
Supplemental Information 

1.1. Theoretical background of fluorescence signal upon non-resonant or 

resonance-enhanced two- and three-photon excitation 

We consider that a fluorophore molecule transits only virtual energetic states during a 

non-resonant excitation, either two- or three-photon excitation. Only the initial and final 

energetic states of the fluorophore molecule are real energetic states. During a 

resonance-enhanced three-photon excitation, the molecule also transits real energetic 

states, not only virtual states, which increases the excitation probability and, by that, 

leads to an increased excitation rate as compared to a non-resonant three-photon 

excitation process.   

The experimentally measured fluorescence signal is given by the fluorescence signal 

per laser pulse F, integrated over the pixel dwell time, i.e. the number of excitation 

pulses within the pixel dwell time.  

The fluorescence photon flux density per laser pulse F, originating from a sample 

containing molecules of a single fluorophore type, is given by: 
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1
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for a non-resonant two-photon excitation process and 

𝐹3𝑃  =
1
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𝑁𝑎𝑏𝑠
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∞
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for a non-resonant three-photon excitation process. In Eq. (1) and (2) Nabs represents 

the number of absorbed photons, 𝜑 the fluorescence quantum yield and  the detector 

quantum efficiency of the experimental setup. 

As fluorescence quantum yield – the spontaneous emission of photons by an excited 

molecule – is considered to be independent of the excitation process and as 

fluorescence detection in all our experiments does not change, we simplify the integrals 

in Eq. (1) and Eq. (2) by 𝜑̅. 

𝜑̅ = ∫ 𝜑(𝜆𝑒𝑚) ∙
∞

0
𝜁(𝜆𝑒𝑚)𝑑𝜆𝑒𝑚                                                      (3) 

The number of absorbed photons per molecule Nabs depends on the excitation rate, 

i.e. either non-resonant two- or three-photon excitation. The excitation rate depends 

on the capacity of the molecule to simultaneously be excited by two and three photons, 



respectively. The measure of this capacity is given by the active two-photon absorption 

cross-section 𝜎2𝑃 ∙ 𝜂2𝑃 for a non-resonant two-photon excitation process and the active 

three-photon absorption cross-section 𝜎2𝑃 ∙ 𝜂3𝑃 for a non-resonant three-photon 

excitation process. Further, the excitation rate depends on the excitation photon flux 

density of the laser under the objective lens, i.e. time-dependent intensity of the 

excitation source. Nabs is also dependent on the number of molecules within the 

excitation volume, given by the concentration C. Thus, according to, the number of 

absorbed photons is for a two-photon excitation: 

𝑁𝑎𝑏𝑠
2𝑃 = 𝐶 ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙ ∫ ∫ 𝑆2(𝒓) ∙ 𝐼0

2(𝑡)𝑑𝑡𝑑𝑉
 

𝑉→∞

 

𝑡
                               (4) 

and for a three-photon excitation: 

𝑁𝑎𝑏𝑠
3𝑃 = 𝐶 ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙ ∫ ∫ 𝑆3(𝒓) ∙ 𝐼0

3(𝑡)𝑑𝑡𝑑𝑉
 

𝑉→∞

 

𝑡
                                (5) 

with I0(t) the time dependent laser photon flux and S(r) its unitless three-dimensional 

spatial distribution function.  

As temporal and spatial distributions of the excitation photon flux can be considered to 

be independent from each other, Eq. (4) turns into: 

𝑁𝑎𝑏𝑠
2𝑃 = 𝐶 ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙ ∫ 𝐼0

2(𝑡)𝑑𝑡
 

𝑡
∫ 𝑆2(𝑟) ∙ 𝑑𝑉

 

𝑉→∞
                                 (6). 

If g(2) is the degree of second-order coherence of the excitation source being defined 

as 
〈𝐼0

2(𝑡)〉

〈𝐼0(𝑡)〉2 5, Eq. (6) becomes: 

𝑁𝑎𝑏𝑠
2𝑃 = 𝐶 ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙ 𝑔(2)〈𝐼0〉2 ∫ 𝑆2(𝑟) ∙ 𝑑𝑉

 

𝑉→∞
                                   (7), 

with 〈 〉 indicating the average over time. 

Similarly, Eq. (5) turns into: 

𝑁𝑎𝑏𝑠
3𝑃 = 𝐶 ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙ ∫ 𝐼0

3(𝑡)𝑑𝑡
 

𝑡
∫ 𝑆3(𝑟) ∙ 𝑑𝑉

 

𝑉→∞
                                     (8). 

If g(3) is now the degree of third-order coherence of the excitation source being defined 

as  
〈𝐼0

3(𝑡)〉

〈𝐼0(𝑡)〉3
, Eq. (8) becomes: 

𝑁𝑎𝑏𝑠
3𝑃 = 𝐶 ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙ 𝑔(3)〈𝐼0〉3 ∫ 𝑆3(𝑟) ∙ 𝑑𝑉

 

𝑉→∞
                                   (9). 

For solving the temporal integrals ∫ 𝐼0
2(𝑡)𝑑𝑡

 

𝑡
 and ∫ 𝐼0

3(𝑡)𝑑𝑡
 

𝑡
 , we assume, based on our 

experimental data, Gaussian laser pulses for both optical parametric oscillator as a 



two-photon excitation source (OPO) and both optical parametric amplifiers as two and 

three-photon excitation sources (OPA). According to, we define the origin of the time 

axis at the maximum of the laser pulse, with the pulse width 𝜏𝑝
2𝑃 and 𝜏𝑝

3𝑃 as well as 

the repetition rates RR2P and RR3P for the OPO and OPA lasers, respectively. Hence, 

the temporal integral in Eq(6) for a two-photon excitation becomes: 

∫ 𝐼0
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−1/(2∙𝑅𝑅2𝑃)
=

𝑔𝑝
2𝑃

𝜏𝑝
2𝑃 ∙ [∫ 𝐼0(𝑡)𝑑𝑡
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                                  (10)  

with gp
2P=0.664 for a Gaussian beam profile of a single-mode laser pulse (TEM00). 

Thus, the degree of second-order coherence of the excitation source is 𝑔(2) =
𝑔𝑃

2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃. 

Similarly, the temporal integral in Eq. (8) for a three-photon excitation becomes:  

∫ 𝐼0
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1/(2∙𝑅𝑅3𝑃)
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(𝜏𝑝
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2 ∙ [∫ 𝐼0(𝑡)𝑑𝑡
1/(2∙𝑅𝑅3𝑃)

−1/(2∙𝑅𝑅3𝑃)
]
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                                 (11) 

with gp
3P=0.509 for a Gaussian laser pulse. Thus, the degree of third-order coherence 

of the excitation source is 𝑔(3) =
𝑔𝑃

3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃 )
2  . 

Assuming the laser beam is diffraction limited, with NA the numerical aperture, i.e. NA 

= n·sin() with n being the refractive index of the medium and 2 the maximal angle of 

the light cone of the objective lens), the relation between the time-dependent average 

intensity 〈𝐼0〉 at the focal plane and average laser power 〈𝑃〉 under the objective lens is 

defined as: 

〈𝐼0〉 =
𝜋∙𝑁𝐴2

𝜆𝑒𝑥𝑐
2 ∙ 〈𝑃〉                                                       (12), 

with exc the excitation wavelength. 

From Eq. (7), (10) and (12) for a two-photon excitation process, it follows: 

𝑁𝑎𝑏𝑠
2𝑃 = 𝐶 ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋2∙𝑁𝐴4

𝜆𝑒𝑥𝑐
4 ∙ 〈𝑃〉2 ∫ 𝑆2(𝑟) ∙ 𝑑𝑉

 

𝑉→∞
                     (13). 

Similarly, from Eq. (9), (11) and (12) for a three-photon excitation process, it follows: 

𝑁𝑎𝑏𝑠
3𝑃 = 𝐶 ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙

𝑔𝑃
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𝑅𝑅3𝑃
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2
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𝑉→∞
                (14). 



In the following we use the previously defined3 unitless coordinate   in planes 

perpendicular to the optical axis, defined as 𝜈 =
2𝜋∙𝑁𝐴∙𝜌

𝜆𝑒𝑥𝑐
, and the unitless coordinate u 

along the optical axis of the microscope, defined as 𝑢 =
2𝜋∙𝑁𝐴2∙𝑧

𝑛∙𝜆𝑒𝑥𝑐
, with  and z the 

coordinates in the metric unit system. The spatial distribution of the excitation photon 

flux under the objective lens is defined as: 

𝑆(𝒓) = ℎ2(𝑢, 𝜈)                                                                 (15) 

with h(u,) the point-spread function (PSF), which we consider to be Gaussian for both 

u and  coordinates based on our experimental observations. Consequently, the spatial 

integrals ∫ 𝑆2(𝑟) ∙ 𝑑𝑉
 

𝑉→∞
 in Eq. (13) and ∫ 𝑆3(𝑟) ∙ 𝑑𝑉

 

𝑉→∞
 in Eq(14) are estimated to be: 

∫ 𝑆2(𝑟) ∙ 𝑑𝑉
 

𝑉→∞
= ∫ ∫ ℎ4(𝑢, 𝜈) ∙ 𝑑𝑢𝑑𝜈 ≈

𝑛∙𝜆𝑒𝑥𝑐
3

𝜋∙𝑁𝐴4

 

 
                                    (16) 

for two-photon excitation, in accordance with, and 

∫ 𝑆3(𝑟) ∙ 𝑑𝑉
 

𝑉→∞
= ∫ ∫ ℎ6(𝑢, 𝜈) ∙ 𝑑𝑢𝑑𝜈 ≈

2√2

3√3
∙

𝑛∙𝜆𝑒𝑥𝑐
3

𝜋∙𝑁𝐴4 = 0.544 ∙
𝑛∙𝜆𝑒𝑥𝑐

3

𝜋∙𝑁𝐴4

 

 
                   (17) 

for three-photon excitation. 

Replacing the integral in Eq. (13) with the result of Eq. (16) and that in Eq. (14) with 

the result from Eq. (17), we obtain the number of absorbed photons per laser pulse for 

a two- and three-photon excitation process, respectively: 

𝑁𝑎𝑏𝑠
2𝑃 = 𝐶 ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋∙𝑛

𝜆𝑒𝑥𝑐
∙ 〈𝑃〉2                                            (18) 

 

𝑁𝑎𝑏𝑠
3𝑃 = 𝐶 ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙

𝑔𝑃
3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
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𝜋2∙𝑛∙𝑁𝐴2

𝜆𝑒𝑥𝑐
3 ∙ 〈𝑃〉3                             (19) 

Hence, the fluorescence signal per laser pulse for the two excitation schemes is given 

by: 

𝐹2𝑃(𝑡) =
1

2
𝜑̅ ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙ 𝐶 ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋∙𝑛

𝜆𝑒𝑥𝑐
∙ 〈𝑃〉2                                     (20) 

and 

𝐹3𝑃(𝑡) =
1

3
𝜑̅ ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙ 𝐶 ∙

𝑔𝑃
3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
2 ∙ 0.544 ∙
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𝜆𝑒𝑥𝑐
3 ∙ 〈𝑃〉3                    (21). 



In order to estimate the active three-photon excitation cross-section from the known 

value of the active two-photon excitation cross-section for the same fluorophore, at the 

same site of the sample, we use the ratio between the fluorescence signal per laser 

pulse upon two- and three-photon excitation: 

𝐹2𝑃

𝐹3𝑃
=

1

2
∙𝜎2𝑃∙𝜂2𝑃∙

0.664

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

1

𝜆𝑒𝑥𝑐
2𝑃∙〈𝑃2𝑃〉2

1

3
∙𝜎3𝑃∙𝜂3𝑃∙

0.509

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
2∙0.544∙

𝜋 ∙𝑁𝐴2

(𝜆𝑒𝑥𝑐
3𝑃)

3∙〈𝑃3𝑃〉3
                                       (22). 

By substitution, the active three-photon excitation cross-section 3P3P with the unit 

cm6·s2 is given by: 

𝜎3𝑃 ∙ 𝜂3𝑃 =
3

2
∙

𝐹3𝑃

𝐹2𝑃
∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙

(𝑅𝑅3𝑃∙𝜏𝑝
3𝑃)

2

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃 ∙

(𝜆𝑒𝑥𝑐
3𝑃)

3

𝜋 ∙𝑁𝐴2∙𝜆𝑒𝑥𝑐
2𝑃 ∙ 2.398 ∙

〈𝑃2𝑃〉2

〈𝑃3𝑃〉3                (23). 

For Eq. (22) and (23) we assumed that the concentration within each measured cell 

during the consecutive two- and three-photon excitation measurements at 1100 nm, 

80 MHz and 1650 nm, 3 MHz remains the same. 

1.4. Dependence of fluorescence signal and higher harmonics generation 

signals on the laser power. 

The Eq. (20) for the fluorescence signal upon non-resonant two-photon excitation in 

logarithmic representation is given by: 

lg (𝐹2𝑃) = lg (
1

2
𝜑̅ ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙ 𝐶 ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋∙𝑛

𝜆𝑒𝑥𝑐
) + 2lg (〈𝑃2𝑃〉)                 (24). 

In analogy, the second harmonics generation (SHG) signal in logarithmic 

representation is given by Eq. (25). The difference between Eq. (24) and (25) is due to 

the fact that the SHG signal depends on the real part of the complex second order 

susceptibility 2, whereas the fluorescence signal upon a two-photon excitation 

depends on its imaginary part. 

lg (𝑆𝐻𝐺 ) = lg (
1

2
𝑅𝐸(𝜒2) ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋∙𝑛

𝜆𝑒𝑥𝑐
) + 2 lg(〈𝑃2𝑃〉)                         (25) 

RE(2) is the real part of the second order susceptibility. 

In the same line, the fluorescence signal upon non-resonant three-photon excitation 

given by Eq. (21) in logarithmic representation turns into: 



lg (𝐹3𝑃) = lg (
1

3
𝜑̅ ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙ 𝐶 ∙

𝑔𝑃
3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
2 ∙ 0.544 ∙

𝜋2∙𝑛∙𝑁𝐴2

𝜆𝑒𝑥𝑐
3 ) + 3 lg (〈𝑃〉)     (26). 

The third harmonics generation (THG) signal in logarithmic representation is given 

by: 

lg (𝑇𝐻𝐺 ) = lg (
1

3
𝑅𝐸(𝜒3) ∙

𝑔𝑃
3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
2 ∙ 0.544 ∙

𝜋2∙𝑛∙𝑁𝐴2

𝜆𝑒𝑥𝑐
3 ) + 3 lg (〈𝑃〉)            (27) 

with RE(3) the real part of the third-order susceptibility. 

For a resonance-enhanced three-photon excitation (RE3P), we expect the 

fluorescence signal to be a linear combination of a two-photon excitation process given 

by Eq(20) and a three-photon excitation process given by Eq(21), with the pre-factors 

a2P and a3P, respectively, the two pre-factors summing up to unity. In logarithmic 

representation, the fluorescence signal upon resonance-enhanced three-photon 

excitation is: 

lg (𝐹𝑅𝐸3𝑃) = lg [𝑎2𝑃 ∙ (
1

2
𝜑̅ ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙ 𝐶 ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋∙𝑛

𝜆𝑒𝑥𝑐
∙ 〈𝑃〉2) + 𝑎3𝑃 ∙ (

1

3
𝜑̅ ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙ 𝐶 ∙

𝑔𝑃
3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
2 ∙ 0.544 ∙

𝜋2∙𝑛∙𝑁𝐴2

𝜆𝑒𝑥𝑐
3 ∙ 〈𝑃〉3)]                     (28). 

With increasing laser excitation power, a3P increases, turning Eq. (28) into Eq. (26) for 

non-resonant three-photon excitation, dependent only on the cubic power of the 

average laser power. 

1.2. Laser power attenuation with tissue imaging depth (z) 

As previously described, we can assume that the average laser power in a multi-photon 

setup exponentially decreases with tissue imaging depth z, mainly due to absorption 

and scattering of radiation: 

〈𝑃〉(𝑧) = 〈𝑃〉(𝑧 = 0) ∙ 𝑒
−𝑧

𝑙𝑒
⁄                                                   (29) 

with 〈𝑃〉(𝑧 = 0) the average laser power at the surface of the specimen and le the 

effective attenuation length. 

When combining Eq. (20) and (29), the depth-dependent fluorescence signal upon 

two-photon excitation, in natural logarithmic representation, is given by: 

ln (𝐹2𝑃(𝑧)) = ln (
1

2
𝜑̅ ∙ 𝜎2𝑃 ∙ 𝜂2𝑃 ∙ 𝐶 ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋∙𝑛

𝜆𝑒𝑥𝑐
) + 2 ln(〈𝑃(𝑧 = 0)〉) −

2𝑧

𝑙𝑒
         (30). 



In analogy, the depth-dependent SHG signal is given by: 

ln (𝑆𝐻𝐺 ) = ln (
1

2
𝑅𝐸(𝜒2) ∙

𝑔𝑃
2𝑃

𝑅𝑅2𝑃∙𝜏𝑝
2𝑃

𝜋∙𝑛

𝜆𝑒𝑥𝑐
) + 2 ln(〈𝑃(𝑧 = 0)〉) −

2𝑧

𝑙𝑒
                  (31). 

The depth-dependent fluorescence signal upon three-photon excitation, also in natural 

logarithmic representation, is obtained when replacing Eq. (29) in Eq(. 21): 

ln (𝐹3𝑃) = ln (
1

3
𝜑̅ ∙ 𝜎3𝑃 ∙ 𝜂3𝑃 ∙ 𝐶 ∙

𝑔𝑃
3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
2 ∙ 0.544 ∙

𝜋2∙𝑛∙𝑁𝐴2

𝜆𝑒𝑥𝑐
3 ) + 3ln (〈𝑃(𝑧 = 0)〉) −

3𝑧

𝑙𝑒
    

(32). 

For the THG signal, the equation reads: 

ln (𝑇𝐻𝐺 ) = ln (
1

3
𝑅𝐸(𝜒3) ∙

𝑔𝑃
3𝑃

𝑅𝑅3𝑃
2∙(𝜏𝑝

3𝑃)
2 ∙ 0.544 ∙

𝜋2∙𝑛∙𝑁𝐴2

𝜆𝑒𝑥𝑐
3 ) + 3ln (〈𝑃(𝑧 = 0)〉) −

3𝑧

𝑙𝑒
    (33). 

As we used laser power adaptation with depth (z) in our measurements, the power at 

surface P(z=0) is also a function of z. Both fluorescence and higher-harmonics 

generation signals were normalized for the corresponding P(z=0) at the respective 

imaging depth. 

2.3. Fluorophore saturation limits the maximum imaging depth in tissues for a 

given pulsed excitation source. 

To determine the supported repetition rate for a non-resonant (multi-photon) excitation, 

in a certain imaging depth in tissue, for a given average laser power at the tissue 

surface (z = 0), we rely on the equation: 

𝑅𝑅3𝑃 =
〈𝑃(𝑧=0)〉

𝐸𝑓𝑜𝑐𝑢𝑠
∙ 𝑒

−𝑧
𝑙𝑒

⁄                                                         (34), 

with Efocus the pulse energy at the focus.  

If Efocus exceeds the pulse energy Esat, which leads to the saturation of the fluorophore, 

the fluorescence signal will not further increase. Experimentally, we avoid reaching the 

saturation regime, as shown by the double-logarithmic representations in Suppl. Fig. 

2. In this way, we avoid a disproportionate increase of highly non-linear 

photobleaching, without increase of fluorescence signal.  

For a three-photon excitation process9, the saturation energy is given by: 𝐸𝑠𝑎𝑡 =

ℎ∙𝑐∙𝜆𝑒𝑥𝑐

𝜋∙𝑁𝐴2
∙ √

(𝜏𝑝
3𝑃)

2

𝑔𝑃
3𝑃∙𝜎3𝑃∙𝜂3𝑃

3

. Hence, the maximum repetition rate is given by: 



𝑅𝑅3𝑃 =
〈𝑃(𝑧=0)〉

ℎ∙𝑐∙𝜆𝑒𝑥𝑐
𝜋∙𝑁𝐴2 ∙ √

(𝜏𝑝
3𝑃)

2

𝑔𝑃
3𝑃∙𝜎3𝑃∙𝜂3𝑃

3
∙ 𝑒

−𝑧
𝑙𝑒

⁄                                                         (35). 

2.4. Signal-to-noise ratio  

The signal-to-noise ratio (SNR) in all cases, i.e. fluorescence upon non-resonant two-

, non-resonant three-photon, or resonance enhanced three-photon excitation, as well 

as second and third harmonics generation, is defined as: 

𝑆𝑁𝑅 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒−〈𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑〉

𝜎(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
                                            (36). 

We thereby assume that the background (recorded in regions with no tissue structure) 

is Gaussian distributed, with 〈𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑〉 the mean background value and 

(background) the width of the Gaussian function. (background) represents the 

background noise. 
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