© 2021 Wiley-VCH GmbH

ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.202102507

Machine Learning to Predict Quasicrystals from Chemical Compositions

Chang Liu, Erina Fujita, Yukari Katsura, Yuki Inada, Asuka Ishikawa, Ryuji Tamura, Kaoru Kimura,* and Ryo Yoshida*

Supplementary Note Machine learning to predict quasicrystals from chemical compositions

Chang Liu Erina Fujita Yukari Katsura Yuki Inada Asuka Ishikawa Ryuji Tamura Kaoru Kimura* Ryo Yoshida*

C. Liu, R. Yoshida Research Organization of Information and Systems, The Institute of Statistical Mathematics, Tachikawa, 190-8562, Japan E. Fujita, Y. Katsura, Y. Inada, K. Kimura The University of Tokyo, Department of Advanced Materials Science, Kashiwa, 277-8561, Japan A. Ishikawa, R. Tamura Tokyo University of Science, Department of Materials Science and Technology, Tokyo, 125–8585, Japan R. Yoshida National Institute for Materials Science, Research and Service Division of Materials Data and Integrated System, Tsukuba, 305-0047, Japan R. Yoshida The Graduate University for Advanced Studies, Department of Statistical Science, Tachikawa, 190-8562, Japan R. Yoshida Email Address: yoshidar@ism.ac.jp K. Kimura Email Address: bkimura@phys.mm.t.u-tokyo.ac.jp

Quasicrystals and approximants used in the supervised learning

Table S1: List of quasicrystals and approximants that were used in the supervised learning. Each column gives the chemical composition, the label indicating quasicrystal or approximant (QC and AC), structure type, the known space group, and the guessed space group, respectively. The data were collected from the Crystallography of Quasicrystals handbook [1].

Composition	QC or AP	Туре	Space group	Guessed space group
Cr 5 Ni 3 Si 2	QC	Octagonal		I8_4/mcm
$Mn \ 4 \ Si \ 1$	QC	Octagonal		$I8_4/mcm$
Mn 82 Si 15 Al 3	QC	Octagonal	I8 $4/mcm$	$I8^{4/mcm}$
Zn 58 Mg 40 Dy 2	QC	Decagonal		$P10_5/mmc$
Zn 58 Mg 40 Dy 2	QC	Decagonal		$P10_5/mmc$
Zn 58 Mg 40 Er 2	QC	Decagonal		$P10_5/mmc$
Zn 58 Mg 40 Ho 2	QC	Decagonal		$P10_5/mmc$
Zn 58 Mg 40 Lu 2	QC	Decagonal		$P10_5/mmc$
Zn 58 Mg 40 Tm 2	QC	Decagonal		$P10_5/mmc$
Zn 58 Mg 40 Y 2	QC	Decagonal		$P10_5/mmc$
Al 70 Ni 15 Fe 15	QC	Decagonal		$P10_5/mmc$
Al 65 Cu 15 Rh 20	QC	Decagonal		$P10_5/mmc$
Al 70 Ni 20 Rh 10	QC	Decagonal		$P10_5/mmc$
Al 65 Cu 20 Co 15	QC	Decagonal		$P10_5/mmc$
Al 65 Cu 20 Ir 15	QC	Decagonal		$P10_5/mmc$
Al 73.2 Co 26.8	AP	Decagonal	P2	P2
Al 71.5 Co 28.5	AP	Decagonal	$P6_3/mmc$	$P6_3/mmc$
Al 71.5 Co 23.6 Cu 4.9	AP	Decagonal	Cm	Cm
Al 76 Co 24	AP	Decagonal	$Pmn2_1$	$Pmn2_1$
Al 74.8 Co 17.0 Ni 8.2	AP	Decagonal	Immm	Immm
Al 71.8 Co 21.1 Ni 7.1	AP	Decagonal	Cm	Cm
Al 70.5 Mn 16.5 Pd 13	QC	Decagonal	$P10_5/mmc$	$P10_5/mmc$
Al 40 Mn 25 Fe 15 Ge 20	QC	Decagonal		$P10_5/mmc$
Ga 33 Fe 46 Cu 3 Si 18	QC	Decagonal		$P10_5/mmc$
Ga 43 Co 47 Cu 10	QC	Decagonal		$P10_5/mmc$
Ga 35 V 45 Ni 6 Si 14	QC	Decagonal		$P10_5/mmc$
Al 75 Mn 20 Pd 5	AP	Decagonal	Pnma	Pnma
Al 75 Os 10 Pd 15	QC	Decagonal	$P10_5/mmc$	$P10_5/mmc$
Al 75 Ru 10 Pd 15	QC	Decagonal		$P10_5/mmc$
Al 73 Ir 14.5 Os 12.5	QC	Decagonal	$P10_c$	$P10_c$
Al 70 Ni 20 Ru 10	QC	Decagonal	$P10_5/mmc$	$P10_5/mmc$
Al 72.5 Pd 27.5	AP $2/1, 1/1$	Decagonal	$Pna2_1$	$Pna2_1$
Al 75 Pd 13 Ru 12	AP $3/2, 2/1$	Decagonal	$Pna2_1$	$Pna2_1$
Ni 70.6 Cr 29.4	QC	Dodecagonal		P(-12)m2
V 3 Ni 2	QC	Dodecagonal		P(-12)m2
V 15 Ni 10 Si 1	QC	Dodecagonal		P(-12)m2
Ta 1.6 Te 1	QC	Dodecagonal	P(-12)m2	P(-12)m2
Ta 97 Te 60	AP	Dodecagonal	P2_12_12_1	P2_12_12_1
Ta 181 Te 112	AP	Dodecagonal	$P2_{12}_{12}_{12}$	P2_12_12_1
Al 65 Cu 20 Ru 15	QC	Icosahedral	Fm-3-5	Fm-3-5
Al 65 Cu 20 Os 15	QC	Icosahedral	Fm-3-5	Fm-3-5
Al 65 Cu 20 Fe 15	QC	Icosahedral	Fm-3-5	Fm-3-5

Table S1 continued

=

Composition	OC or AP	Type	Space group	Guessed
Composition	QU 01 AI	турс	Space group	space group
Al 70.5 Pd 21 Mn 8.5	QC	Icosahedral	Fm-3-5	Fm-3-5
Al 70 Pd 20 Re 10	QC	Icosahedral	Fm-3-5	Fm-3-5
Al 70 Pd 21 Tc 9	QC	Icosahedral	Fm-3-5	Fm-3-5
Al 71 Pd 21 Re 8	QC	Icosahedral	Pm-3-5	Pm-3-5
Al 72 Pd 17 Ru 11	QC	Icosahedral	Fm-3-5	Fm-3-5
Al 72 Pd 17 Os 11	QC	Icosahedral	Fm-3-5	Fm-3-5
Al 71.5 Cu 8.5 Ru 20	AP 1/0	Icosahedral	P2_13	P2_13
Al 55.1 Cu 14.6 Ru 20.2 Si 10.1	AP $1/0 \times 2$ (γ)	Icosahedral	Fm-3	Fm-3
Al 39 Pd 21 Fe 2	AP $1/0 \times 2$ (c)	Icosahedral	Fm-3	Fm-3
Al 68 Pd 20 Ru 12	AP $1/0 \times 2$ (c)	Icosahedral	P23	P23
Al 57.3 Cu 31.4 Ru 11.3	AP 1/1	Icosahedral	Pm-3	Pm-3
Al 55 Cu 25.5 Fe 12.5 Si 7	AP 1/1	Icosahedral	Pm-3	Pm-3
Al 40 Mn 10.1 Si 7.4	AP 1/1	Icosahedral	Pm-3	Pm-3
Al 67 Pd 11 Mn 14 Si 7	AP 1/1	Icosahedral	Pm-3	Pm-3
Al 66.6 Rh 26.1 Si 7.3	AP $2/1$	Icosahedral	Pm-3	Pm-3
Al 70 Pd 23 Mn 6 Si 1	AP $2/1$	Icosahedral	Pm-3	Pm-3
Zn 76 Mg 17 Hf 7	QC	Icosahedral	Fm-3-5	Fm-3-5
Zn 84 Mg 7 Zr 9	QC	Icosahedral	Pm-3-5	Pm-3-5
Al 6 Cu 1 Li 3	QC	Icosahedral	Pm-3-5	Pm-3-5
Mg 43 Al 42 Pd 15	QC	Icosahedral	Pm-3-5	Pm-3-5
Zn 40 Mg 39.5 Ga 25	QC	Icosahedral	Pm-3-5	Pm-3-5
Zn 74 Mg 15 Ho 11	QC	Icosahedral	Pm-3-5	Pm-3-5
Zn 56.8 Mg 34.6 Tb 8.7	QC	Icosahedral	Fm-3-5	Fm-3-5
Zn 65 Mg 26 Ho 9	QC	Icosahedral	Fm-3-5	Fm-3-5
Zn 64 Mg 25 Y 11	QC	Icosahedral	Fm-3-5	Fm-3-5
Zn 55 Mg 40 Nd 5	QC	Icosahedral	Pm-3-5	Pm-3-5
Zn 56.8 Mg 34.6 Dy 8.7	QC	Icosahedral	Fm-3-5	Fm-3-5
Zn 77 Mg 17.5 Ti 5.5	AP 1/1	Icosahedral	Pm-3	Pm-3
Zn 77 Mg 18 Hf 5	AP $1/1$	Icosahedral	Pm-3	Pm-3
Zn 77 Mg 18 Zr 5	AP $1/1$	Icosahedral	Pm-3	Pm-3
Al 88.6 Cu 19.4 Li 50.3	AP $1/1$	Icosahedral	Im-3	Im-3
Zn 34.6 Mg 40 Al 25.4	AP $1/1$	Icosahedral	Im-3	Im-3
Zn 61.4 Mg 24.5 Er 14.1	AP $2/1$	Icosahedral	F-43m	F-43m
Zn 37 Mg 46 Al 17	AP $2/1$	Icosahedral	Pm-3	Pm-3
Zn 47.3 Mg 27 Al 10.7	AP $2/1$	Icosahedral	Pa-3	Pa-3
Zn 73.6 Mg 2.5 Sc 11.2	AP $2/1$	Icosahedral	Pa-3	Pa-3
Zn 40 Mg 39.5 Ga 16.4 Al 4.1	AP 3/2-2/1-2/1	Icosahedral	Cmc2 1	Cmc2 1
Cu 48 Sc 15 Ga 34 Mg 3	QC	Icosahedral	—	Pm-3-5
Cu 46 Sc 16 Al 38	QC	Icosahedral		Pm-3-5
Zn 84 Ti 8 Mg 8	QC	Icosahedral		Pm-3-5
Zn 75 Sc 15 Ni 10	QC	Icosahedral		Pm-3-5
Zn 72 Sc 16 Cu 12	QC	Icosahedral		Pm-3-5
Zn 75 Sc 15 Co 10	QC	Icosahedral		Pm-3-5
Zn 75 Sc 15 Fe 10	QC	Icosahedral		Pm-3-5
Zn 75 Sc 15 Mn 10	QC	Icosahedral		Pm-3-5
Zn 80 Sc 15 Mg 5	QC	Icosahedral	Pm-3-5	Pm-3-5
Zn 75 Sc 15 Pt 10	QC	Icosahedral		Pm-3-5
Zn 75 Sc 15 Pd 10	QC	Icosahedral		Pm-3-5

Table S1 continued

=

Composition		True	Cross man	Guessed
Composition	QC of AP	туре	Space group	space group
Zn 75 Sc 15 Au 10	QC	Icosahedral		Pm-3-5
Zn 75 Sc 15 Ag 10	QC	Icosahedral		Pm-3-5
Zn 77 Sc 8 Ho 8 Fe 7	QC	Icosahedral		Pm-3-5
Zn 77 Sc 8 Er 8 Fe 7	QC	Icosahedral		Pm-3-5
Zn 77 Sc 7 Tm 9 Fe 7	QC	Icosahedral		Pm-3-5
Zn 56.8 Er 8.7 Mg 34.6	QC	Icosahedral	Fm-3-5	Fm-3-5
Zn 76 Yb 14 Mg 10	QC	Icosahedral		Fm-3-5
Cd 65 Mg 20 Lu 15	QC	Icosahedral		Fm-3-5
Ag 42 In 42 Yb 16	QC	Icosahedral	Pm-3-5	Pm-3-5
Cd 65 Mg 20 Tm 15	QC	Icosahedral		Pm-3-5
Ag 42 In 42 Ca 16	QC	Icosahedral	Pm-3-5	Pm-3-5
Au 44.2 In 41.7 Ca 14.1	QC	Icosahedral	Pm-3-5	Pm-3-5
Cd 65 Mg 20 Y 15	QC	Icosahedral	Pm-3-5	Pm-3-5
Cd 65 Mg 20 Er 15	QC	Icosahedral	Fm-3-5	Fm-3-5
Cd 65 Mg 20 Ho 15	QC	Icosahedral	Fm-3-5	Fm-3-5
Cd 65 Mg 20 Tb 15	QC	Icosahedral	Fm-3-5	Fm-3-5
Cd 65 Mg 20 Dy 15	QC	Icosahedral	Fm-3-5	Fm-3-5
Cd 65 Mg 20 Gd 15	QC	Icosahedral		Fm-3-5
Cd 84 Yb 16	QC	Icosahedral	Pm-3-5	Pm-3-5
Cd 65 Mg 20 Yb 15	QC	Icosahedral		Pm-3-5
Cd 85 Ca 15	QC	Icosahedral		Pm-3-5
Cd 65 Mg 20 Ca 15	QC	Icosahedral	Pm-3-5	Pm-3-5
Be 17 Ru 3	ÅP 1/1	Icosahedral		Im-3
Ga 3.85 Ni 2.15 Hf 1	AP 1/1	Icosahedral		Im-3
Ga 3.22 Ni 2.78 Zr 1	AP 1/1	Icosahedral		Im-3
Ga 3.64 Ni 2.36 Sc 1	AP $1/1$	Icosahedral		Im-3
Ga 2.3 Cu 3.7 Sc 1	AP $1/1$	Icosahedral		Im-3
Ga 2.6 Cu 3.4 Lu 1	AP 1/1	Icosahedral		Im-3
Zn 17 Sc 3	AP 1/1	Icosahedral		Im-3
Zn 17 Yb 3	AP $1/1$	Icosahedral		Im-3
Ag 42.5 Ga 42.5 Yb 15	AP $1/1$	Icosahedral		Im-3
Au 50.5 Ga 35.9 Ca 13.6	AP $1/1$	Icosahedral	Im-3	Im-3
Au 61.2 Sn 23.9 Dy 15.2	AP $1/1$	Icosahedral		Im-3
Au 62.3 Sn 23.1 Gd 14.6	AP $1/1$	Icosahedral		Im-3
Ag 42.2 In 42.6 Tm 15.2	AP $1/1$	Icosahedral		Im-3
Au 47.2 In 37.2 Gd 15.6	AP $1/1$	Icosahedral		Im-3
Au 12.2 In 6.3 Ca 3	AP $1/1$	Icosahedral	Im-3	Im-3
Au 64.2 Sn 21.3 Pr 14.5	AP $1/1$	Icosahedral		Im-3
Au 65 Sn 20 Ce 15	AP $1/1$	Icosahedral	Im-3	Im-3
Ag 46.4 In 39.7 Gd 13.9	AP $1/1$	Icosahedral		Im-3
Au 49.7 In 35.4 Ce 14.9	AP 1/1	Icosahedral		Im-3
Au 60.7 Sn 25.2 Eu 14.1	AP $1/1$	Icosahedral		Im-3
$Ag \ 2 \ In \ 4 \ Yb \ 1$	AP $1/1$	Icosahedral	Im-3	Im-3
Ag 46.9 In 38.7 Pr 14.4	AP $1/1$	Icosahedral		Im-3
Au 42 In 42 Yb 16	AP $1/1$	Icosahedral	Ia-3	Ia-3
Cd 6 Gd 1	AP $1/1$	Icosahedral	Im-3	Im-3
$\operatorname{Ag} 2$ In 4 Ca 1	AP $1/1$	Icosahedral	Im-3	Im-3
Ag 47.7 In 38.7 Ce 14.2	AP $1/1$	Icosahedral		Im-3

Table S1 continued

Composition	QC or AP	Type	Space group	Guessed space group
Cd 6 Dy 1	AP 1/1	Icosahedral	Im-3	Im-3
Cd 6 Y 1	AP 1/1	Icosahedral		Im-3
Cd 6 Sm 1	AP 1/1	Icosahedral	Im-3	Im-3
Cd 6 Nd 1	AP 1/1	Icosahedral	Im-3	Im-3
Cd 6 Yb 1	AP 1/1	Icosahedral	Im-3	Im-3
Ag 42.9 In 43.6 Eu 13.5	AP 1/1	Icosahedral		Im-3
Cd 6 Ca 1	AP 1/1	Icosahedral	Im-3	Im-3
Cd 25 Eu 4	AP $1/1 \times 2$	Icosahedral	Fd-3	Fd-3
Cd 19 Pr 3	AP 1/1	Icosahedral	Im-3	Im-3
Cd 6 Sr 1	AP 1/1	Icosahedral		Im-3
Au 61.1 Ga 25.0 Ca 13.9	AP $2/1$	Icosahedral	Pa-3	Pa-3
Au 60.3 Sn 24.6 Yb 15.1	AP $2/1$	Icosahedral		Pa-3
Au 61.2 Sn 24.3 Ca 14.5	AP $2/1$	Icosahedral		Pa-3
Au 42.9 In 41.9 Yb 15.2	AP $2/1$	Icosahedral	Pa-3	Pa-3
Au 37 In 39.6 Ca 12.6	AP $2/1$	Icosahedral	Pa-3	Pa-3
Ag 41.7 In 43.2 Yb 15.1	AP $2/1$	Icosahedral	Pa-3	Pa-3
Au 61.2 Sn 24.5 Eu 14.3	AP $2/1$	Icosahedral		Pa-3
Ag 41 In 44 Yb 15	AP $2/1$	Icosahedral		Pa-3
Ag 42 In 45 Ca 13	AP $2/1$	Icosahedral	Pa-3	Pa-3
Cd 76 Ca 13	AP $2/1$	Icosahedral	Pa-3	Pa-3
Ag 43.4 In 42.8 Eu 13.8	AP $2/1$	Icosahedral	Pa-3	Pa-3

Element features

Table S2: 58 element features that were used to calculate the compositional descriptors. The dataset is accessible at our open-source software XenonPy [2].

Feature ID	Description	Unit	Reference
atomic_number	Atomic number		
atomic [–] radius	Atomic radius	pm	[3,4]
atomic [–] radius rahm	Atomic radius by Rahm et al.	pm	[4-6]
atomic volume	Atomic volume	${\rm cm}^3 {\rm \ mol}^{-1}$	[4]
atomic ^w eight	Atomic weight		[4, 7, 8]
boiling point	Boiling temperature	Κ	[4]
bulk modulus	Bulk modulus	GPa	9
$c6 \overline{gb}$	C 6 dispersion coefficient in a.u.	a.u.	[4, 10, 11]
_0	(Gould & Bučko)		L , , J
covalent radius cordero	Covalent radius by Cerdero et al.	pm	[4, 12]
covalent [_] radius [_] pyykko	Single bond covalent radius by	pm	[4, 13]
	Pyykko et al.	1	L / J
covalent radius pyykko double	Double bond covalent radius by	pm	[4, 14]
	Pvykko et al.	1	L / J
covalent radius pyykko triple	Triple bond covalent radius by	pm	[4, 15]
	Pyykko et al.	1	L / J
covalent radius slater	Covalent radius by Slater	pm	[3]
density	Density at 295K	$g \text{ cm}^3$	[4]
dipole polarizability	Dipole polarizability	a.u,	[4, 16]
electron negativity	Pauling electronegativity		[17]
electron affinity	Electron affinity	eV	[4, 18, 19]
en allen	Allen's scale of electronegativity	eV	[4, 20, 21]
en ghosh	Ghosh's scale of electronegativity		[4, 22]
en [—] pauling	Pauling's scale of electronegativity		[4, 18]
\mathbf{first} ion en	First ionization energy	eV	[18]
fusion enthalpy	Enthalpy of fusion for elements at	$kJ mol^{-1}$	[18]
_	their melting temperatures		
${ m gs_bandgap}$	DFT bandgap energy of $T=0K$	eV	[23, 24]
_	ground state		
gs_energy	DFT energy per atom (raw VASP	$eV atom^{-1}$	[23, 24]
	value) of T=0K ground state		
$gs_est_bcc_latcnt$	Estimated BCC lattice parameter		[23, 24]
	based on the DFT volume of the		
	OQMD ground state for each element		
${ m gs} { m est} { m fcc} { m latcnt}$	Estimated FCC lattice parameter	Å	[23, 24]
	based on the DFT volume of the		
	OQMD ground state for each element		
${ m gs}_{ m mag}_{ m moment}$	DFT magnetic moment of T=0K		[23, 24]
	ground state		
gs_volume_per	DFT volume per atom of $T=0K$	$ {A}^3 \text{ atom}^{-1}$	[23, 24]
	ground state		
hhi_p	HerfindahlHirschman Index (HHI)		[25]
	production values		
hhi_r	HerfindahlHirschman Index (HHI)		[25]
-	reserves values		

Table S2 continued

Feature ID	Description	Unit	Reference
heat capacity mass	Specific heat capacity at STP^1	$J \text{ mol}^{-1} \text{ K}^{-1}$	[18]
heat capacity molar	Molar heat capacity at STP	$\mathrm{J} \mathrm{\ mol}^{-1} \mathrm{\ K}^{-1}$	[18]
icsd volume	Volume per atom of ICSD phae at		[26-28]
—	STP		
evaporation heat	Evaporation heat	$kJ mol^{-1}$	[4]
$heat_of_formation$	Heat of formation	$kJ mol^{-1}$	[4]
$lattice_constant$	Lattice constant	Å	[4]
mendeleev_number	Mendeleev's number		[4, 29, 30]
$melting_point$	Melting temperature	Κ	[4]
molar_volume	Molar volume	$L \text{ mol}^{-1}$	[9]
num_unfilled	Number of unfilled valence orbitals		[31, 32]
num_valance	Number of valence electrons		[31, 32]
num_d_unfilled	Number of unfilled d valence orbitals		[31, 32]
num_d_valence	Number of filled d valence orbitals		[31, 32]
num_f_unfilled	Number of unfilled f valence orbitals		[31, 32]
$num_f_valence$	Number of filled f valence orbitals		[31, 32]
$num_p_unfilled$	Number of unfilled p valence orbitals		[31, 32]
num_p_valence	Number of filled p valence orbitals		[31, 32]
$num_s_unfilled$	Number of unfilled s valence orbitals		[31, 32]
$num_s_valence$	Number of filled s valence orbitals		[31, 32]
period	Period in periodic table		[4]
$\operatorname{specific_heat}$	Specific heat at 20 $^{\circ}\mathrm{C}$	$\mathrm{J~g^{-1}~mol^{-1}}$	[4]
$thermal_conductivity$	Thermal conductivity at 25 $^{\circ}\mathrm{C}$	$W m^{-1} K^{-1}$	[4]
vdw_radius	van der Waals radius	pm	[4, 18]
vdw_radius_alvarez	van der Waals radius according to	pm	[4, 33]
	Alvarez		
vdw_radius_mm3	van der Waals radius from the MM3	pm	[4, 34]
	FF		
vdw_radius_uff	van der Waals radius from the UFF	pm	[4, 35]
$sound_velocity$	Velocity of sound	$m s^{-1}$	[9]
polarizability	Static average electric dipole polariz- ability	10^{-24}cm^3	[18]

Generalization ability of the model

Table S3: Prediction performance for the three-class classification problem of stable quasicrystals (QC), approximants (AC), and others. The left table is the confusion matrix, and the right table reports the per-class recall, precision, and F_1 metrics. The performance metrics were averaged over 100 different bootstrap sets, and the numbers in parentheses represent the standard deviations. The results labeled as "with Al systems" are the same as we report in Table 1. Additionally, in the "without Al systems" panel, we show the results of the performance evaluation after eliminating the aluminum-containing compositions from the test instances.

	Predicted class				Performance metrics				
	Test set		QC	AC	others		Recall	Precision	\mathbf{F}_1
Wi Al sy Une class With Al sy	With Al systems	QC	9.63 (1.641)	3.24 (1.342)	3.13 (1.189)	QC	0.602 (0.103)	0.722 (0.090)	0.650 (0.076)
		AC	3.11 (1.555)	9.73 (1.805)	3.16 (1.573)	AC	0.608 (0.113)	0.731 (0.089)	0.658 (0.088)
		others	0.76 (0.896)	0.42 (0.619)	2016.82 (1.024)	others	0.999 (0.001)	0.997 (0.001)	0.998 (0.001)
	\ A	QC	7.14 (1.594)	1.91 (1.150)	1.90 (1.221)	QC	0.662 (0.140)	0.807 (0.125)	0.715 (0.102)
	Without Al systems	AC	1.43 (1.185)	7.68 (1.788)	2.36 (1.389)	AC	0.671 (0.137)	0.792 (0.110)	0.720 (0.108)
	Ai systems	others	0.45 (0.698)	0.16 (0.367)	1900.13 (8.795)	others	1.000 (0.000)	0.998 (0.001)	0.999 (0.001)

Prediction accuracy sensitivity

Table S4: The sensitivity of the prediction accuracy when using the different sample sizes of periodic crystals ($N_{crystal}$). The left table is the confusion matrix, and the right table reports the per-class recall, precision, and F_1 metrics. The performance metrics were averaged over 100 different bootstrap sets, and the numbers in parentheses represent the standard deviations.

		Predicted class			
N _{crystal}		QC	AC	others	
	QC	11.08 (2.58)	3.58 (1.97)	0.88 (1.04)	
500	AC	3.48 (1.75)	10.75 (2.98)	1.13 (1.12)	
	others	0.61 (0.84)	0.35 (0.64)	118.14 (4.25)	
	QC	9.90 (3.10)	3.65 (1.80)	2.19 (1.44)	
2,500	AC	3.48 (1.82)	9.88 (2.59)	2.03 (1.38)	
	others	0.38 (0.61)	0.49 (0.67)	518.00 (4.82)	
	QC	9.96 (2.83)	3.47 (1.77)	2.40 (1.41)	
5,000	AC	2.95 (1.81)	9.67 (2.75)	2.84 (1.68)	
	others	0.37 (0.67)	0.66 (0.78)	1017.68 (4.86)	
	QC	9.73 (2.75)	3.17 (1.62)	3.02 (1.68)	
10,000	AC	2.68 (1.70)	8.54 (2.33)	3.67 (1.98)	
	others	0.50 (0.70)	0.72 (0.83)	2017.97 (5.19)	
	QC	9.47 (2.94)	3.33 (2.04)	3.49 (1.58)	
15,000	AC	2.90 (1.66)	8.46 (2.22)	4.65 (2.44)	
	others	0.49 (0.69)	1.18 (1.03)	3016.03 (4.84)	
	QC	9.39 (2.69)	2.85 (1.89)	3.92 (2.12)	
20,000	AC	2.74 (1.68)	8.80 (2.68)	4.78 (2.53)	
	others	0.64 (0.83)	1.26 (1.08)	4015.62 (5.11)	
	QC	9.29 (2.68)	2.64 (1.57)	3.83 (1.77)	
25,000	AC	2.84 (1.77)	7.70 (2.27)	5.75 (2.51)	
	others	0.71 (0.85)	1.16 (1.08)	5016.08 (4.96)	
	QC	9.45 (2.77)	2.65 (1.61)	4.20 (1.83)	
30,000	AC	2.32 (1.39)	7.37 (2.30)	5.66 (2.47)	
	others	0.83 (0.93)	1.45 (1.19)	6016.07 (4.79)	

	Performance metrics					
	Recall	Precision	F_1			
QC	0.719 (0.121)	0.736 (0.107)	0.719 (0.086)			
AC	0.701 (0.125)	0.735 (0.127)	0.708 (0.096)			
others	0.992 (0.009)	0.983 (0.012)	0.988 (0.007)			
QC	0.627 (0.132)	0.718 (0.120)	0.661 (0.109)			
AC	0.645 (0.120)	0.708 (0.107)	0.668 (0.093)			
others	0.998 (0.002)	0.992 (0.004)	0.995 (0.002)			
QC	0.627 (0.123)	0.756 (0.128)	0.677 (0.102)			
AC	0.631 (0.124)	0.704 (0.120)	0.655 (0.096)			
others	0.999 (0.001)	0.995 (0.002)	0.997 (0.001)			
QC	0.609 (0.135)	0.758 (0.127)	0.666 (0.112)			
AC	0.584 (0.127)	0.694 (0.112)	0.623 (0.091)			
others	0.999 (0.001)	0.997 (0.001)	0.998 (0.001)			
QC	0.582 (0.133)	0.736 (0.113)	0.641 (0.105)			
AC	0.536 (0.123)	0.663 (0.127)	0.581 (0.098)			
others	0.999 (0.000)	0.997 (0.001)	0.998 (0.001)			
QC	0.585 (0.128)	0.739 (0.118)	0.643 (0.101)			
AC	0.548 (0.133)	0.688 (0.136)	0.597 (0.107)			
others	1.000 (0.000)	0.998 (0.001)	0.999 (0.000)			
QC	0.593 (0.122)	0.728 (0.138)	0.644 (0.107)			
AC	0.479 (0.129)	0.677 (0.133)	0.550 (0.116)			
others	1.000 (0.000)	0.998 (0.001)	0.999 (0.000)			
QC	0.583 (0.123)	0.750 (0.117)	0.648 (0.102)			
AC	0.483 (0.122)	0.642 (0.145)	0.542 (0.113)			
others	1.000 (0.000)	0.998 (0.000)	0.999 (0.000)			

Phase diagram

Figure S1: Predicted and experimentally determined phase diagrams for the 30 Al-TM-TM alloy systems. For each system, the left panel shows the predicted diagram made by the random forest classifier, and the right panel shows the actual phase diagram extracted from the literature. Three different colors are used to distinguish the phase region of quasicrystals, approximants, and others.

Machine learning learned rules

Figure S2: The formation rules of QC/AC discovered by the machine learning algorithm are overwritten on the predicted phase diagrams of the 30 Al-TM-TM systems. A color-coded line represents a condition imposed on the weighted average of van der Waals radius, electronegativity, first ionisation energy, the number of filled p valence orbitals, or the energy per atom at T=0K ground state.

References

- [1] S. Walter, S. Deloudi, Crystallography of Quasicrystals, volume 126 of Springer Series in Materials Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
- [2] Xenonpy platform, https://github.com/yoshida-lab/XenonPy, Accessed: 2021-4-30.
- [3] J. C. Slater, J. Chem. Phys. **1964**, 41, 10 3199.
- [4] mendeleev a python resource for properties of chemical elements, ions and isotopes, ver. 0.3.6, https://github.com/lmmentel/mendeleev, Accessed: 2021-4-30.
- [5] M. Rahm, R. Hoffmann, N. W. Ashcroft, Chem. Eur. J. 2016, 22, 41 14625.
- [6] M. Rahm, R. Hoffmann, N. W. Ashcroft, Chem. Eur. J. 2017, 23, 16 4017.
- [7] J. Vogt, S. Alvarez, Inorg. Chem. 2014, 53, 17 9260.
- [8] J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, T. Prohaska, *Pure Appl. Chem.* 2016, 88, 3 265.
- [9] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, *Comput. Mater. Sci.* 2013, 68 314.
- [10] K. T. Tang, J. M. Norbeck, P. R. Certain, J. Chem. Phys. 1976, 64, 7 3063.
- [11] X. Chu, A. Dalgarno, J. Chem. Phys. 2004, 121, 9 4083.
- [12] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, *Dalt. Trans.* 2008, 2832.
- [13] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 46 12770.
- [14] P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 1 186.
- [15] P. Pyykkö, S. Riedel, M. Patzschke, Chem. Eur. J. 2005, 11, 12 3511.
- [16] P. Schwerdtfeger, J. K. Nagle, Mol. Phys. 2019, 117, 9-12 1200.
- [17] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, npj Comput. Mater. 2016, 2, July 1.
- [18] W. M. Haynes, CRC Handbook of Chemistry and Physics, 95th Edition, Oakville : CRC Press, 95th ed edition, 2014.
- [19] T. Andersen, Phys. Rep. 2004, 394, 4-5 157.
- [20] J. B. Mann, T. L. Meek, L. C. Allen, J. Am. Chem. Soc. 2000, 122, 12 2780.
- [21] J. B. Mann, T. L. Meek, E. T. Knight, J. F. Capitani, L. C. Allen, J. Am. Chem. Soc. 2000, 122, 21 5132.
- [22] D. C. Ghosh, J. Theor. Comput. Chem. 2005, 04, 01 21.
- [23] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 2013, 65, 11 1501.
- [24] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, C. Wolverton, npj Comput. Mater. 2015, 1, November.
- [25] M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, D. R. Clarke, *Chem. Mater.* 2013, 25, 15 2911.
- [26] A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 3 364.

- [27] R. Allmann, R. Hinek, Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 63, 5 412.
- [28] D. Zagorac, H. Muller, S. Ruehl, J. Zagorac, S. Rehme, J. Appl. Crystallogr. 2019, 52 918.
- [29] D. G. Pettifor, Solid State Commun. 1984, 51, 1 31.
- [30] P. Villars, K. Cenzual, J. Daams, Y. Chen, S. Iwata, J. Alloys Compd. 2004, 367, 1-2 167.
- [31] Material-agnostic platform for informatics and exploration, https://wolverton.bitbucket.io, Accessed: 2021-4-30.
- [32] Electron configuration of the elements, https://periodictable.com/Properties/A/ ElectronConfigurationString.v.html, Accessed: 2021-4-30.
- [33] S. Alvarez, Dalt. Trans. 2013, 42, 24 8617.
- [34] N. L. Allinger, X. Zhou, J. Bergsma, *Theochem J. Mol. Struct.* 1994, 312, 1 69.
- [35] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 25 10024.