
Additional File 3: Supplementary Methods

Transipedia.org: k-mer based exploration of large RNA sequencing
datasets and application to cancer data

Bessière et al. 2024

Definitions

k-mer. k-mers are short sequences in a fixed length k. In this article, we limit
our scope on 31-mers formed by A, C, G and T, targeting RNA-seq studies.

k-mer count in RNA-seq sequence library. Given a k-mer and an RNA-
seq library, the k-mer count is defined as its number of occurrence in the set of
sequencing reads.

Sample count vector of a k-mer. Given a k-mer and M ordered RNA-seq
libraries, a k-mer’s sample count vector is defined as an integer vector in an
M -dimensional space, of which the ith component represents the k-mer’s count
in the ith sequencing library (i = 1, 2, ...,M).

Arbitrary sequence. An arbitrary sequence is formed by a finite, variable
number of elements selected from a finite set, arranged in an arbitrary order. In
the scope of this article, the sequence is considered as RNA sequences, formed
by nucleotides A, C, G and T.
In confusion-free context, we shorten the “arbitrary sequence” as “sequence” to
be concise.

Sequence query. Given an arbitrary sequence and a series of sequencing li-
braries, the task of arbitrary sequence query aims to either (i) qualitatively
detect its presence/absence, or (ii) quantitatively estimate its expression level,
in each of the sequencing library. In this article, we address to the quantifica-
tion aim, and we suppose the length of the arbitrary sequence is no less than
31 nucleotides (for 31-mers being used).

Component k-mers of a sequence. A sequence of length L can be destruc-
ted into (L−k+1) consecutive k-mers, shifting one nucleotide by step. The set
of (L− k + 1) k-mers forms the sequence’s component k-mers.

Monotig Given a sequence, a monotig is one of its substring that has a uniform
sample count vector across component k-mers.
Note that: (i) a monotig is also an arbitrary sequence per se; (ii) unlike k-mers,
different monotigs of a same arbitrary sequence do not overlap each other.

Monitigs are the elementary units for Reindeer query. Given a query se-
quence Q, one its monotig m is determined by a pair of positions bQ(m) and
eQ(m), respectively meaning the starting and ending k-mers in the sequence Q.

1



In the context where the query sequence Q is defined, we simplify the writing
from bQ(m) to bi and eQ(m) to ei, where i is the monotig’s ordinal number
along Q, i.e., determined as between the bthi and ethi k-mers along Q.

A monotig of a given query sequence can or cannot be found in one spe-
cific library S. A successful query is gained when the monotig has sufficient
proportion of component k-mer counts in S to support the hit. The minimum
proportion is set by user with -P parameter of the software.

The count of a given monotig m in a library S is reported by a triplet bi-ei:qi,
in which bi-ei specifies the starting and ending k-mers along the query sequence
for m, and qi indicates the query result of the monotig’s component k-mers in
library S. In the case of successful query, qi is returned as an integer, while
when the query is failed, it is originally returned as an “*” sign by the software,
and we replace the “*” sign by 0 in this article.

When Reindeer queries a sequence composing n monotigs, it returns for
each library S a list of triplets indicating monotigs’ query results, formed as
b1 − e1 : q1, b2 − e2 : q2, . . . , bn − en : qn, where each triplet bi − ei : qi reports
the count of the ith monotig (i = 1, 2, ..., n).

Conversion from read to k-mer counts

There is a difference in scale between Reindeer sum counts and raw counts from
the various quantification tools (Fig 2C,F, Fig. 4A,B). The average correction
(slope) is shown in Additional file 1: Fig S10A for each tool. For instance,
Kallisto counts are related to Reindeer counts by a factor of 108.53 in average.
We found this factor to be related to two phenomena:

• k-mer to fragment or read conversion: given 70 31-mers in each 100-
nucleotides read in the CCLE dataset, k-mer counts are expected to be
about 140 times higher than fragment counts (each fragment = 2 reads ×
70 k-mers),

• query masking: when k-mers in a query are masked, they do not contribute
to Reindeer sum counts, whereas other counting methods have no such
constraint.

The second point is illustrated by the presence of parallel lines in Additional
file 1: Fig S10A, suggesting different correction factors for different genes. This
is confirmed in Additional file 1: Fig S10B, showing slopes of Reindeer vs.
Kallisto correlations for independent genes. Most genes have highly correlated
counts (R2 near 1) but each with a distinct slope.

In summary, the correction factor for converting Reindeer sum-counts to
read counts from Kallisto or other tools depends both on the library (read
size and paired-end status) and the ratio of masked k-mers in each query. A
future Reindeer query environment could take these parameters into account
and automatically adjust raw k-mer counts in a dataset- and query-independent
way. This is not straightforward as it requires transmission of metadata from
the indexing and masking steps to the query processing step.

2



Note that we did not intend to consider here another, non linear, factor
of variation, namely that Reindeer counts were obtained based on principal
transcript while Kallisto counts were obtained using all isoforms.

Implementation details

To enable real-time queries with no index loading overhead, we wrote the rdeer-
service tool that pre-loads one or several indexes in memory and runs queries
(https://github.com/Bio2M/rdeer-service) on those indexes. rdeer-service
uses a metadata file, fos.txt, stored in the same directory as the index, containing
names and total numbers of k-mers for each sample. This allows displaying
sample names in outputs and computing normalized counts, in the form of
counts per billion k-mers.

A fos.txt file is not produced by Reindeer index but can be created by the
fos builder Python script (https://github.com/Transipedia/fos_builder).
For normalization, fos builder uses information from multiqc, thus requiring
prior run of fastqc and multiqc on all samples.

3


