iScience, Volume 27

## Supplemental information

## Development and validation of a multimodal

## deep learning framework for vascular

## cognitive impairment diagnosis

Fan Fan, Hao Song, Jiu Jiang, Haoying He, Dong Sun, Zhipeng Xu, Sisi Peng, Ran Zhang, Tian Li, Jing Cao, Juan Xu, Xiaoxiang Peng, Ming Lei, Chu He, and Junjian Zhang

|                       | Accuracy      | Sensitivity   | Specificity   | F1-score      | AUC           | AP            |
|-----------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| sMRI only model       |               |               |               |               |               |               |
| T1                    | 0.855         | 0.936         | 0.774         | 0.866         | 0.905         | 0.901         |
|                       | [0.774-0.936] | [0.857-1.000] | [0.640-0.903] | [0.787-0.936] | [0.834-0.963] | [0.819-0.969] |
| T2-FLAIR              | 0.855         | 0.903         | 0.807         | 0.862         | 0.861         | 0.828         |
|                       | [0.774-0.919] | [0.807-0.972] | [0.679-0.929] | [0.774-0.932] | [0.769-0.938] | [0.708-0.940] |
| Clinical              |               |               |               |               |               |               |
| non-imaging model     |               |               |               |               |               |               |
| 31 clinical variables | 0.855         | 0.968         | 0.742         | 0.870         | 0.927         | 0.936         |
|                       | [0.774-0.919] | [0.909-1.000] | [0.600-0.971] | [0.794-0.936] | [0.874-0.974] | [0.886-0.976] |
| Hybrid model          |               |               |               |               |               |               |
| Clinical + T1         | 0.887         | 0.903         | 0.871         | 0.889         | 0.965         | 0.972         |
|                       | [0.823-0.952] | [0.808-0.971] | [0.765-0.968] | [0.813-0.952] | [0.923-0.993] | [0.940-0.994] |
| Clinical + T2         | 0.855         | 0.936         | 0.774         | 0.866         | 0.953         | 0.964         |
|                       | [0.774-0.936] | [0.857-1.000] | [0.650-0.900] | [0.793-0.933] | [0.903-0.992] | [0.926-0.992] |
| Clinical + T1 + T2    | 0.919         | 0.968         | 0.871         | 0.923         | 0.972         | 0.979         |
|                       | [0.855-0.968] | [0.909-1.000] | [0.765-0.968] | [0.863-0.972] | [0.934-0.997] | [0.951-0.997] |

Table S1. Performance metrics of the multimodal deep learning model, related to Figure 1.

Note: The performance of the sMRI-only model (ViT), the clinical non-imaging model (XGBoost), and the hybrid model (ViT + XGBoost) for the VCI diagnosis are shown through reporting the accuracy, sensitivity, specificity, F1-score, AUC, and AP. All metrics are presented as the mean [95% confidence interval].

Abbreviations: AUC, area under the receiver operating characteristic curve; AP, area under the precisionrecall curve; sMRI, structural magnetic resonance imaging; FLAIR, fluid attenuated inversion recovery; ViT, Vision Transformer; XGBoost, extreme gradient boosting.

| Brain regions                 | Importance score | Brain regions            | Importance score |
|-------------------------------|------------------|--------------------------|------------------|
| Dram regions                  | (T1/T2-FLAIR)    | Drain regions            | (T1/T2-FLAIR)    |
| Precentral_L                  | 0.130/0.105      | Superior parietal_L      | 0.000/0.123      |
| Precentral_R                  | 0.001/0.007      | Superior parietal_R      | 0.472/0.004      |
| Superior frontal_L            | 0.005/0.248      | Inferior parietal_L      | 0.032/0.021      |
| Superior frontal_R            | 0.100/0.143      | Inferior parietal_R      | 0.084/0.022      |
| Superior frontal orbital_L    | 0.000/0.549      | Supramarginal_L          | 0.000/0.045      |
| Superior frontal orbital_R    | 0.121/0.490      | Supramarginal_R          | 0.001/0.026      |
| Middle frontal_L              | 0.005/0.119      | Angular_L                | 0.134/0.045      |
| Middle frontal_R              | 0.016/0.100      | Angular_R                | 0.176/0.044      |
| Middle frontal orbital_L      | 0.033/0.706      | Precuneus_L              | 0.022/0.341      |
| Middle frontal orbital_R      | 0.003/0.129      | Precuneus_R              | 0.008/0.161      |
| Inferior frontal opercular_L  | 0.430/0.477      | Paracentral lobule_L     | 0.000/0.004      |
| Inferior frontal opercular_R  | 0.085/0.000      | Paracentral lobule_R     | 0.011/0.000      |
| Inferior frontal triangular_L | 0.461/0.592      | Caudate_L                | 0.000/0.054      |
| Inferior frontal triangular_R | 0.130/0.003      | Caudate_R                | 0.003/0.017      |
| Inferior frontal orbital_L    | 0.483/0.651      | Putamen_L                | 0.000/0.003      |
| Inferior frontal orbital_R    | 0.010/0.002      | Putamen_R                | 0.074/0.289      |
| Rolandic operculum_L          | 0.035/0.017      | Pallidum_L               | 0.000/0.000      |
| Rolandic operculum_R          | 0.000/0.000      | Pallidum_R               | 0.000/0.022      |
| Supplementary motor area_L    | 0.000/0.210      | Thalamus_L               | 0.000/0.000      |
| Supplementary motor area_R    | 0.006/0.080      | Thalamus_R               | 0.107/0.000      |
| Olfactory_L                   | 0.000/0.249      | Heschl_L                 | 0.000/0.000      |
| Olfactory_R                   | 0.000/0.031      | Heschl_R                 | 0.002/0.000      |
| Superior medial frontal_L     | 0.040/0.555      | Superior temporal_L      | 0.001/0.102      |
| Superior medial frontal_R     | 0.175/0.383      | Superior temporal_R      | 0.049/0.174      |
| Medial frontal orbital_L      | 0.000/0.752      | Superior temporal pole_L | 0.426/0.076      |
| Medial frontal orbital_R      | 0.043/0.976      | Superior temporal pole_R | 0.130/0.215      |
| Rectus_L                      | 0.000/0.771      | Middle temporal_L        | 0.011/0.122      |
| Rectus_R                      | 0.081/0.599      | Middle temporal_R        | 0.004/0.199      |
| Insula_L                      | 0.107/0.024      | Middle temporal pole_L   | 0.181/0.046      |
| Insula_R                      | 0.025/0.365      | Middle temporal pole_R   | 0.430/0.120      |
| Anterior cingulate_L          | 0.026/1.000      | Inferior temporal_L      | 0.159/0.033      |
| Anterior cingulate_R          | 0.356/0.971      | Inferior temporal_R      | 0.007/0.020      |
| Median cingulate_L            | 0.001/0.106      | Cerebelum crus1_L        | 0.328/0.023      |
| Median cingulate_R            | 0.224/0.326      | Cerebelum crus1_R        | 0.271/0.131      |
| Posterior cingulate_L         | 0.000/0.000      | Cerebelum crus2_L        | 0.191/0.015      |
| Posterior cingulate_R         | 0.002/0.004      | Cerebelum crus2_R        | 0.547/0.332      |
| Hippocampus_L                 | 0.000/0.000      | Cerebelum 3_L            | 0.000/0.000      |
| Hippocampus_R                 | 0.062/0.245      | Cerebelum 3_R            | 1.000/0.000      |
| Parahippocampal_L             | 0.000/0.000      | Cerebelum 4 and 5_L      | 0.003/0.000      |
| Parahippocampal_R             | 0.081/0.017      | Cerebelum 4 and 5_R      | 0.453/0.000      |

Table S2. The importance scores of 116 anatomical regions in AAL atlas, related to Figure 4.

| Amygdala_L           | 0.000/0.000 | Cerebelum 6_L  | 0.003/0.000 |
|----------------------|-------------|----------------|-------------|
| Amygdala_R           | 0.008/0.574 | Cerebelum 6_R  | 0.146/0.001 |
| Calcarine_L          | 0.316/0.001 | Cerebelum 7b_L | 0.223/0.000 |
| Calcarine_R          | 0.002/0.000 | Cerebelum 7b_R | 0.301/0.007 |
| Cuneus_L             | 0.013/0.487 | Cerebelum 8_L  | 0.146/0.000 |
| Cuneus_R             | 0.004/0.019 | Cerebelum 8_R  | 0.267/0.000 |
| Lingual_L            | 0.131/0.000 | Cerebelum 9_L  | 0.422/0.000 |
| Lingual_R            | 0.078/0.000 | Cerebelum 9_R  | 0.685/0.000 |
| Superior occipital_L | 0.048/0.440 | Cerebelum 10_L | 0.502/0.000 |
| Superior occipital_R | 0.011/0.109 | Cerebelum 10_R | 0.000/0.000 |
| Middle occipital_L   | 0.325/0.020 | Vermis 1 and 2 | 0.670/0.000 |
| Middle occipital_R   | 0.043/0.563 | Vermis 3       | 0.574/0.000 |
| Inferior occipital_L | 0.045/0.000 | Vermis 4 and 5 | 0.079/0.000 |
| Inferior occipital_R | 0.000/0.000 | Vermis 6       | 0.017/0.000 |
| Fusiform_L           | 0.003/0.006 | Vermis 7       | 0.144/0.000 |
| Fusiform_R           | 0.014/0.020 | Vermis 8       | 0.040/0.000 |
| Postcentral_L        | 0.041/0.004 | Vermis 9       | 0.000/0.000 |
| Postcentral_R        | 0.072/0.081 | Vermis 10      | 0.068/0.000 |

Note: The contribution of T1 and T2-FLAIR image features to the VCI diagnosis within each brain region was quantified by calculating the importance scores, respectively.

Abbreviations: AAL, anatomical automatic labeling; FLAIR, fluid attenuated inversion recovery; VCI, vascular cognitive impairment.

| Variables                          | Model construction | Missing data | External validation | Missing data |
|------------------------------------|--------------------|--------------|---------------------|--------------|
| variables                          | cohort (n=307)     | rate, %      | cohort (n=157)      | rate, %      |
| Demographics                       |                    |              |                     |              |
| Age                                | 307                | 0.00         | 157                 | 0.00         |
| Sex                                | 307                | 0.00         | 157                 | 0.00         |
| Marital status                     | 305                | 0.65         | 155                 | 1.27         |
| Education years                    | 302                | 1.63         | 157                 | 0.00         |
| Medical history                    |                    |              |                     |              |
| Hypertension                       | 306                | 0.33         | 151                 | 3.82         |
| Diabetes                           | 306                | 0.33         | 151                 | 3.82         |
| Hyperlipidemia                     | 306                | 0.33         | 151                 | 3.82         |
| CHD                                | 306                | 0.33         | 143                 | 8.92         |
| TIA                                | 306                | 0.33         | 142                 | 9.55         |
| Stroke                             | 244                | 20.52        | 143                 | 8.92         |
| Intra/extracranial artery stenosis | 306                | 0.33         | 153                 | 2.55         |
| Family history                     |                    |              |                     |              |
| Family history of stroke           | 289                | 5.86         | 135                 | 14.01        |
| Family history of dementia         | 289                | 5.86         | 137                 | 12.74        |
| Family history of hypertension     | 289                | 5.86         | 135                 | 14.01        |
| Family history of diabetes         | 289                | 5.86         | 139                 | 11.46        |
| Family history of CHD              | 289                | 5.86         | 142                 | 9.55         |
| Medication history                 |                    |              |                     |              |
| Antiplatelet                       | 302                | 1.63         | 157                 | 0.00         |
| Anticoagulant                      | 227                | 26.06        | 143                 | 8.92         |
| Lipid-lowering                     | 302                | 1.63         | 152                 | 3.18         |
| Antihypertensive                   | 302                | 1.63         | 152                 | 3.18         |
| Anti-dementia                      | 234                | 23.78        | 136                 | 13.38        |
| Antidiabetic                       | 300                | 2.28         | 153                 | 2.55         |
| Daily habits                       |                    |              |                     |              |
| Physical exercise                  | 292                | 4.89         | 152                 | 3.18         |
| Dietary habit                      | 167                | 45.60        | 111                 | 29.30        |
| Sleeping habit                     | 175                | 43.00        | 131                 | 16.56        |
| Smoking                            | 305                | 0.65         | 157                 | 0.00         |
| Drinking                           | 305                | 0.65         | 153                 | 2.55         |
| Physical measures                  |                    |              |                     |              |
| Height                             | 291                | 5.21         | 154                 | 1.91         |
| Weight                             | 291                | 5.21         | 154                 | 1.91         |
| Body mass index                    | 291                | 5.21         | 154                 | 1.91         |
| Systolic blood pressure            | 293                | 4.56         | 155                 | 1.27         |

Table S3. The non-imaging variables and associated data missing rate, related to STAR Methods.

| Diastolic blood pressure   | 293 | 4.56  | 155 | 1.27  |
|----------------------------|-----|-------|-----|-------|
| Laboratory tests           |     |       |     |       |
| Leukocyte counts           | 290 | 5.54  | 155 | 1.27  |
| Erythrocyte counts         | 292 | 4.89  | 155 | 1.27  |
| Hemoglobin                 | 292 | 4.89  | 155 | 1.27  |
| Platelet counts            | 292 | 4.89  | 155 | 1.27  |
| Fasting blood glucose      | 289 | 5.86  | 147 | 6.37  |
| Glycated hemoglobin        | 148 | 51.79 | 120 | 23.57 |
| Total cholesterol          | 289 | 5.86  | 154 | 1.91  |
| LDL-C                      | 290 | 5.54  | 154 | 1.91  |
| HDL-C                      | 287 | 6.51  | 154 | 1.91  |
| Triglyceride               | 287 | 6.51  | 154 | 1.91  |
| Fibrinogen                 | 274 | 10.75 | 143 | 8.92  |
| Alanine aminotransferase   | 294 | 4.23  | 152 | 3.18  |
| Aspartate aminotransferase | 294 | 4.23  | 152 | 3.18  |
| Albumin                    | 294 | 4.23  | 152 | 3.18  |
| Globulin                   | 293 | 4.56  | 152 | 3.18  |
| A/G                        | 293 | 4.56  | 152 | 3.18  |
| Total bilirubin            | 294 | 4.23  | 152 | 3.18  |
| Direct bilirubin           | 294 | 4.23  | 152 | 3.18  |
| Indirect bilirubin         | 294 | 4.23  | 152 | 3.18  |
| Creatinine                 | 292 | 4.89  | 152 | 3.18  |
| Urea nitrogen              | 291 | 5.21  | 152 | 3.18  |
| Homocysteine               | 104 | 66.12 | 116 | 26.11 |

Abbreviations: CHD, coronary heart disease; TIA, transient ischemic attack; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; A/G, albumin-globulin ratio.





Five machine learning models were compared to assess their performance in diagnosing VCI. Evaluation was conducted by calculating multiple metrics, including accuracy, sensitivity, specificity, F1 score, AUC, and AP. XGBoost, eXtreme gradient boosting; LR, logistic regression; MLP, multi-layer perceptron; SVM, support vector machine; RF, random forest; AUC, area under the receiver operating characteristic curve; AP, area under the precision-recall curve; VCI, vascular cognitive impairment.





SHAP analysis was utilized to rank the contribution of thirty-three imaging and non-imaging features in the hybrid model to the diagnosis of VCI. The left plot demonstrates the mean absolute SHAP values, and the right plot illustrates the distribution of SHAP values. All features are sorted in descending order of the mean absolute SHAP values. HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; CHD, coronary heart disease; SHAP, Shapley Additive exPlanations; sMRI, structural magnetic resonance imaging; VCI, vascular cognitive impairment.



**Figure S3. CAMs for three test VCI subjects generated by ViT, related to Figure 3.** CAMs of three test subjects generated by the ViT model highlighted high-risk brain regions that were associated with VCI, when T1 and T2-FLAIR images were inputted to the model, respectively. Red color indicates the brain region has a comparatively greater contribution to the VCI diagnosis in one test subject, while blue indicates a comparatively lower to the VCI diagnosis. VCI, vascular cognitive impairment; CAMs, class activation maps; ViT, Vision Transformer; FLAIR, fluid attenuated inversion recovery.



Figure S4. Association between sMRI-derived features and the neuroimaging markers of SVD, related to Figure 1.

The association between four neuroimaging markers of SVD and MRDM-T1 scores (A) as well as MRDM-T2 scores (B) was analyzed using the Spearman rank correlation test, respectively. The diagonal line represents the fitted line, and the shaded area indicates the 95% confidence interval. BG, basal ganglia; EPVS, enlarged perivascular space; CSO, centrum semiovale; sMRI, structural magnetic resonance imaging; SVD, cerebral small vessel disease.





This figure separately displays the inter-rater agreement among neurologists (A) and radiologists (B), evaluated by calculating the pairwise Pearson correlation coefficients of their confidence scores for the VCI diagnosis. The matrices reflect the correlation coefficient values between individual neurologists and radiologists. The color gradient from magenta to green indicates increasing correlation coefficient values, suggesting higher agreement among clinicians' assessments. Furthermore, the average pairwise Pearson correlation coefficient with a 95% confidence interval is shown to represent the overall agreement within each matrix. VCI, vascular cognitive impairment.





3D images of sMRI served as input, where *H*, *W*, *D* represent the height, width, and depth of the input images, respectively. All images were split into the identical patches, and the dimensions of patches were reduced by linear projection layer. The features of all patches were combined with positional encoding, and these features with spatial information were subsequently input to the Transformer encoder to generate the deep features of networks. Ultimately, the deep features outputted from the Transformer encoder underwent processing by the MLP layer to complete the classification of VCI and NC. Furthermore, the ViT model generated the sMRI-derived features. MLP, Multi-Layer Perceptron; sMRI, structural magnetic resonance imaging; VCI, vascular cognitive impairment; NC, normal cognition; ViT, Vision Transformer.