

Supporting Information

for Adv. Healthcare Mater., DOI: 10.1002/adhm.202101215

Ultrathin 2D Titanium Carbide MXene $(Ti_3C_2T_x)$ Nanoflakes Activate WNT/HIF-1 α -mediated Metabolism Reprogramming for Periodontal Regeneration

Di Cui, Na Kong, Liang Ding, Yachong Guo***, Wenrong Yang**, Fuhua Yan*

Supporting Information

Ultrathin 2D Titanium Carbide MXene ($Ti_3C_2T_x$) Nanoflakes Activate WNT/HIF-1 α -mediated Metabolism Reprogramming for Periodontal Regeneration

Di Cui, Na Kong, Liang Ding, Yachong Guo***, Wenrong Yang**, Fuhua Yan*

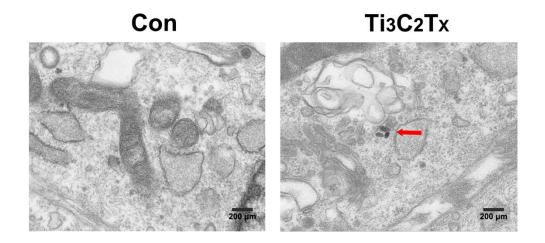


Fig. S1. TEM images of hPDLCs incubated with Ti₃C₂T_x on day 7. The arrows indicate the internalized Ti₃C₂T_x.

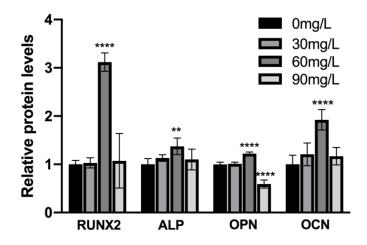


Fig. S2. Relative protein levels of the osteogenic factors determined by western blots in hPDLCs stimulated with $Ti_3C_2T_x$ on day 7.

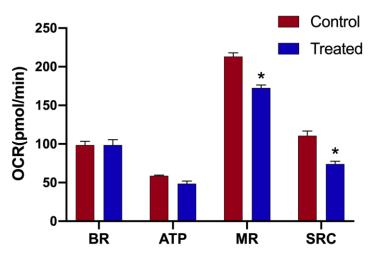


Fig. S3. Real-time changes of the OCR in PDLSCs stimulated with $Ti_3C_2T_x$ for 24 h. *P<0.05, compared with Con.

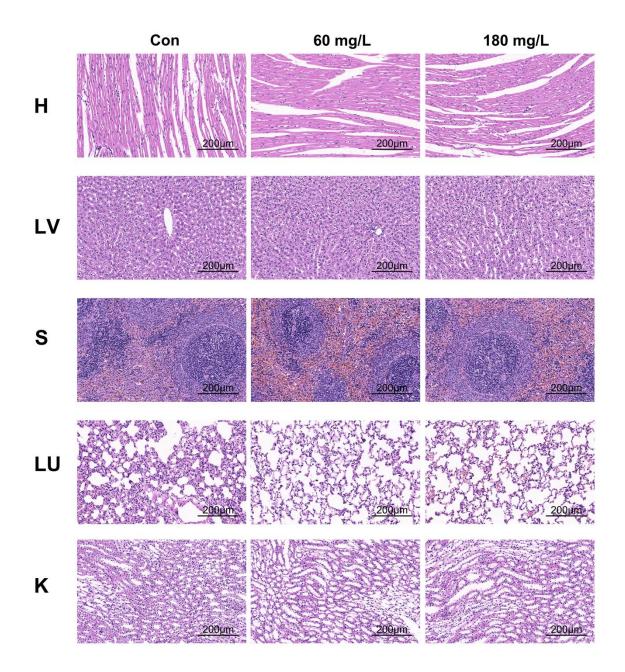


Fig. S4. Representative histopathological images of the heart, liver, spleen, lungs and kidneys after exposure to $Ti_3C_2T_x$ (60 and 180 mg/L). The organs represent all the treatment groups and the control as no abnormalities were detected in all the groups due to the exposure to $Ti_3C_2T_x$.