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Section S1. MoSe2 membranes 

 

Figure S1. (a) Optical and (b) scanning electron microscopy images of MoSe2 membranes of different 

thickness (indicated in the figure). Scale bars in (a) and (b) are 20 µm and 5 µm, respectively.  
 

We exfoliated MoSe2 flakes onto PDMS [Fig. S2 (a – e)] and, prior to dry transfer, we estimated 

the flake thickness from transmission optical images. We obtained these using a Nikon 

microscope set for Köhler illumination and analyzed the images with ImageJ software. First, we 

split the image into RGB color channels and took the green channel intensity profiles across the 

regions of interest. This allowed us to quantify the intensity drop with respect to the substrate  

caused by a flake with a given thickness. Two terraced flakes [Fig. S2 (a, b)] (not transferred or 

studied by BLS) with known thickness values allowed us to qualitatively sort our samples by  
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number of layers. The thicknesses of the flakes used for calibrating optical contrast 

measurements were confirmed with photoluminescence (PL) measurements (Fig. S3). This 

allowed us to unambiguously assign thicknesses to 1L, 2L, and 3L, which are all in excellent 

agreement with our results from optical contrast, as we show in Figs. S2 and S3. Furthermore, 

the PL peak position of 1.57 eV for monolayer MoSe2 is in excellent agreement with results in the 

literature.[1] 

 

Figure S3. (a-c) Calibration Samples C, D and E, whose thicknesses are determined through (d) 

photoluminescence and (e) optical contrast measurements. 

 

 
Figure S2. Thickness estimation from optical contrast. (a – e) Green channel transmission images of 
MoSe2 flakes on PDMS, prior to dry transfer: (a) Calibration Sample A, measured both with 

photoluminescence and optical contrast. b) Calibration Sample B, with thicknesses measured both with 
photoluminescence and AFM. (c-e). Exemplary flakes that we later transferred onto holey substrates 

and studied in this work with BLS. (f) Optical contrast measurements for the samples in panels a-e.  
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Finally, we normalized the intensity profiles by the average intensity of a significant area of the 

corresponding substrate for comparison with the flakes of known thickness. The thicknesses of 

MoSe2 membranes obtained in this way are gathered in Table S1 

Atomic Force Micrographs reported in Fig. S4, show the thickness at the step-like border region 

of the MoSe2 flakes (Table S1). However, we observe discrepancies with thicknesses measured 

by optical method for samples with thicknesses below 8L. The optical contrast technique is very 

accurate for relatively thin samples, <9L, while AFM measurements are more accurate for 

thicknesses >8L. These discrepancies can be attributed to the higher susceptibility of AFM 

measurement to polymeric residues, i.e., from the sample preparation process and the non-ideal 

interface between MoSe2 and the support. The combination of AFM and optical contrast allows 

the thickness identification of the MoSe2 membranes. AFM image of the freestanding region for 

the exemplary MoSe2 sample [Fig. S5 (a)] showed sub-nanometer roughness over several microns 

[Fig. S5 (b)], confirming the absence of small wrinkles on the region investigated by BLS.  

Table S1. Thicknesses determined from optical contrast method and AFM. 

Optical contrast, d (nm) AFM. d (nm) 

1.9 (3L) NA 
2.9±0.4 (4-5L) 6.3±1.9 

4.2±0.4 (6-7L) NA 
4.5(7L) 6.7±1.5 

5.2(8L) 5.1±1.6 
5.5±0.4(8-9L) 5.2±1.2 

NA 8.8±0.7 

NA 24.7±1.3 

 

 

 
Figure S4. Atomic force microscopy images of the step-like edges for MoSe2 samples acquired from the 

supported region, several tens of microns away from membranes. Dashed arrows show the profile 

collection area (insets). The micrographs correspond to the thicknesses (a) 6.3±1.9 nm, (b) 6.7±1.5 nm, 

(c) 5.1±1.6 nm, (d) 5.2±1.2 nm, (e) 8.8±0.7 nm, and (f) 24.7±1.3 nm with the roughness (Rq) as the error 

of the measurement. Scale bars are 4 µm.  



4 

 

 

 
Figure S5. (a) AFM image of the supported and freestanding regions of exemplary MoSe2 sample and 

(b) corresponding roughness measurements.  

 

Section S2: BLS spectra of different bulk TMDCs – MoSe2, MoTe2 and WS2 

To investigate the effect of the high opacity of MoSe2 on the BLS peak corresponding to the 

longitudinal bulk acoustic wave (L BAW) with wave number 𝑄 = 4𝜋𝑛1/𝜆, we performed BLS 

experiments in backscattering geometry extending the free spectral range to 90 GHz. As a 

reference, we used two other TMDCs, i.e., bulk MoTe2 and WS2. The resulting spectra are 

displayed in Fig. S6. The sharp peaks in the spectral region from about 27 to 44 GHz correspond 

to the backscattering BLS from the glass optics used in the experiment. In the spectra of WS2 and 

MoTe2, we can notice two broad peaks at about 47 and 49 GHz, respectively. These peaks, 

according to C33 from the literature[2][3] can be assigned to L BAWs propagating in the [001] 

direction. In the case of the MoSe2 the L BAW peak expected at about 51 GHz[4] (indicated by 

arrow) was not resolved. The broadening of BLS peaks due to medium opacity can be calculated 

from the formula ∆𝑓 𝑓⁄ = 2𝑛2/𝑛1
[5], 𝑛1and 𝑛2 stand for the real and imaginary parts of the 

refrective index. Indeed, as indicated in Fig. S6 the relative width is the highest for MoSe2 

explaining the absence of the peak corresponding to the L BAW in the spectra. Strong suppression 

of the usual backscattering BLS can enable detection of surface-like waves due to so called sub-

surface photoelastic mechanism in addition to the surface ripple mechanism. [6–9]  
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Figure S6. Experimental BLS spectra for bulk MoSe2, MoTe2 and WS2 obtained in the backscattering 

geometry. The sharp peaks in the region between 27 and 44 GHz correspond to the backscattering BLS 

from the glass optics. Symbols n1 and n2 stand for real and imaginary parts of the refractive index, 

respectively. Inset shows a schematic illustration of the used BLS geometry where symbols ki, ks, and Q 

denote incident light, scattered light, and bulk acoustic wave vectors. The incident angle was set to 𝜃 =

45° to avoid detector saturation due to intense back-reflected light.  

 

 

Section S3. Influence of the elastic constants on the dispersion of RSWs 

 
Figure S7. The dependence of RSW velocity, 𝑣RSW  on the relative change of elastic constants. The black 

arrow indicates the experimentally determined 𝑣RSW = 1620 m/s  for which we calculated 𝐶44 =

18.8 GPa. 
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Section S4. Dispersion relations, BLS spectra and membrane thickness – numerical 

calculations.  

S4.1. Dispersion relation of Lamb waves 

The equation of motion for the pre-stressed material is given by the formula: 

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗 + 𝜎𝑗𝑙

0
𝜕𝑢𝑖

𝜕𝑥𝑙
) = 𝜌

𝜕2𝑢𝑖

𝜕𝑡2 , (1) 

where 𝑢𝑖  are the displacement component, 𝜌 is the mass density and 𝜎𝑗𝑙
0 is the Cauchy stress 

tensor related to the residual biaxial residual stress 𝜎0, that can be represented as a diagonalized 

matrix with non-zero components 𝜎11 = 𝜎22 = 𝜎0. 

The strain tensor 𝑢𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) and the Cauchy stress tensor 𝜎𝑖𝑗 are related by means of 

Hooke’s law: 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘𝑙, where 𝐶𝑖𝑗𝑘𝑙 is the elastic tensor. The elastic tensor, 𝐶𝑖𝑗𝑘𝑙 can be 

expressed as 6 x 6 matrix in the Voigt notation. For a hexagonal crystal, this matrix has five non-

zero, independent elastic constants: C11, C12, C13, C33, C44 , given as: 

𝐶𝐾𝐿 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13

𝐶12 𝐶11 𝐶13

𝐶13 𝐶13 𝐶33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶66]

 
 
 
 
 

 , where 𝐶66 =
1

2
(𝐶11 − 𝐶12). (2) 

We assume the solution of Eq. (1) is a linear combination of three (𝑖 = 1,2,3) plane waves with 

amplitudes 𝑢𝑖0: 

𝑢𝑖 = 𝑢𝑖0 exp[i𝑞(𝑙𝑗𝑥𝑗 − 𝑣𝑡)] , (3) 

where, 𝑣 denotes the phase velocity. The acoustic wave vector is given by 𝐪 = 𝑞(𝑙1, 𝑙2 , 𝑙3), where 

𝑙𝑖  stands for direction cosine. Due to the hexagonal symmetry, the velocities of acoustic waves 

propagating in (001) do not depend on the direction of propagation (given by 𝑙𝑖 ). In other words, 

the (001) plane is elastically isotropic. Thus, for convenience, we set 𝑙1 = 1, 𝑙2 = 0. From the 

substitution of Eq. (3) into Eq. (1), we obtain the secular equation, which gives nontrivial solutions 

for 𝑢𝑖  only if: 

|Γ𝑖𝑗 − 𝛿𝑖𝑗𝜌𝑣2| = 0, (4) 

where Γ𝑖𝑗 = (𝐶𝑖𝑗𝑘𝑙 + 𝛿𝑖𝑘𝜎𝑗𝑙
0)𝑙𝑗 𝑙𝑙 denotes the acoustic tensor and 𝛿𝑖𝑘  is the Kronecker delta. For 

any value of 𝑣, Eq. (4) has 𝑛 = 6 solutions for 𝑙3
(𝑛)

. Thus, the general solution for 𝑢𝑖  is a 

superposition of six waves: 

𝑢𝑖 = ∑ 𝐴(𝑛)𝑢𝑖0
(𝑛) exp [i𝑞(𝑙3

(𝑛)
𝑥3)]  exp[i𝑞(𝑙1𝑥1 + 𝑣𝑡)]6

𝑛 , (5) 
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where 𝐴(𝑛) and 𝑢𝑖0
(𝑛)

 are weighting factors and partial wave amplitudes, respectively. We set two 

stress-free boundary conditions for the upper (𝑥3 = 0) and lower (𝑥3 = −𝑑) surfaces of the 

membrane:  

𝜎𝑖3(𝑥3 = 0) = 𝐶𝑖3𝑘𝑙
𝜕𝑢𝑘

𝜕𝑥𝑙
|
𝑥3=0

= 0, (6a) 

𝜎𝑖3(𝑥3 = −𝑑) = 𝐶𝑖3𝑘𝑙
𝜕𝑢𝑘

𝜕𝑥𝑙
|
𝑥3=−𝑑

= 0.  (6b) 

By substituting Eq. (5) into Eqs. (6a) and (6b) we obtain: 

∑ 𝐶𝑖3𝑘𝑙
6
𝑛 𝐴(𝑛)𝑢𝑘0

(𝑛)𝑙𝑙
(𝑛) = 0, (7) 

∑ 𝐶𝑖3𝑘𝑙
6
𝑛 𝐴(𝑛)𝑢𝑘0

(𝑛)
𝑙𝑙
(𝑛)

exp[−(i𝑞𝑙3
(𝑛)

𝑑)] = 0. (8) 

The above is a set of six equations witch can be written in matrix form as a multiplication of the 

6 × 6 D matrix of the coefficients and the 6 × 1 column vector A of the weighting factors: 

 [
𝐶13𝑘𝑙𝜁𝑘𝑙

(1) ⋯ 𝐶13𝑘𝑙𝜁𝑘𝑙
(6)

⋮ ⋱ ⋮

𝐶33𝑘𝑙𝜉𝑘𝑙
(1) ⋯ 𝐶33𝑘𝑙𝜉𝑘𝑙

(6)

] [
𝐴(1)

⋮
𝐴(6)

] = [
0
⋮
0
], (9) 

where 𝜁𝑘𝑙
(𝑛)

= 𝑢𝑘0
(𝑛)

𝑙𝑙
(𝑛)

 and 𝜉𝑘𝑙
(𝑛)

= 𝑢𝑘0
(𝑛)

𝑙𝑙
(𝑛)

exp(−i𝑞𝑙3𝑑). The problem has nontrivial solutions 

when the determinant of matrix D is |𝐃| = 0. For the thin membranes, these solutions can be 

sorted with respect to the evaluated weighting factors 𝐴(𝑛) and Eq. (5) in terms of the membrane 

mid-plane symmetry to corresponding Lamb waves, as shown in Table S2.  

Table S2. Types of acoustic waves in membranes/plates.  

Wave Symbol Symmetry relation 

Symmetric Lamb S 𝑢3(−𝑑) = −𝑢3(0) 

Antisymmetric Lamb A 𝑢3(−𝑑) = 𝑢3(0) 

Sher-Horizontal SH 𝑢3(−𝑑) = 𝑢3(0) = 0 

 

In the numerical approach, we swept 𝑣 from 1 to 7000 m/s in Eq. (4) at a given q to find the 

minima of |𝐃|, which correspond to phase velocities of Lamb waves. This procedure is repeated 

for 𝑞 varied from 0 to 25 µm-1 which corresponds to the range of wave numbers available in the 

BLS experiment. This approach allows plotting the dispersion relations 𝑣(𝑞) and 𝑓(𝑞). 

S4.2. BLS spectra for bulk and membranes 

Brillouin light scattering on acoustic phonons/waves originates from the surface ripple (SR) 

mechanism (or moving interface mechanism) and the photo-elastic (PE) mechanism. For the 
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acoustic waves polarized in the i-th direction and propagating in the free surface (𝑥3 = 0) BLS 

intensity can be calculated from the projected local density of states (PLDOS): 

𝐼𝑖 = 〈|𝑢𝑖(0)|2〉𝐪,𝜔 =
𝑘B𝑇

𝜋𝜔
Im[𝐺𝑖𝑖(𝑞, 0, 𝜔)], (10) 

where 𝐺𝑖𝑖(𝑞, 0,𝜔) = ∑ 𝐴(𝑛)𝑢
𝑖0
(𝑛)

𝑛  is the component of the Green’s function tensor. The prefactor 

𝑘B𝑇/𝜋𝜔 is related to the thermal occupation of each phonon mode, where 𝑘B  is Boltzmann 

constant, T is temperature, and 𝜔 = 2𝜋𝑓 is the angular frequency. For the surface ripple 

mechanism, BLS intensity is proportional to 〈|𝑢3(0)|2〉𝑞,𝜔~𝐺33. Similarly, for the photo-elastic 

mechanism, the BLS intensity is proportional to the 〈|𝑢1(0)|2〉𝑞,𝜔~𝐺11 and 〈|𝑢2(0)|2〉𝑞,𝜔~𝐺22 

for the bulk longitudinal and transverse waves, respectively. Next, 𝐺11 and 𝐺22 have to be scaled 

by the Ryeigh ratio 𝑅𝑗 ∝ [𝑒s𝑇
j𝑒0] accounting for the photo-elastic coupling. Here, 𝑒s, 𝑒0 and 𝑇j 

are unit vectors in the direction of the scattered and incident light polarization and the photo-

elastic tensor, respectively.[10] For the [100] phonon in hexagonal crystal belonging to space 

group 𝐷6ℎ
4 , PE tensors and velocities for longitudinal (L) and two transverse waves (T1, T2) are 

presented in Table S3.[10]  

Table S3. Velocities and PE tensors for [100] phonon in MoSe2. PE coefficients are denoted as 𝑝𝑖𝑗 , 

while 𝜀o  and 𝜀𝑒 stand for ordinary and extraordinary dielectric constants, respectively.  [10]  

L T1 T2 

𝑣 = (𝐶11/𝜌)1/2 𝑣 = (𝐶66/𝜌)1/2 𝑣 = (𝐶44/𝜌)1/2 

𝑇L = [

𝜀o
2𝑝11 0 0

0 𝜀o
2𝑝12 0

0 0 𝜀o
2𝑝31

] 𝑇T1 = [
0 𝜀o

2(𝑝11 − 𝑝12)/2 0

𝜀o
2(𝑝11 − 𝑝12)/2 0 0

0 0 0

] 𝑇T2 = [

0 0 𝜀o𝜀𝑒𝑝44

0 0 0
𝜀o𝜀e𝑝44 0 0

] 

In the backscattering BLS geometry, p-p and s-s polarizations correspond to 𝑒0 = 𝑒s = [1 0 0] 

and 𝑒0 = 𝑒s = [0 1 0], respectively. Thus, we obtain [𝑒s𝑇
L𝑒0] ≠ 0, [𝑒s𝑇

T1𝑒0] = 0 and 

[𝑒s𝑇
T2𝑒0] = 0. For the light polarized in the p-s configuration, we get [𝑒s𝑇

L𝑒0] = 0, [𝑒s𝑇
T1𝑒0] ≠

0 and [𝑒s𝑇
T2𝑒0] = 0. Therefore, in our experiment T2 is BLS-inactive in any configurations of 

polarizations.  
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Figure S8. Projected local density of states (PLDOS) as a function of the acoustic wave phase velocity. 

Abbreviations: RSW – Rayleigh surface wave, HFPSAW – high frequency pseudo surface acoustic wave, L 

– longitudinal bulk wave, T1 – fast transverse wave, T2 – slow transverse wave. 

Figure S8 displays PLDOS as a function of the phase velocity calculated using elastic constants of 

bulk MoSe2. The out-of-plane component of PLDOS is BLS-active solely due to the SR effect, while 

the in-plane transverse and longitudinal solely due to the PE effect. RSW is associated with both 

longitudinal in-plane and transverse out-of-plane PLDOS. Thus, RSWs are BLS active due to the 

superposition of the SR and PE effects in the p-p polarization of the incident and scattered light. 

RSW satisfies the stress boundary condition, and hence the corresponding peak intensity tends 

to infinity. The out-of-plane PLDOS reveals the so-called Lamb shoulder above the T1 threshold. 

This surface-like band is a continuum of waves that originates in propagating bulk transverse and 

evanescent longitudinal waves. The Lamb shoulder can be considered as the continuum of high 

order (m>0) Lamb waves in a plate/membrane of infinite thickness. In such a case, the 

fundamental (m=0) symmetric and antisymmetric Lamb waves turn into RSW. In the case of the 

BLS spectra of bulk MoSe2 [Fig. 2(b) in the main text] the dip located at T2 is overwhelmed by the 
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RSWs peak, and the Lamb shoulder is resolved as the high-frequency tail of the RSW peak. In the 

case of the SR scattering, the mode conversions effect leads to a sharp dip located at the L 

threshold. Notably, this dip coincides with a well-defined peak of HFPSAW in longitudinal in-plane 

PLDOS. HFPSAWs do not satisfy the stress-free boundary condition; thus, they are leaky 

(skimming) surface waves that radiate their energy into the bulk. This is reflected by the 

asymmetric peak broadening in BLS spectra. In the case of considered bulk MoSe2, the velocity 

HFPSAWs is practically equal to the velocity of L BAW.[6]  

The transverse in-plane component of PLDOS reveals the peak associated with the fast transverse 

T2 (shear-horizontal, SH) wave, which is BLS-active due to the PE effect in the p-s (or s-p) 

configuration. This wave satisfies the stress-free boundary condition, leading to the infinite peak 

intensity, as shown in Fig. S8. However, the T2 peak is associated with a high-frequency tail 

resolved in the experiment as asymmetric broadening. This tail can be described as a continuum 

of higher-order (m>1) SH modes propagating in a membrane/plate of infinite thickness. [11] 

We involved such factors as finite optical aperture, instrumental broadening, and phonon 

attenuation in calculating the BLS spectra.[12] In general, this resulted in peak broadening and 

asymmetry. We note that the exact calculations of SR and PE contributions to BLS spectra of bulk 

and ultra-thin MoSe2 were not possible due to a lack of relevant optical properties (PE tensor and 

full dielectric tensor). 

S4.3. Membrane thickness and stress 

To determine the thickness of membranes from the experimental dispersion of A0 mode, we 

repeated the procedure described in S4.1. where we swept d and 𝜎0 at fixed 𝐶𝑖𝑗  and 𝜌. Figure S9 

(a) displays exemplary experimental dispersion of A0 mode compared with dispersion relations 

calculated for five thickness differing by 1L. This example illustrates that the change in d even by 

one layer has a notable influence on the calculated dispersion.  

The calculated and experimental frequencies denoted as 𝑓𝑖
c and 𝑓𝑖

e, respectively, were compared 

for 𝑛 wave numbers (experimental points) employing the reduced chi-square statistics for 

determining the goodness of the fit: 

𝜒2 =
1

𝑁
∑

(𝑓𝑖
c − 𝑓𝑖

e)2

(∆𝑓𝑐)2 + (∆𝑓𝑒)2

𝑛

𝑖

, (11) 

where ∆𝑓𝑐 and ∆𝑓𝑒 are errors for calculated and experimental frequency, respectively. The 

former was taken as the difference of calculated frequencies for limits of 𝐶11 ± ∆𝐶11, while the 

latter comes from the Lorentzian fit of the BLS peak. The degree of freedom, 𝑁 = 𝑛 − 𝑚, is 

determined as the difference between 𝑛 and number of fitted parameters 𝑚 = 2, except for 

membranes with 𝜎0 = 0 MPa for which 𝑚 = 1. We calculated the 𝜒2 for a selected range of d 

and 𝜎0and found 𝜒min
2 . Figure S9 (b) displays the 95 % and 68.3 % confidence regions for 
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exemplary membrane (d = 5.2 nm) for which 𝜒2(𝑑, 𝜎0) − 𝜒min
2 < 5.991 and 𝜒2(𝑑, 𝜎0) − 𝜒min

2 <

2.6, respectively. In the case of membranes with 𝜎0 = 0 for which 𝑚 = 1, 95 % and 68.3 % 

confidence regions are given by 𝜒2(𝑑)− 𝜒min
2 < 3.84 and 𝜒2(𝑑) − 𝜒min

2 < 1, respectively. The 

membrane thickness and stress with errors determined from confidence regions are listed in 

Table S4. In this way, we obtained thicknesses that are consistent with those measured by optical 

contrast. Overall, the uncertainty of the thickness obtained from BLS can be estimated as ±1 L.    

 
Figure S9. (a) Calculated (lines) dispersion relations for different MoSe2 thicknesses given as a number 
of layers (L) and experimentally determined dispersion (circles). (b) 95% and 68.3% confidence regions 

for determining the d and 𝜎0 of exemplary (d=5.2 nm) MoSe2 membrane.  

 

Section S5. Raman spectroscopy 

Raman spectroscopy measurements were performed with the incident light wavelength of 633 

nm. Figure S10 (a) displays Raman spectra for all MoSe2 membranes and the bulk sample. The 

captured peaks can be assigned to A1g mode. The E1g mode was not resolved since we used the 

lowest possible power (< 50 µW) to correctly resolve the A1g and avoid additional redshift due to 

the temperature rise (also thickness dependent) that could obscure the result.  

The Raman shift of A1g mode as the function of the membrane thickness (determined by BLS) is 

plotted together with the literature data[13] in Fig. S10 (b). Notably, our results qualitatively follow 

the trend reported in the prior work. This behavior confirms the sorting of the membranes in 

terms of their thickness obtained from BLS. More quantitative analysis of the Raman data 

requires correction of the A1g spectral position with respect to a reference frequency from the 

literature data. The Raman data of bulk MoSe2 in Ref. [13] was not reported. As the reference, 

we used the spectral position of the A1g measured for the sample, which thickness was 

determined by the optical contrast as 3L. In addition, we estimated the redshift due to the stress 

using the coefficient ∆𝜔(A1g)/𝜀 ≅ −1 for MoS2 taken from the literature[14] (not available for 

MoSe2). Here, 𝜀 denotes strain in % that can be calculated from Hooke’s law and BLS results 



12 

 

(elastic tensor and stress). The effect of stress is relatively minor except for the sample of the 

highest stress (4.9 nm thick, 188 MPa). 

To determine the thickness of the membranes from (corrected) Raman results, we first fitted the 

literature data with a function: 𝜔(A1g) = (𝑙𝑑 + 𝑚)/(𝑛𝑑 + 𝑜), where l, m, n, and o are free fitting 

parameters. Using the fitted parameters, we estimated the thicknesses of our MoSe2 membranes 

from the Raman shift of A1g. The inset in Fig. S10 (b) shows the comparison of thicknesses 

determined by Raman and BLS.  

 

Figure S10. (a) Raman spectra of A1g mode for bulk MoSe2 and membranes of different thicknesses 

determined by BLS. (b) Raman shift of A1g mode as a function of the membrane thickness. Squares stand 

for the experimental data from the literature.[13] Open circles stand for experimental data from this 

work. Solid circles represent experimental data after corrections (reference line, residual stress) 

described in the text. Shaded area corresponds to experimentally measured bulk value from this work. 

A solid line denotes the fit of literature data with the function described in the text. Inset in (b) shows 

the comparison of thicknesses determined by Raman and BLS. 

Table S4 gathers the thicknesses for all the samples, determined by optical contrast, AFM, BLS, 

and Raman. Overall, all four techniques are complementary and in agreement, with AFM 

providing accurate values for thick samples and optical contrast for thinner ones, as discussed in 

Section S1. Importantly, BLS provides a broader range of applicability, from thin to thick samples.  
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Table S4. Thickness determined by various techniques and residual stress determined by BLS. 

Optical contrast 
d (nm) 

AFM d 
(nm) 

BLS d (nm) 
Raman A1g (cm-1) 

Raman 
 d (nm) 

BLS 𝜎0 (MPa) 
68.3% 
conf. 

95% 
conf. 

68.3% 
conf. 

95% 
conf. 

1.9 (3L) NA 1.2±0.3 1.3±0.3 241.82±0.05 2.01±0.25 103±3 103±3 
2.9±0.4 (4-5L) 6.3±1.9 3.3±0.4 3.3±0.6 242.31±0.08 3.5±0.8 27±8 27±14 
4.2±0.4 (6-7L) NA 4.5±0.1 4.5±0.2 242.40±0.07 3.9±0.7 0 0 

4.5(7L) 6.7±1.5 4.9±0.3 4.9±0.4 242.35±0.06 4.35±0.5 188±6 188±9 
5.2(8L) 5.1±1.6 5.2±0.4 5.2±0.7 242.51±0.08 5.15±1.5 65±11 65±17 

5.5±0.4(8-9L) 5.2±1.2 5.8±0.3 5.8±0.4 242.54±0.08 5.4±1.6 46±7 46±10 
NA 8.8±0.7 6.9±0.5 6.9±0.7 242.61±0.07 6.1±1.7 22±15 22±22 
NA 24.7±1.3 19.1±0.2 19.1±0.5 243.0±0.1 21±8 0 0 

bulk / / / 243.07±0.09 / / / 

 

Table S5. Elastic constant values of monolayer and bulk MoSe2 found in the literature. Experimental and 

theoretical values are indicated with superscripts e and t, respectively. 

Monolayer 

 C11 (GPa) C12 (GPa) C33 (GPa)  C44 (GPa) C13 (GPa)  Ref. 

 171.3t  39.7t / / / [15] 

 171.6t 39.8t / 65.9t / [16] 

 165.7t  39.7t / / / [17] 

 176.9t 67.1t / / / [17] 

       

Bulk 

 196.10t 42.30t 44.70t 32.90t 9.80t [18] 

 / / / 16.80e / [19] 

 179.81t  40.75t 35.49t 15.90t 8.46t [20] 

 / / 54.90e  / / [4] 

 / / / 18.70e  / [21] 

 

Table S6. Experimentally determined elastic constants for selected vdW materials. 

material technique C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) Ref. 

graphite 
Inelastic x-ray 

scattering 
1109 139 0(3) 38.7 5.0 [22] 

 

Ultrasonic+sonic 

resonance+static 

test+BLS 

1056 180 15 36.5 0.18- 5 [23–25] 

 Neutron scattering 1440 520 / 37.1 4.6 [26] 

MoS2 Neutron scattering  238 -54 23 52 19 [27] 

TaSe2 Neutron scattering 229 107 / 54 18.5 [28] 

NbSe2 Neutron scattering 
194 91 / 42 17.6 [28] 

171 79 -2 62 19 [27] 

WS2 Neutron scattering 150 / / 60 16 [2] 

MoSe2 BLS 191±3 49±4 / / 18.8±0.7 
This 

work 
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Section S6. The dispersion of acoustic waves in MoSe2 membranes.  

Figure S11 displays Lamb waves dispersion relation obtained by the numerical approach for 

6.9±0.5 nm thick MoSe2. For comparison, we plotted the dispersions of longitudinal (L) and 

transverse (T2) bulk wave, calculated using C11 and C66. Clearly, L and the fundamental symmetric 

Lamb wave (S0) [indicated by arrows] overlap within the available qd in BLS (shaded area). Also, 

the dispersion of the SH0 mode is identical to that of T2 bulk wave. 

 

 
 

Figure S11. Calculated dispersion f(qd) for 6.9 nm thick MoSe2 membrane. Asymmetric (A0), symmetric 

Lamb (S0), and shear horizontal (SH0) as well as longitudinal wave (L), calculated from the 

experimentally determined C11, are indicated with arrows. The shaded area shows the qd range 

available in BLS experiment.  

 

Section S7. Influence of the elastic constants and the membrane thickness on the dispersion of 

the antisymmetric Lamb wave (A0) 

In general, the dispersion relation of A0 mode depends on such parameters as C11, C12, C13, C33, 

C44, 𝜎0, 𝑑 and 𝜌. When the mass density 𝜌 is known, the residual stress 𝜎0 can be obtained 

independently from the cut-off velocity at 𝑞 = 0.[12] To examine the impact of the remaining 

parameters on the A0 mode dispersion, we employed the numerical approach described in 

Section S4. For a given set of parameters, the resulting dispersion f(q) was fitted using a simple 

formula 𝑓 = 𝑎𝑞2. Figures S12 (a) and (b) display the relative change Δ𝑎/𝑎 as a function of the 

relative change of elastic constants and the membrane thickness, respectively. Here, in the case 

of the elastic constants, the main effect comes from C11 while the others remain negligible. 

Notably, C11 is determined independently from the dispersion of the S0 mode. However, the main 
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impact comes from the membrane thickness, as evident in Fig. S12 (b). Consequently, the 

dispersion relation of the A0 mode can be used to determine the thickness of the membrane.  

 
Figure S12. The impact of the relative change in (a) the elastic constants and (b) the membrane 

thickness on the dispersion of the A0 mode.  

 

Table S7. Experimentally determined elastic constants and residual stress for bulk and freestanding 

MoSe2 of various thicknesses by BLS. C33 and C13 are taken from the literature. 

d (nm) 𝜎0 (MPa) C11 (GPa) C12 (GPa) C33 (GPa)[4] C44 (GPa) C13 (GPa)[18] 

1.2±0.3 103±3 131±2 29±3 27.0 

18.8±0.7 

 

9.8 

 

3.3±0.4 27±8 150±3 34±4 49.0 

4.5±0.1 0 163±3 37±4 51.0 

4.9±0.3 188±6 158±2 36±3 52.0 

5.2±0.4 65±11 164±3 40±4 52.0 

5.8±0.3 46±7 169±2 43±3 53.0 

6.9±0.5 22±15 171±3 39±4 53.0 

19.1±0.2 0 183±2 43±3 54.9 

Bulk / 191±3 49±4 54.9 
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Section S8. In-plane Young modulus  

We calculate Young modulus as 𝐸11 = 1/𝑆11 where 𝑆11 is the element of the compliance matrix 

that is defined as the inverse of elastic tensor given by Eq. (2). The compliance matrix for a 

hexagonal crystal is given as: 

𝑆𝐾𝐿 =

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13

𝑆12 𝑆11 𝑆13

𝑆13 𝑆13 𝑆33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑆44 0 0
0 𝑆44 0
0 0 𝑆66]

 
 
 
 
 

= 𝐶𝐾𝐿
−1 =

1

|𝐶𝐾𝐿|

[
 
 
 
 
 
 
 
 
 

𝐶11𝐶33 − 𝐶13
2 𝐶13

2 − 𝐶12𝐶33 (𝐶12 − 𝐶11)𝐶13

𝐶13
2 − 𝐶12𝐶33 𝐶11𝐶33 − 𝐶13

2 (𝐶12 − 𝐶11)𝐶13

(𝐶12 − 𝐶11)𝐶13 (𝐶12 − 𝐶11)𝐶13 𝐶11
2 − 𝐶12

2

   0       0            0      
0   0            0      
0   0            0      

   
0   
   

   
 0  
   

   
  0
   

0   
   
0   

 0  
   
 0  

  0
   
  0

|𝐶𝐾𝐿|

𝐶44
0 0

0
|𝐶𝐾𝐿|

𝐶44
0

0 0
2|𝐶𝐾𝐿|

𝐶11−𝐶12 ]
 
 
 
 
 
 
 
 
 

, 

(12) 

where |𝐶𝐾𝐿|=(𝐶11 − 𝐶12)(𝐶11𝐶33 + 𝐶12𝐶33 − 2𝐶13
2 ) is the determinant of 𝐶𝐾𝐿 given in Eq. (2) 

Therefore, we calculate Young modulus from the formula: 𝐸11 = (𝐶11 − 𝐶12)(𝐶11𝐶33 + 𝐶12𝐶33 −

2𝐶13
2 )/(𝐶11𝐶33 − 𝐶13

2 ). As we can infer from Fig. S13, the main impact on the in-plane Young 

modulus comes from 𝐶11 and 𝐶12. Notably, both constants were determined in this work.  

 

 
Figure S13. The impact of the relative change of 𝐶𝑖𝑗 on the in-plane Young modulus E11.  
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Section S9. Young modulus of selected van der Waals materials 

One of the most studied van der Waals (vdW) material is graphene. It is broadly accepted that 

2D graphene features superior elastic properties in comparison to the corresponding bulk. 

However, the experimental values found in the literature are scattered, comparing values 

obtained by different techniques and different structures, like layers exfoliated from single 

crystal or kish graphite and carbon nanotubes. For example, the value of Young modulus (𝐸) 

estimated from Raman measurements for single and bilayer graphene was 2.4±0.4 and 2.0±0.5 

TPa, respectively,[29] being significantly larger than the bulk value of about 1 TPa.[22,24] However, 

some other experiments show that the 𝐸 of the monolayer matches the bulk value, i.e., 1.05 ± 

0.10 TPa by Raman[30] and 1.0±0.1 TPa by nanoindentation in atomic force microscope (AFM).[31] 

AFM measurement of graphene flakes of thickness between 2 and 8 nm, exfoliated from kish 

graphite, showed lower 𝐸 about 0.5 TPa.[32] Young modulus of 5 and 8 nm thick graphene 

exfoliated from the natural crystal was determined to be 594 and 559 GPa, respectively, using 

the nonlinear dynamic response approach.[33] A very recent study measured 𝐸 = 0.95±0.12 TPa 

for monolayer single-crystal graphene using a bulge test.[34] Moreover, a decrease of the in-plane 

𝐸 for monolayer graphene down to 60 GPa, attributed to the crumpling of the freestanding 

membrane, was observed.[35] Another recent study explored the effect of thickness on Young 

modulus for two vdW materials, namely graphene and boron nitride, by nanoindentation. On 

one side they found 𝐸 = 1.026±0.022 TPa, and 𝐸 = 0.942±0.003 TPa for 1L and 8L graphene, 

respectively. On the other hand, they found E values of 1L and 9L BN to be quite similar: 865±73 

and 856±3 GPa, respectively.[36] For the case of MoS2, the most studied member of TMDC, values 

of Young modulus measured by different techniques are scattered as well. To study whether the 

Young modulus of thin MoS2 films changes compared to the bulk, we first need to establish its 

bulk value. Some authors compare Young modulus to elastic constant  C11 = 238 GPa determined 

from neutron scattering data,[27] which can be misleading. From the elastic constants of bulk 

MoS2 presented in the paper mentioned above, the in-plane Young modulus 𝐸11  ⁓ 210 GPa can 

be calculated.[27] Young modulus determined for 1L and 2L MoS2 by nanoindentation was 

270±100 GPa and 200±60 GPa, showing substantial errors, making it difficult to identify any size 

effect.[37] Another nanoindentation study revealed 𝐸 ⁓ 210 GPa for monolayer, matching the bulk 

value.[38] Yet, another nanoidentation study gave 𝐸 = 330±7 GPa for 5-25L for ultrathin MoS2 

flake, quite higher with respect to the bulk.[39] Additionally, nonlinear dynamic response 

approach, reported Young modulus in a range 300-315 GPa for 5 nm thick MoS2.[33] All the values 

of Young modulus discussed here are sorted in the Table S8. 
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Table S8. Experimentally measured Young modulus of graphene, BN, and MoS2. 

Material Thickness Technique 𝐸 (GPa) Ref. 

Graphene Bulk Estimated from neutron and x-ray 

scattering results 

⁓1000 [22,24] 

 Monolayer Raman 2400±400 [29] 

  Raman 1050±100 [30] 

  AFM nanoidentation 1000±100 [31] 

  Interferometric profilometry 60 - 100 [35] 

  Nanoidentation 1026±22 [36] 

  Bulge test 950±120 [34] 

 2L Raman 2000±500 [29] 

 8L Nanoidentation 942±3 [36] 

 2-8 nm AFM 500 [32] 

 5 nm Nonlinear dynamic response 594±45 [33] 

 8 nm Nonlinear dynamic response 559±23 [33] 

BN Monolayer Nanoidentation 865±73 [36] 

 9L Nanoidentation 856±3 GPa [36] 

MoS2 Bulk Estimated from neutron scattering 

results 

⁓210 [27] 

 Monolayer Nanoidentation 270±100 [37] 

  AFM nanoindentation ⁓210 [38] 

 2L Nanoidentation 200±60 [37] 

 5-25L Nanoidentation 330±7 [39] 

 5 nm Nonlinear dynamic response 300±18 [33] 

 5 nm Nonlinear dynamic response 315±23 [33] 
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