
Therefore, this quantity can be calculated from two repli-
cas of the output state of the circuit of interest ρ⊗ρ. As
shown in SM D and Ref. [13], for the circuits of interest,
the average of an observable with two replicas can be cal-
culated with a Markov chain describing the evolution of
the density matrix in the basis of Pauli strings. If we de-
note the basis of normalized Pauli strings as {s} we can
write any operator as ρ =

∑
s tr(ρs)s. It follows that

UρU† =
∑
s

tr(ρs)
∑
s′

tr(s′UsU†)s′ . (H36)

Using this relation repeatedly we reduce the evolution of
a circuit to the evolution of gates over Pauli strings. Fur-
thermore, the average over random circuits is composed
of averages over the corresponding set {g} of random
gates. In the case of the evolution of two replicas the
elementary step is

Eg[σ
α ⊗ σα

′
] = (H37)∑

β,β′

1

|g|
∑
g

tr(σβ ⊗ σβ
′
g ⊗ g σα ⊗ σα

′
g† ⊗ g†)σβ ⊗ σβ

′
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where the tensor product is between the two replicas, and
each gate is the same for both replicas. The initial state
of each qubit with two replicas is

|0〉 〈0| ⊗ |0〉 〈0| = 1 + Z

2
⊗ 1 + Z

2
. (H38)

We obtain, both the Clifford and non-Clifford single-
qubit gates above,

E[II] = II (H39)

E[IZ] = E[ZI] = 0 (H40)

E[ZZ] =
1

2
(XX + Y Y ) ≡⊥ (H41)

where we also define the symbol ⊥. For shorthand, we
also introduce the notation Z = ZZ and I = II. We
also obtain, again for both the Clifford and non-Clifford
gates,

E[⊥] =
1

2
(Z+ ⊥) . (H42)

Finally the transformation from applying iSWAP−1 to
two qubits in each replica gives

IZ→ ZI (H43)

I ⊥ →⊥ Z (H44)

ZZ→ ZZ (H45)

⊥⊥ →⊥⊥ (H46)

⊥ Z→ I ⊥ (H47)

Therefore the average purity of the reduced state 〈〈ρL〉〉
is the same for both ensembles, as the transformations
for the initial state of interest is the same for the average
of Clifford and non-Clifford gates.

Entanglement is typically measured with the von Neu-
mann entropy −ρL tr ρL. Using Jensen’s inequality this
can be bounded with the Rényi entropy

− tr ρL log2 ρL ≥ − log2 tr ρ2L . (H48)

The average Rényi entropy can be bounded with purity
of the reduced states using Jensen’s inequality as

−〈〈log2 tr ρ2L〉〉 ≥ − log2 〈〈tr ρ2L〉〉 . (H49)

Figure 20 shows the reduced purity, as a function of
the number of cycles, for different circuit sizes and cuts.
Dashed lines are the reduced purity limit values, see
Eq. (H50). For Sycamore-70 (this work), the reduced
purity is close to its limit value at depth 10.

6. Reduced purity and distribution of singular
values

We will now show numerically that the reduced purity
is a good witness for the distribution of singular values,
which undergoes through a sharp transition to its limiting
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FIG. 20. The plots show the reduced purity as a function of
the number of cycles, for different circuit sizes and cuts (di-
agonal cut for the top figure, and vertical cut for the bottom
figure), using Clifford gates only. The dashed lines corre-
spond to the reduced purity pur in the random Haar limit.
see Eq. (H50). For all the instances, the pattern ABCDCDAB
is used.

value. We first need to understand what is the expected
reduced purity and the corresponding standard devia-
tion for a Haar random state. In Sec. H 1 we gave the
distribution of the normalized singular values s =

√
D1S,

where D1 is the small Hilbert space dimension (between
the halves in which the state is being divided). The ex-
pected purity is

pur =
〈〈 D1∑

α=1

S4
α

〉〉
' 1

D2
1

〈〈 D1∑
α=1

s4α

〉〉
=

1

D1
〈〈s4α〉〉 .

(H50)

The variance is

Var(pur) = Var

(
D1∑
α=1

S4
α

)
' 1

D4
1

D1∑
α=1

Var(s4α)

=
1

D3
1

Var(s4α) . (H51)
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Therefore, we can say that the reduced purity has con-
verged to its limiting value at a given depth when

tr ρ2L − pur√
Var(pur)

∈ O(1) (H52)

Note that the variance decreases exponentially.
Figure 21-Top shows the distance of the reduced purity

in units of the standard deviation as a function of the
number of cycles. As expected, the depth for which the
reduced purity is exponentially close to its limit value
increases with the system size. Figure 21-Bottom shows
instead how the Kolmogorov-Smirnov p−value between
the singular values Sα and the Haar random distribution
of singular values Eq. (H10) transitions when the purity
reaches its limiting value in units of standard deviation.
As one can see, there is a sharp transition so that only
once the reduced purity is appropriately close to its limit
value, the distribution of Sα truly follows the distribution
of singular values in the random Haar limit.

7. Bounding the approximate tensor representation
performance for close simulations

Using Eqs. (H14) and (H15), it is possible to lower
bound the required χ to achieve a target fidelity F for
close simulations (see App. H 3). For our bounds, we split
circuits C of m cycles in three parts of |C1| = m − 2,
|CM | = 4 and |C2| = m − 2 cycles respectively. More-

over, we assume that it is possible to compute |Ψ̃1〉 and

|Ψ̃2(x)〉 with a single truncation each. While being un-
realistic for any practical purpose, it allows us to find
analytical and semi-analytical bounds since every realis-
tic simulation would require more than one truncation.

Recalling that the final fidelity of a close simulation is
F = F1F2, with F1 and F2 being the fidelity of |Ψ̃1〉 and

the average fidelity |Ψ̃2(x)〉 respectively, it is possible to
get an estimate of the optimal bond dimension χ for a
given target fidelity F as:

χan =
F

〈〈tr ρ2L〉〉
, (H53a)

χnm =
F−1λ (

√
F )

〈〈tr ρ2L〉〉
≥

√
F

λ2+ 〈〈tr ρ2L〉〉
, (H53b)

with λ2+ ≤ 2 being the largest singular value, and χan

and χnm being respectively the estimate for the bond
dimension using either the analytical or the numerical
bound. It is important to stress that the upper bounds
provided by Eqs. (H53) are valid for arbitrary depths and
bond dimensions χ, even if the quantum state has not
yet reached the Porter-Thomas limit. For small target
fidelity F , the ratio between χan and χnm becomes:

χan

χnm
≈ λ2+

√
F . (H54)

For a cut that split the qubits in two equal halves
(λ+ = 2), and for a target fidelity of F = 10−4, one gets
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FIG. 21. (Top) Distance of the reduced purity from its limit
value in units of the standard deviation as a function of
depths, using Clifford gates only. The dashed line corresponds
to 1. (Bottom) Kolmogorov-Smirnov p−value between the
singular values Sα and the distribution of singular values for
large depth, Eq. (H10), as a function of the distance between
the reduced purity and its limit value in units of standard de-
viation. Each point corresponds to a different circuits (with
the number of qubits ranging from n = 8 and n = 24) at given
fixed depth. Lighter points correspond to datapoints outside
the 90% two sided confidence interval. For all the instances,
the pattern ABCDCDAB is used, and qubits are partitioned
in two equal halves using a diagonal cut.

χnm ≈ 25χan, that is the numerical bound is only 25
times larger than the analytical bound. This is consis-
tent with what we observe in Fig. 22. Note the required
FLOPs scale as O(2nχ) if we represent the state with two
equal size tensors.

Appendix I: Client-certified randomness generation
with RCS

Randomness is a valuable resource with many applica-
tions and is a key resource in much of modern cryptogra-
phy. In classical physics, the outcome of any experiment
can in principle be determined from the initial condi-
tions, so there is no such thing as true randomness. On
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FIG. 22. Analytical (Top) and numerical (Bottom) upper
bounds for the required bond dimension to achieve a tar-
get fidelity of F = 10−4, by varying the number of qubits
and depths. The memory footprint (blue dashed-and-dotted
lines) is computed as the amount of memory required to

store two complex32 tensors of dimension 2n/2 × χ. Lap-
top (RAM) = 32GB, cluster node (RAM) = 256GB, Frontier
(RAM) = 9.2PB and Frontier (storage) = 700PB. The density
map is obtained by averaging circuits with patterns ABCD-
CDAB/BADCDCBA and with diagonal/vertical cuts.

the other hand, quantum physical systems exhibit true
randomness. The outcome of certain quantum processes
is inherently random, meaning that no amount of prior
information is sufficient to predict the outcome.

Client-certified randomness generation has been pro-
posed as a potential application of RCS [41–43]. The
proposed protocol works as follows. The client generates
challenge random quantum circuits which she sends to an
untrusted server that operates a quantum processor. The
server responds to each challenge by sending a requested
number of bitstrings within a given short amount of time.
When the server is honest, it produces the bitstrings by
sampling from the circuit using the quantum processor,
so the bitstrings contain entropy due to the inherent ran-
domness of quantum measurements. The client can then
pass the raw bitstrings through a randomness extractor

to obtain random bits of higher quality, in the sense of
being closer to the uniform distribution.

The client is able to gain confidence that the returned
sample of bitstrings is consistent with executing the
challenge circuits by performing statistical tests, such
as XEB. For cryptographic certification of randomness,
these tests need to account for the possibility that the
quantum operator is adversarial. Such an adversary will
try to construct a set of bitstrings that pass the statis-
tical tests despite having low or no entropy. Challenge
circuits must be executed with fidelity greater than an
agreed value F . In principle, the client allots a sam-
pling time sufficiently shorter than the necessary time to
simulate the same sampling (number of bitstrings and
fidelity) by all known classical algorithms using reason-
able computing resources. This way, the client can gain
confidence that the bitstrings were indeed obtained us-
ing a quantum computer, and therefore are a source of
quantum randomness. Unfortunately, in this protocol,
the client needs to perform classical simulations if she
wishes to certify the quantum randomness using XEB.
However, the client can do this simulation a posteriori,
running classical computations for a much longer time.
Furthermore, the client can in principle use a large num-
ber of challenge circuits and select only a subset of them
for verification. This way the client can force an adver-
sarial server to perform expensive simulations on a large
number of circuits while only expending computing re-
sources verifying a much smaller subset.

There exist a tension between the need for practi-
cal verification, which incurs an exponential cost in this
proposal, and the requirement that an adversary could
not pass the same test deterministically. Furthermore,
”spoofing” is typically a factor of F cheaper than the
verification [19]. The 70 qubit circuits presented in this
work are currently too big to be verified with XEB. At
the same time, the computational cost of classical algo-
rithms keeps improving (see SM G), as well as the perfor-
mance of implementations in specialized hardware [44].
In this work we do not resolve this tension, and we leave
open the problem of finding an efficient verification pro-
tocol, perhaps along the line of cryptographically secure
proposals [45, 46], or more near-term obfuscation tech-
niques [47]. We nevertheless study how this protocol
could work if this problem is resolved or if a client is
willing to expend sufficient compute resources to gain
enough confidence against a potential deterministic ad-
versarial server.

We summarize how our study of certified random-
ness compares to the original proposal introduced in
Refs. [41, 43]. The original reference is more rigorous,
under the assumption that the total system fidelity re-
mains constant as the number of qubits scales, which
requires quantum error correction [48]. Our proposal is
less rigorous but more practical. First, we argue that
the amount of randomness per circuit should scale as the
number of samples times the system fidelity, not as the
number of qubits as in Refs. [41, 43]. Second, we intro-
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duce new statistical tests to detect adversarial sampling
with lower randomness. Third, we implement an op-
timized (quantum-proof) Trevisan’s randomness extrac-
tor [43, 49], which is important for a potential practical
application given that the required input sizes are sev-
eral orders of magnitude larger than those considered by
previous implementations. We also propose a faster but
less rigorous randomness extractor.

1. Entropy estimation

The output of the protocol is produced by applying
a randomness extractor to the output of the quantum
computer; see Sec. I 4. A randomness extractor takes
an input from the source with a given min-entropy, to-
gether with a uniformly random seed, and it outputs a
near-uniformly random bitstring of length proportional
to the input min-entropy. The min-entropy of a random
variable X is defined as minus the log of the maximum
probability:

min-entropy = −max
x

log2 (Pr[X = x]) . (I1)

Below, we give bounds for the quantum min-entropy (see
also Ref. [50]).

a. Entropy estimation for an honest server

The experimental output of a noisy quantum random
circuit can be described by (see SM A)

F |ψ〉〈ψ|+ (1− F )Ξ , (I2)

where F is the experimental fidelity (probability of no
error), |ψ〉 is the ideal output of the quantum circuit, and
Ξ has trace one and is the result of errors. Measurement
of this state can be interpreted as measuring the ideal
quantum state |ψ〉 with probability F , and measuring
the operator Ξ with probability 1 − F . This is depicted
in the following diagram:

|ψ〉

Ξ

Sampler

F

1− F
(I3)

For the purposes of quantum randomness generation,
we take an adversarial approach with respect to the noise
operator Ξ and consider it to be deterministic. The rea-
son is that we are purely interested in the quantum en-
tropy that is generated experimentally, and not in us-
ing potential “noise” or “errors” in the experiment as a

source of entropy. Arguably, if we were willing to accept
an entropy source based on “noise”, there are simpler
setups that do not require the use of a quantum pro-
cessor. Furthermore, the potential entropy coming from
the noise cannot be certified. Therefore, we model the
sampling as depicted in the next diagram:

|ψ〉

Deterministic

Sampler

F

1− F
(I4)

Given the adversarial model above, the bitstring with
the highest probability is the deterministic noise with
probability 1 − F . Therefore for a sample of size k the
min-entropy is

min-entropy = − log2

(
(1− F )k

)
≈ kF (I5)

It is possible to obtain a tighter bound by ignoring the
very unlikely event that all outputs of the experiment cor-
respond to the “noise” term, which we are treating as de-
terministic. The approach is to use the ε-min-entropy or
smooth min-entropy, that is, we bound the min-entropy
ignoring events with cumulative probability smaller than
some suitable small ε.

In the simplified model given by (I4) within a sample
of size k the expected number of bitstrings obtained from
the ideal output |ψ〉 is kF with the variance kF (1− F ).
We wish to bound the probability of obtaining sufficiently
many bitstrings from the ideal output. We now estimate
this probability for obtaining a sequence of bitstrings
from the ideal distribution up to a cumulative probability
of 1 − ε. Assuming that we are sampling from a quan-
tum processor with experimental fidelity F , then we can
choose a constant c1 and upper-bound the probability of
obtaining at least

q := kF − c1
√
kF (1− F ) (I6)

bitstrings from the ideal distribution, where c1 is the
number of standard deviations below the mean. Since the
sample size is large enough (order of millions) we can use
gaussianity where by c1 = 5 implies that ε = 1.5× 10−12

rendering the probability of success 1− 1.5× 10−12.
Suppose that the distribution of the ideal output prob-

abilities p(s) = | 〈s|ψ〉 |2 follows the Porter-Thomas dis-
tribution with the probability density function

f(x) = e−x, (I7)

where x = Dp(s) is the ideal bitstring probability scaled
by the Hilbert space dimension D = 2n. The average
of minus log of the probability of one bitstring from the
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Porter-Thomas distribution is (see Eq. (A7))

−D2

∫ ∞
0

log(p)e−Dpp dp = log(D)− 1 + γ , (I8)

where γ is Euler’s constant. Then minus the log of the
probability of a sequence of q independent ideal bitstrings
is, by central limit theorem, a normal distribution with
average q(log(D)−1+γ). The variance is upper-bounded
by qπ2/6. Similar as above, we can choose a constant
c2 such that with high probability the ε-min-entropy is
q(log(D)−1+γ)−c2

√
qπ2/6. Putting it all together, we

obtain the following lower-bound for the ε-min-entropy

q(log(D)− 1 + γ)− c2

√
qπ2

6
. (I9)

b. Correction to the min-entropy

The bound of Eq. (I9) represents the pure quantum
min-entropy obtained from sampling a random quantum
circuit. We now consider the situation in which a client
has only black-box access (say via the cloud) to the quan-
tum processor held by a server. We discuss deviations
from the scenario of the previous section due to poten-
tial adversarial actions of the server, while still assuming
that the server calls a quantum processor to obtain the
output bitstrings.

In the previous section we bounded the number q of
bitstrings obtained in a sample of size k using a quantum
processor of fidelity F . An adversarial quantum server
might be able to oversample sq bitstrings with s ≥ 1
in the allotted time from the ideal quantum state be-
fore returning q bistrings. The server can also rearrange
the bistrings in any predetermined way before return-
ing them to the client. These operations lower the min-
entropy and do not necessarily affect statistical tests such
as the cross entropy. In order to bound the min-entropy
of this multiset oversampling, we consider first a sim-
plified model where the server samples from a uniform
distribution of size D instead of the ideal quantum state.

We now give an expression for the probability of ob-
taining a given multiset S of size q when sampling sq
times from the uniform distribution of D values. We can
assume q � D and that all the values in the set S are
distinct. Let Ai denote the set of all sequences missing
value i. We have

P (S) = 1−
∣∣⋃

i∈S Ai
∣∣

Dsq
. (I10)

Note that ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = (D − |I|)sq . (I11)

Therefore, by the inclusion-exclusion principle, we have∣∣∣∣∣⋃
i∈S

Ai

∣∣∣∣∣ =

q∑
j=1

(−1)j−1
(
q

j

)
(D − j)sq , (I12)

and

P (S) = 1−
q∑
j=1

(−1)j−1
(
q

j

)(
D − j
D

)sq
. (I13)

Although this expression is exact, note that all the terms
have the same order in 1/D, so it does not result in a
compact estimate of the probability in the case of inter-
est, D →∞.

We can also write different upper and lower bounds for
P (S). Let α denote a set of q indexes and Bα denote the
set of words with the q given values in positions α. We
first have

P (S) ≤
∑
α |Bα|
Dsq

. (I14)

There are q! ways in which the q values can appear in
the α positions, and Dsq−q possible choices for the other
sq − q positions. Therefore

|Bα| = q!Dsq−q . (I15)

There are are sq chose q ways to choose α. Therefore

P (S) ≤
(
sq

q

)
q!

Dq
=

(sq)q
Dq

, (I16)

where

(sq)q = Πq−1
j=0(sq − j) (I17)

This gives the following bound for the min-entropy

min-entropy ≥ q logD − log(sq)q . (I18)

We can obtain a related lower bound by considering the
sets Cα including words with the q values of interest
in positions α, and none of those values anywhere else.
Then

P (S) ≥
∑
α |Cα|
Dsq

(I19)

=

(
sq

q

)
q!(D − q)sq−q

Dsq
(I20)

=
(sq)q
Dq

(
1− q

D

)q(s−1)
. (I21)

Therefore, in the limit of D →∞, we have

P (S) =
(sq)q
Dq

(
1−O

(
q2s

D

))
(I22)

min-entropy = q logD − log(sq)q +O

(
q2s

D

)
(I23)

' q logD − q log sq + q . (I24)

We have seen that multiset sampling can lower the
min-entropy by a factor log((sq)q). Applying this to the
honest server min-entropy bound, Eq. (I9), gives a bound
for the multiset sampling min-entropy

q(log(D)− 1 + γ)− c2

√
qπ2

6
− log((sq)q) . (I25)



30

2. Repeated bitstrings

In the previous section we ignored the possibility of re-
peated bitstrings in the adversarial server sampling. We
study this now. We denote the total sampling budget
of the adversarial server (sq in the previous section) by
β. We will see that the client can require the server to
return unique bitstrings, and this has little effect in the
linear XEB as long as β � D. An adversarial server can
also postselect to bistrings that appear at least twice to
artificially boost the nominal “fidelity” as measured by
XEB. We will see that this effect is negligible as long as
s�

√
D/q.

a. Probabilities for repeated bitstrings

The probability that a bitstring j appears exactly c
times is

p′j(c) =

(
β

c

)
pcj(1− pj)β−c . (I26)

For large enough sampling budget β, there may occur
collisions, i.e., repeated strings. We can calculate the
expected number M of strings appearing with each mul-
tiplicity c, and the corresponding ideal probability value
A. In the following, we derive closed formulas up to first-
order approximation, confirming the formulas (I44), (I50)
conjectured in Ref. [50, App. D].

Lemma 1. Assuming D + β � c, the expected number
of bitstrings that appear exactly c times is

Mβ,c =

(
β

c

)
D1−cc!(

1 + β
D

)c+1

(
1 +O

(√
(2c)!

D

))
. (I27)

Proof. The expected number of bitstrings that appear
exactly c times is

Mβ,c =
∑
j

p′j(c) . (I28)

First note that

Mβ,c =
∑
j

p′j(c) (I29)

= D 〈〈p′(c)〉〉+O
(√

DVar(p′(c)
)
, (I30)

where, as in App. A, we use the approximation that for
large D the probabilities p′j(c) are i.i.d.

We can write

〈〈p′(c)〉〉 =

(
β

c

)
I(β, c) , (I31)

where I(β, c) is the expectation value of pc(1 − p)β−c.
This can be calculated as

I(β, c) =

∫ 1

0

pc(1− p)β−cdF (p) (I32)

=

∫ 1

0

pc(1− p)β−c(D − 1)(1− p)D−2dp (I33)

= (D − 1)c!
(D + β − c− 2)!

(D + β − 1)!
(I34)

= (D − 1)c!
1

(D + β − 1)c+1
, (I35)

where the last expression uses a falling factorial in the
denominator. Therefore

〈〈p′(c)〉〉 =

(
β

c

)
(D − 1)c!

(D + β − 1)c+1
, (I36)

We are interested in the value for large D, so we can use
the approximation

〈〈p′(c)〉〉 '
(
β

c

)
(D − 1)c!(

D + β − 1− c
2

)c+1 . (I37)

This approximation is valid for

D + β � c , (I38)

which is always the case in the regime of parameters we
are interesting in.

We can also estimate the variance

Var(p′(c))(
β
c

)2 (I39)

=
(D − 1)(2c)!

(D + 2β − 1− c)2c+1

−

(
(D − 1)c!(

D + β − 1− c
2

)c+1

)2

(I40)

= D−2c
(1− 1

D )(2c)!(
1 + 2 βD −

1
D −

c
D

)2c+1

−D−2c

 (1− 1
D )c!(

1 + β
D −

1
D −

c
2D

)c+1


2

. (I41)

Ignoring small terms we get

Var(p′(c)) =

(
β

c

)2

D−2c
(
(2c)!− (c!)2 +O(β/D)

)
.

(I42)

Keeping only the dominant term (2c)! completes the
proof of the lemma.

Note that we also ignore terms O(1/D) and O(c/D) for
consistency with the fluctuations from the variance.
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In Eq. (I27) we can use β � c to write(
β

c

)
'
(
β − c

2

)c
c!

. (I43)

Plugging this back and ignoring again terms O(1/D) and
O(c/D) we get

Mb,c ' D
bc

(1 + b)c+1
, (I44)

where b = β/D.
We are also interested in the expected value of the

simulated or ideal probability for the bistrings that are
obtained exactly c times in a β-sample.

Lemma 2. The expected value of the ideal probability for
the bistrings that are obtained exactly c times is

Aβ,c =
1

D

c+ 1

1 + b
. (I45)

Proof. The probabilities of bitstrings conditioned on ap-
pearing exactly c times are proportional to p′j(c), normal-
ized so that their sum is 1. That is, the conditional prob-
abilities are p′j(c)/Mb,c. Therefore, the expected value
of the simulated probability conditioned on appearing c
times has the expression

Aβ,c =
1

Mβ,c

∑
j

p′j(c) pj . (I46)

Using the same methodology as in Lemma 1 we have

Aβ,c =

∫ 1

0
pc+1(1− p)β−cdF (p)∫ 1

0
pc(1− p)β−cdF (p)

(I47)

=
I(β + 1, c+ 1

I(β, c)
(I48)

=
(c+ 1)!

c!

(D + β − 1)c+1

(D + β)c+2
(I49)

=
1

D

c+ 1

1 + b
. (I50)

The expected number of unique bitsrings in a β-sample
follows from Eq. (I44) and is given by the expression

Mβ =

∞∑
c=1

Mβ,c = D
β

D + β
. (I51)

b. Linear cross-entropy with unique bitstrings

Following the same logic as in Eq. (I46), we can calcu-
late the expected value of the linear cross entropy when

an honest server returns unique bitstrings. The probabil-
ities of bitstrings conditioned on appearing at least one
time are proportional to

p′′j (c) =

∞∑
c=1

p′j(c) , (I52)

normalized so that their sum is 1. The corresponding
linear cross entropy is

D
∑
j

p′′j (c)

Mβ
pj − 1 =

D

Mβ

∞∑
c=1

Aβ,cMβ,c − 1 (I53)

=
2 + b

1 + b
− 1 =

1

1 + b
. (I54)

The expectation value of the linear cross entropy is 1
when allowing repeated bitstrings if sampling from a
Haar random quantum state. Therefore, the perturba-
tion to the linear cross entropy when requiring unique
bitstrings can be ignored when b � 1 or, equivalently,
β � D. Note that sampling with less fidelity results in a
lower frequency of collisions.

c. Adversarial postselection of repetitions

Consider now the situation where an adversarial server
is asked to return k unique bitstrings, but the server se-
cretly oversamples many more bitstrings to take advan-
tage of collisions. That is, the server can postselect bit-
strings that appear at least twice, and therefore, in the
ideal case of fidelity 1, have a higher expectation value
for the simulated probability DAβ,2 ∼ 3, instead of the
usual average simulated probability 〈Dp〉 = 2. In this
way, the server could pass the linear cross entropy test
returning a smaller number of quantum generated bit-
strings, that is, a sample with similar estimated fidelity
but less quantum entropy.

Next we bound how many bitstrings can be oversam-
pled with still a negligible effect in the estimated fidelity
from linear cross entropy. In order to cover the case of an
adversarial server with non-ideal fidelity φ < 1, we con-
sider an idealized model where errors are heralded. That
is, we treat sampling sk bitstrings with fidelity φ as sam-
pling β = sq bitstrings with fidelity 1, where q = φk. The
contribution to the linear cross entropy for bitstrings that
appear c = 2 times is

D

q
Mβ,2Aβ,2 =

D

q

β2

D2
3(1 +O(β/D)) (I55)

= 2
s2q

D
3(1 +O(β/D)) . (I56)

This effect is negligible for s�
√
D/q.

3. Additional statistical tests

We explained in the main text the conditions under
which XEB is an estimator of fidelity, which is the main
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test for experimental RCS (see also SM A). Ref. [6] also
introduced the idea of checking the consistency between
log and linear XEB, and a Kolmogorov-Smirnov test for
the simulated probabilities of the experimental bitstrings.
We now introduce two additional statistical tests which
might be useful in an adversarial setting such as client-
certified randomness generation.

a. Hamming distance filter

In order to sample from the output distribution of a
quantum circuit one can use an independent tensor con-
traction per output bitstring using frugal rejection sam-
pling (see SM G and Refs. [19, 30]). This results in a
simulation runtime that scales linearly in the number of
bitstrings sampled. Ref. [27] introduced a method to
compute amplitudes of a large number of uncorrelated
bitstrings with a much lower overhead than linear.

An adversarial server using tensor network contrac-
tions could avoid the remaining overhead from Ref. [27]
using less tensor network contractions to calculate the
probabilities of many bitstring with small Hamming dis-
tance between them, although this does not perform RCS
(see for instance Ref. [51]). We now give a Hamming dis-
tance filter test which detects this pseudo-sampling.

We can approximate a Porter-Thomas sampling as a
uniform sampling of bitstrings for the purpose of ana-
lyzing the Hamming distance between unique sampled
bitstrings. We denote the distance between bitstrings j
and k as hjk. For fixed j, the distribution of the Ham-
ming distance to other bitstrings is binomial with n the
number of qubits and p = 1/2. As an example we can
consider n = 70 and Hamming distance 15. The proba-
bility of hjk ≤ 15 is

ph =
1

2n

15∑
c=0

(
70

c

)
= 8.26 · 10−7 . (I57)

The experimental readout measurement error has a
bias which we can take into account. Let e01 bet the
probability of measuring state 0 when the quantum state
is 1 and e10 the probability of measuring state 1 when
the quantum state is 0. This gives a bias b = e01 − e10.
The probability of sampling a 1 on a qubit is, on average,
pb = (1 − b)/2, while the probability of sampling a 0 is
1 − pb. The probability of obtaining a given Hamming
distance between two bitstrings is therefore given by a
binomial distribution with the slightly biased value of pb,
which is slightly higher than in the unbiased case.

For a given sample S with k bitstrings, we can elimi-
nate sufficient bitstrings so that there are no pairs of bit-
strings within Hamming distance less than some bound,
such as 15. One way to do this is to process the bitstrings
one by one in the sample S. For each bitstring, we elim-
inate all the other bitstrings at Hamming distance 15 or
less. With this method, we keep more than half of the
bitstrings if k = 106. Note that each random ordering

of bitstrings results in a different sub-sample. Therefore,
this is equivalent to implementing bootstrapping in the
initial sample. That is, we can repeat this sub-sampling
a large number of times calculating the XEB fidelity es-
timator each time. The average of the XEB of all the
sub-samples corresponds, in the honest case, to the sam-
ple average. We can do this for larger Hamming distances
also.

In conclusion, with some small computational cost we
can prevent a potential attack using a tensor network
algorithm to calculate probabilities of sets bitstrings with
small Hamming distance between them.

b. Statistical test of large probabilities

The value of the XEB fidelity estimator is higher if,
instead of sampling, an adversarial server outputs the
bitstrings with the highest simulated probabilities. This
might be detected already by tests introduced in Ref. [6],
such comparing linear and log XEB, or the Kolmogorov-
Smirnov test. Here we give another option, namely using
a truncated XEB fidelity estimator which ignores the bit-
strings with simulated probability beyond some threshold
t.

Consider the XEB estimator based on the function (see
SM A)

ft(pj) := Dpj 11pj≤t/D (I58)

where pj is the simulated or ideal probability for bitstring
j, D = 2n is the Hilbert space dimension, and 11pj≤t is
an indicator function with value 1 if pj ≤ t and value
0 in other case. As explained in SM A we can model
the sampling probabilities of a quantum processor with
fidelity F as

pFj = Fpj +
1− F
D

. (I59)

The expectation value of the sampling with function (I58)
is ∑

j

pFj Dpj11pj≤t/D . (I60)

Assuming that the simulated probabilities are distributed
according to the Porter-Thomas or exponential distribu-
tion we have

tXEB =
∑
j

pFj Dpj11pj≤t/D

= D 〈〈pFj Dpj11pj≤t/D〉〉 (I61)

= D2

∫ t

0

(Fx+ 1− F )xe−xdx (I62)

= F + 1− e−t
(
1 + t+ (1 + t+ t2)F

)
. (I63)

As with any other XEB fidelity estimator, we can es-
timate the value tXEB sampling bitstrings from an ex-
perimental implementation. This gives the tXEB fidelity
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estimator

F =
tXEB− 1 + e−t(1 + t)

1− e−t(1 + t+ t2)
. (I64)

Note that we are interested in the case t & 2, which
makes the denominator positive.

In order to calculate the variance of this estimators, we
need the expectation value of the square of tXEB. This
is ∑

j

pFj
(
Dpj11pj≤t/D

)2
= D2

∫ t

0

(Fx+ 1− F )x2e−xdx . (I65)

This integral can be calculated analytically to obtain an
expression for the variance of the corresponding estima-
tor of fidelity. For simplicity, we only give the variance
in the limit F → 0, which is

VAR(tXEB) ' 1− e−tt2 − e−2t(1 + 2t+ t2)

(1− e−t(1 + t+ t2))
2 . (I66)

Table I shows the variance for different values of the trun-
cation parameter. We see that in an experimental sam-
ple we can ignore all bitstrings with ideal probabilities
≥ 4/D without affecting much the variance of the corre-
sponding tXEB estimator. This gives another statistical
test sensitive to a potential adversary which postselects
bitstrings with unusually large ideal probabilities.

VAR(F ) t

1.00557 10.

1.06288 7.

1.32601 5.

1.84472 4.

4.11632 3.

10.144 2.5

105.982 2.

TABLE I. Variance of the truncated XEB estimate of F
against the truncation parameter t.

4. Randomness extractor

Randomness extractors are functions that convert bits
from a weak source of randomness into near-uniform ran-
dom bits [52]. In our protocol we apply a randomness
extractor to the output of a quantum computer, which
contains intrinsic randomness but is not uniformly dis-
tributed. In this section, we describe the randomness
extractor we implemented and present some benchmark
results of its running time.

For general sources of randomness, randomness extrac-
tion is only possible if the extractor is also given a small
uniformly random input seed as a catalyst.

A weak random source has a distribution over {0, 1}n
which has some entropy. The most conservative estimate
of the unpredictability of the outcomes is given by the
min-entropy or equivalently the ∞−Rényi entropy:

Definition 1. Let X be a probability distribution on the
hyper-cube {0, 1}n, and let px be the probability of the
string x ∈ {0, 1}n. The minimum entropy of X is

min
x

(− log2 px) = −max
x

log2 px = − log2 max
x

px

For an n−bit distribution X with min-entropy k, we say
that X is an (n, k) distribution.

We now formally define an extractor function. Let
Ext : {0, 1}n × {0, 1}d → {0, 1}m be the function that
takes as input samples from an (n, k) distribution X and
a uniformly random d−bit string seed, and outputs an
m−bit string that is ε-close to uniform. We say that
the extractor is (k, ε) if the output is ε close to uniform
random, where ε is the statistical distance. In extracting
randomness from random variables from the knowledge
of just a lower-bound on the min-entropy, a key concept
is k−source.

Definition 2. A random variable X is called a k−source
if its min-entropy is at least k. That is, Pr[X = x] ≥ 2−k.

a. Trevisan’s extractor and HMAC

We implemented a randomness extractor based on Tre-
visan’s construction [49]. Since this extractor is some-
what slow, we describe in App. I 4 c an alternative con-
struction using the cryptographic primitive hash-based
message authentication code (HMAC) that is more effi-
cient, though it is a heuristic, not a theoretically proven
extractor like Trevisan’s.

We implemented Trevisan’s extractor following pri-
marily the construction of Raz, Reingold, and Vad-
han [53] with some optimizations from [54]. The initial
extractor was implemented entirely in Python, and pro-
filing was used to identify bottlenecks, which were then
rewritten in C++. In our case, over 99% of the running
time was spent evaluating polynomials in a subroutine
that computed Reed-Solomon codes. This code was mi-
grated to a C++ library using NTL [55].

For a fixed ε, the extractor uses O(log2 n) additional
random bits. The theoretical optimal seed size for any
seeded extractor, is log(n − k) + 2 log(2/ε) + O(1). For
a fixed seed size, min-entropy, and ε, the extractor takes
time linear in the size n of the input. However, our inputs
are several orders of magnitude larger than those con-
sidered by previous papers and previous benchmarked
implementations of Trevisan’s extractor, such as [54]
and [56].
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FIG. 23. Throughput of the Trevisan randomness extractor
for various input sizes, when the output length is 4096 bits.
We used 64 threads. Each data point is the average of the
values obtained from 10 runs, and there are error bars of one
standard deviation (too small to see).

b. Benchmark results

We tested the performance of our implementation of
Trevisan’s randomness extractor on various input sizes
ranging from 220 bits to 230 bits. We used a workstation
with an Intel Xeon Gold 6154 3.00GHz CPU which has
18 cores, each with 4 threads. We used 64 threads for
our benchmarking.

Part of the running time of our extractor is spent in
passing the input data from Python to C++. This con-
version occurred at a rate of about 44 Mbit/s. Once this
conversion has taken place, the extractor produces out-
put bits at a constant rate, which we term the throughput,
when the total length of the output is fixed. In Figure 23,
we plot the throughput for the various input sizes when
the output length is fixed to 4096 bits. At the input size
of 230, the throughput was 8.4 bits/s. As an example,
at the input size of 230, the Python to C++ conversion
took about 24 seconds, while the rest of the extraction
took about 490 seconds to produce the 4096 bits of out-
put. While this throughput is slow compared to, say, the
computation of a hash function like SHA-512, it is suf-
ficient for many purposes. For example, a high-security
cryptographic key requiring 256 bits of entropy may be
used for days or weeks before needing to be refreshed.

c. A faster randomness extractor using HMAC

Our implementation of Trevisan’s randomness extrac-
tor suffers from the disadvantage of being quite slow.
In practice, theoretically proven randomness extractors
are rarely used, with common efficient heuristic cryp-
tographic primitives such as HMAC often used instead
[57, 58]. In this appendix, we explain how one can use

an HMAC to construct a heuristic randomness extractor
that works in our setting. Besides being a heuristic, our
construction suffers from the disadvantage of requiring a
rather large seed size (linear in the size of the output).
Nevertheless, it may be of more practical use in some
situations than the Trevisan extractor.

The main obstacle to overcome in using an HMAC
for randomness extraction is that the output length is
limited. For example, a SHA512-based HMAC will only
output 512 bits, even when the input has many more bits
of min-entropy. Here, we show, using Lemma 6.38 in [52],
that one can extend the output length of a randomness
extractor. The lemma says the following:

Lemma 3. (Lemma 6.38 in [52]): Suppose
Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a (k1, ε1) ex-
tractor and Ext2 : {0, 1}n × {0, 1}d2 → {0, 1}m2 is a
(k2, ε2) extractor for k2 = k1 − m1 − log(1/ε3). Then
Ext′ : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 defined
by Ext′(x, (y1, y2)) = (Ext1(x, y1),Ext2(x, y2)) is a
(k1, ε1 + ε2 + ε3) extractor.

Changing notation, letting Ext(X,S) := Ext1 = Ext2,
m := m1 = m2, and ε := ε1 = ε2; and renaming the
independent variable ε3 as ε1 we can restate this lemma
as: if Ext(X,S) = Y is a (k, ε)-extractor with an m-
bit output, then (Ext(X,S1),Ext(X,S2)) is a (k + m +
log(1/ε1), 2ε+ ε1)-extractor with a 2m-bit output.

Let us define Ud to be a uniform random seed of size
d bits. As explained in [52], k2 = k1 − m1 − log(1/ε3)
in Lemma 3 arises because if one conditions a k1-source
on the output of Ext1(X,Ud1), then the source still has a
conditional min-entropy of at least k1−m1− log(1/ε3) =
k2 except with probability ε3. Therefore, Ext2(X,Ud2)
can extract an additional m2 almost-uniform bits. We
can also ensure that Ext2(X,Ud2) can extract an addi-
tional m2 almost-uniform bits by instead requiring X to
be a (k2 +m1 + log(1/ε3))-source.

This analysis can be recursively applied.

Ext′′(X, (S1, S2, S3, S4))

≡ (Ext(X,S1),Ext(X,S2),Ext(X,S3),Ext(X,S4))
(I67)

can be considered to be the combination of two (k+m+
log(1/ε1), 2ε+ ε1)-extractors:

• the first (k + m + log(1/ε1), 2ε + ε1)-extractor is
(Ext(X,S1),Ext(X,S2)) and

• the second (k+m+ log(1/ε1), 2ε+ ε1)-extractor is
(Ext(X,S3),Ext(X,S4))

Thus, selecting a new ε2, Ext′′(X, (S1, S2, S3, S4)) is a
(k′ +m′ + log(1/ε2), 2ε′ + ε2)-extractor, where

• k′ = k +m+ log(1/ε1),

• m′ = 2m, and

• ε′ = 2ε+ ε1.
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So we get a
(
k + 3m+ log

(
1
ε1

)
+ log

(
1
ε2

)
, 4ε+ 2ε1 + ε2

)
-

extractor.

In general, to output 2tm bits, we can construct an
extractor

Extt(X, (S1, S2, ..., S2t))

≡ (Ext(X,S1),Ext(X,S2), ...,Ext(X,S2t)). (I68)

This would be lead to the following extractor(
k + (2t − 1)m+

t∑
i=1

log(1/εi), 2
tε+

t∑
i=1

2t−iεi

)

This analysis demonstrates that given sufficient min-
entropy in the input X, we can repeatedly apply the same
randomness extractor with a fresh seed to extract the
desired number of output bits that are statistically close
to uniform.
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tby, B. Pató, A. Petukhov, C. Quintana, N. Redd, N. C.
Rubin, D. Sank, K. J. Satzinger, V. Shvarts, D. Strain,
M. Szalay, M. D. Trevithick, B. Villalonga, T. C. White,
Z. Yao, P. Yeh, A. Zalcman, H. Neven, S. Boixo, L. B.
Ioffe, P. Roushan, Y. Chen, and V. Smelyanskiy, Accu-
rately computing the electronic properties of a quantum
ring, Nature 594, 508 (2021).

[9] P. V. Klimov, J. Kelly, J. M. Martinis, and H. Neven, The
snake optimizer for learning quantum processor control
parameters (2020), arXiv:2006.04594.

[10] I. L. Aleiner, L. Faoro, and L. B. Ioffe, Microscopic model
of quantum butterfly effect: out-of-time-order correlators
and traveling combustion waves, Annals of Physics 375,
378 (2016).

[11] A. Nahum, S. Vijay, and J. Haah, Operator spreading in
random unitary circuits, Phys. Rev. X 8, 021014 (2018).

[12] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and
S. L. Sondhi, Operator hydrodynamics, otocs, and en-
tanglement growth in systems without conservation laws,

Phys. Rev. X 8, 021013 (2018).
[13] X. Mi, P. Roushan, C. Quintana, S. Mandra, J. Mar-

shall, C. Neill, F. Arute, K. Arya, J. Atalaya, R. Bab-
bush, et al., Information scrambling in quantum circuits,
Science 374, 1479 (2021).

[14] X. Gao, M. Kalinowski, C.-N. Chou, M. D. Lukin,
B. Barak, and S. Choi, Limitations of linear cross-entropy
as a measure for quantum advantage, PRX Quantum 5,
010334 (2024).

[15] A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão,
Random quantum circuits anticoncentrate in log depth,
PRX Quantum 3, 010333 (2022).

[16] B. Barak, C.-N. Chou, and X. Gao, Spoofing linear
cross-entropy benchmarking in shallow quantum circuits,
arXiv:2005.02421 (2020).

[17] D. Aharonov, X. Gao, Z. Landau, Y. Liu, and
U. Vazirani, A polynomial-time classical algo-
rithm for noisy random circuit sampling, in
Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(2023) pp. 945–957.

[18] P. de Gennes and J. Prost,
The Physics of Liquid Crystals, International Series
of Monographs on Physics (Clarendon Press, 1993).

[19] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo,
Quantum supremacy is both closer and farther than it
appears, arXiv:1807.10749 (2018).

[20] B. Bertini, P. Kos, and T. Prosen, Operator entanglement
in local quantum circuits i: Chaotic dual-unitary circuits,
SciPost Physics 8, 067 (2020).

[21] I. L. Markov and Y. Shi, Simulating quantum computa-
tion by contracting tensor networks, SIAM Journal on
Computing 38, 963 (2008).

[22] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven,
Simulation of low-depth quantum circuits as complex
undirected graphical models, arXiv:1712.05384 (2017).

[23] J. Gray and S. Kourtis, Hyper-optimized tensor network
contraction, Quantum 5, 410 (2021).

[24] C. Huang, F. Zhang, M. Newman, J. Cai, X. Gao,
Z. Tian, J. Wu, H. Xu, H. Yu, B. Yuan, M. Szegedy,
Y. Shi, and J. Chen, Classical simulation of quantum
supremacy circuits, arXiv:2005.06787 (2020).

[25] G. Kalachev, P. Panteleev, and M.-H. Yung, Multi-
tensor contraction for xeb verification of quantum cir-
cuits, arXiv:2108.05665 (2021).

[26] G. Kalachev, P. Panteleev, P. Zhou, and M.-H. Yung,
Classical sampling of random quantum circuits with
bounded fidelity, arXiv:2112.15083 (2021).

[27] F. Pan, K. Chen, and P. Zhang, Solving the sampling
problem of the sycamore quantum circuits, Physical Re-
view Letters 129, 090502 (2022).

[28] Y. Liu, Y. Chen, C. Guo, J. Song, X. Shi, L. Gan, W. Wu,
W. Wu, H. Fu, X. Liu, D. Chen, G. Yang, and J. Gao,
Validating quantum-supremacy experiments with exact
and fast tensor network contraction, arXiv:2212.04749
(2022).

[29] J. Chen, F. Zhang, C. Huang, M. Newman, and Y. Shi,
Classical simulation of intermediate-size quantum cir-
cuits, arXiv:1805.01450 (2018).

[30] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel,
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