

Supplementary Figure 1 The generation of a membrane-bound GFP tagged

hESC line. (A) Diagram showing plasmid map. (B) hESC express membrane-bound GFP tag which is maintained following oligodendroglial differentiation. Scale bars 50μm. (C) GFP+ MBP+ oligodendrocyte. MBP+ processes are GFP+, arrows. Scale bar 50μm. (D) GFP+ oligodendroglia were injected bilaterally into the developing corpus callosum of p2-4 *Shi/Shi:Rag2-/-* mice. Coronal sections, see diagram for orientation, taken 10 weeks following transplantation show GFP+ cells have migrated throughout the corpus callosum and generated MBP+ myelin sheaths. Scale bar 500μm. (E) Still image taken from Supplementary Video 1. Human GFP+ (green) oligodendrocytes generating MBP (red) (arrows) 10 weeks after transplantation into *Shi/Shi:Rag2-/-* mice. Hoechst (blue). Scale bar 10μm

Supplementary Figure 2 Characteristics of transplanted cells (A-F) single-cell RNAseq bioinformatics analysis of human cells at the point of transplantation, with (A) Dimensional reduction representation (TSNE) with cells coloured according to the main cell-types detected. (B) Violin plot showing canonical genes for the different cell-types. (C) Proportions of NRP1^{+/+} and NRP1^{-/-} of each cell-type. (D) Cluster of OPCs used for downstream analysis, defined as the cluster with the highest expression of PDGFRA, with (E) showing a feature plot with superimposed expression of PDGFRA. (F) Volcano plot showing the differentially expressed genes between NRP1^{+/+} and NRP1^{-/-} OPCs. Positive values show gene transcripts upregulated in NRP1^{-/-} cells. (G) SNP array analysis of an area of chromosome 2 which is deleted in NRP1^{-/-} cells which incorporates the gene *USP34* and likely accounts for its lower gene expression.

Supplementary Figure 3. Cell movement requires a stimulus that is not the result of injection forces. (A) 24 hours after transplant the human cells largely remain in the injection tract and do not enter the corpus callosum (highlighted between dotted lines), hNu (white), Hoechst (blue). Scale bar = 250μ m. (B) At 1 week post transplant, when no demyelinating lesion is present, cells remained in the injection tract and did not enter the corpus callosum (highlighted between dotted lines). Both from representative images of 3 mice. Scale bar = 500μ m.

Supplementary Figure 4: Uninjured rag 2 mice 6 weeks post transplants. NRP1^{+/+} and NRP1^{-/-} cells generate equal numbers of astrocytes that are evenly distributed in both hemispheres. n=3 for each condition, two-tailed unpaired t-test, p=0.2296 and p=0.5982. Each point represents 1 mouse, and is the average quantification of 3 sections/mouse. Graph plots: means \pm SEM.

Supplementary Figure 5: NRP1^{+/+} and NRP1^{-/-} human cell proliferation in the lesion is not affected by SEMA3A. (A) Representative images of Ki67 (red) and human nuclear marker (hNu, white) immunofluorescent staining at the lesion site of PBS or SEMA3A-loaded lesions. Here, showing NRP1^{-/-} cells. Scale bars = 100μ m. (B) The percentage of proliferating human cells determined by the number of Ki67+hNu+ human nuclei. No significant difference in proliferation was observed between cell genotypes (p=0.3518 and p=0.3656) or condition (p=0.5036 and p=0.2193). Two-way ANOVA with Sidak's test. NRP1^{+/+} n=3 (PBS) n=4 (SEMA3A), NRP1^{-/-} n=5 both. Each point represents 1 mouse and is the average quantification of 3 sections/mouse. Graph plots: means ± SEM.

В

Supplementary Figure 6: Following demyelination, hOPCs migrate effectively in both young and aged mice. (A) Experimental outline. P2-4 Rag2-/- pups were injected with NRP1^{+/+} or NRP1^{-/-} cells. 1.5 years later, adult mice received an LPC lesion. Analysis was performed 1 week post lesion. (B) The percentage of NRP1^{+/+} or NRP1^{-/-} PDGFR α + hOPCs in the lesion is similar between young and old mice. Two-way ANOVA with Sidak's test. Young NRP1^{+/+} n=3, Young NRP1^{-/-} n=5, Old NRP1^{+/+} and NRP1^{-/-} n=4. Each point represents 1 mouse, and is the average quantification of 3 sections/mouse. Graph plots: means ± SEM.

G

F

Supplementary Figure 7: Analysis of human myelin in *Shiverer:Rag2^{-/-}* mice (A) MBP+ human myelin in the corpus callosum 6 weeks post transplant. Scale bar = 500µm. (B) NRP1^{+/+} and NRP1^{-/-} cells generate equal numbers of GFAP+ astrocytes in uninjured *Shi/Shi:Rag2^{-/-}* mice, that are evenly distributed in both hemispheres. n=3 NRP1^{+/+} n=4 NRP1^{-/-} for each condition, two-tailed unpaired t-test, p=0.1663 and p= 0.789. (C) Average g-ratios showing no difference in myelin thickness between NRP1^{+/+} and NRP1^{-/-} transplants. n=4 for each condition, unpaired two-tailed t-test, p=0.3586. (D) The average diameter of myelinated axons was not different between NRP1^{+/+} and NRP1^{-/-} transplants. n=4 for each condition, unpaired two-tailed t-test, p=0.1944. (E) 3 weeks post lesion, the number of CC1-positive human oligodendrocytes was equal between the uninjured contralateral and the lesion sites when either NRP1^{+/+} (p=0.9399) or NRP1^{-/-} (p=0.9969) cells were transplanted. n=6/4 respectively, one-way ANOVA, Tukey test. (F) NRP1^{+/+} and NRP1^{-/-} GFAP+ astrocyte numbers were similar between the lesion and the unlesioned contralateral side. n=7/3 respectively for each condition, two-tailed unpaired t-test, p=0.5034 and p=0.2269. For B,E,F: each point represents 1 mouse, and is the average quantification of 3 sections/mouse. For C,D: each point represents 1 mouse, and is the average quantification of ~100 axons per mouse. All graphs plot means ± SEM.

Α

Supplementary Figure 8: Transplanted cell distribution in the brain. (A) Following long-term transplantation into the parenchyma, cells were even found in the anterior commissure. Scale bar 100µm (B) hOPCs injected into the cerebral spinal fluid (CSF) were highly migratory and found far away from the injection site. Scale bar 500µm. Representative images.

Supplementary Figure 9: Gating strategy for live/dead flow cytometry. Examples from sample B control (BCon). (A) Forward and side scatter gating to select all cells. (B) Forward scatter gating to select single cells. (C) Draq7 histogram determining live and dead cells.

С

Gene	p_val	avg_log2FC	pct.1	pct.2	p_val_adj
CASK	9.95E-27	-0.2543	0.806	0.894	2.97E-22
MDK	5.05E-21	-0.3059	0.242	0.429	1.51E-16
USP34	2.16E-18	0.25446	0.514	0.327	6.44E-14
ODC1	2.05E-17	-0.26017	0.516	0.658	6.12E-13
HMGN2	2.13E-12	-0.25683	0.607	0.726	6.34E-08

Supplemental Table 1: OPC differential expression.

Supplemental Table 2: Oligodendroglia differential expression.

Gene	p_val	avg_log2FC	pct.1	pct.2	p_val_adj
CASK	1.69E-84	-0.31517	0.688	0.817	5.04E-80
MDK	6.38E-76	-0.38219	0.333	0.552	1.90E-71
MT3	1.84E-75	-0.41041	0.282	0.476	5.48E-71
USP34	1.31E-57	0.276567	0.522	0.314	3.90E-53
ODC1	3.88E-53	-0.28373	0.455	0.608	1.16E-48
HOPX	7.81E-44	-0.288	0.47	0.577	2.33E-39
PTGDS	1.44E-38	0.310825	0.322	0.169	4.30E-34

Supplemental Table 3: Astrocytes differential expression.

Gene	p_val	avg_log2FC	pct.1	pct.2	p_val_adj
MT3	0	-0.56292493	0.553	0.829	0
NEAT1	6.11E-186	-0.43388126	0.496	0.728	1.82E-181
OTX2-AS1	4.04E-150	0.343190753	0.384	0.141	1.20E-145
MDK	1.24E-135	-0.33201636	0.627	0.804	3.69E-131
S100A13	8.81E-113	-0.30389208	0.193	0.39	2.63E-108
USP34	2.41E-103	0.281297101	0.514	0.317	7.18E-99
CASK	5.74E-98	-0.25934495	0.616	0.75	1.71E-93
NTRK2	1.66E-93	0.278744217	0.358	0.172	4.95E-89
DCLK1	2.48E-93	0.268416088	0.77	0.619	7.39E-89
PTGDS	2.94E-90	0.304468934	0.306	0.131	8.75E-86
LGALS1	2.02E-74	-0.27985847	0.354	0.513	6.03E-70
EDNRB	1.77E-68	-0.28779725	0.634	0.758	5.28E-64

Gene	p_val	avg_log2FC	pct.1	pct.2	p_val_adj
MT3	0	-0.46542596	0.404	0.615	0
OTX2-	3.19E-202	0.278029875	0.264	0.091	9.52E-198
AS1					
CASK	1.12E-198	-0.28886145	0.632	0.768	3.33E-194
MDK	1.20E-188	-0.32124218	0.468	0.636	3.59E-184
USP34	3.39E-188	0.290112295	0.512	0.312	1.01E-183
PTGDS	1.72E-134	0.278377612	0.273	0.124	5.12E-130
NEAT1	1.32E-129	-0.291891	0.408	0.551	3.93E-125

Supplemental Table 4: All cells differential expression.

Supplemental Table 5: Primary antibody information

Antibody	Source	Identifier	Dilution	Application
Rat monoclonal		MCA409S		
anti-MBP	Serotec	RRID:AB_325004	1:250	IF
Rabbit				
polyclonal anti-		AB9610		
Olig2	Millipore	RRID:AB_570666	1:400	IF
Goat polyclonal	R&D	AF2418		
anti-Olig2	Systems	RRID:AB_2157554	1:400	IF
Mouse				
monoclonal				
anti-Nuclei				
Antibody, cione	Millin and		1.100	
235-1 Maura	wiiiipore	RRID:AB_94090	1:400	
monseland				
nonocional				
Oligodopdrocyto	חפס	MAR1226		
Marker O4	Systems		1.400	
Rabbit	Oysterns		1.400	
nolvclonal anti-		ab15580		
Ki67	Abcam	RRID-AR 443209	1.400	IF
Rabbit	7 (boarn		1.400	
monoclonal		ab178846		
anti-IBA1	Abcam	RRID:AB 2636859	1:400	IF
Rabbit			Tissue	
monoclonal	Cell	3174	1:400 cells	
anti-PDGFRa	signalling	RRID:AB_2162345	1:200	IF
Rabbit				
monoclonal	Cell	2180		
anti-KU80	signalling	RRID:AB_2218736	1:400	IF
Mouse				
monoclonal		ab16794		
anti-APC (CC1)	Abcam	RRID:AB_443473	1:100	IF
Chicken anti-	Cambridge			
GFAP	Bioscience	829401	1:500	
Mouse		4.0000		
monocional	0	A2228	4.4000	
anti-beta actin	Sigma	RRID:AB_476697	1:1000	VVB
Rappli		ah01221		
anti NPD1	Abcom		1.1000	
Sheen			1.1000	
nolvclonal anti₋	R&D	AE3870		
NRP1	Systems	RRID:AB 884367	1:200	WB