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S1 Material information

The studied perovskite crystals are based on the FAPbI3 material class, which crystal structure is shown
in Figure S1a [1]. FA-based perovskite exhibits low trap density (1.13 × 1010 cm−3) and low dark carrier
density (3.9 × 109 cm−3) [2, 3]. FAPbI3 is chemically and thermally more stable compared to MAPbI3

due to the decomposition of the latter to gaseous hydrogen iodide and methylammonium [2]. However,
pure FAPbI3 suffers from structural instability originating from the large size of FA cation which cannot
be accommodated by inorganic perovskite framework. This instability has been successfully resolved via
partial, up to 15 %, replacement of large FA cation with smaller caesium (Cs) together with iodine (I)
substitution by bromide (Br) [4, 5]. As a result, the Goldschmidt tolerance factor t [6] is tuned from 1.07
in FAPbI3 closer to 1 in FA0.9Cs0.1PbI2.8Br0.2, where it is 0.98. The band gap of FA0.9Cs0.1PbI2.8Br0.2 at
room temperature is 1.52 eV, slightly larger than the band gap of FAPbI3 of 1.42 eV [7, 2].
For crystal synthesis the inverse temperature crystallization technique is used [2, 3]. For the growth, a
solution of CsI, FAI (FA being formamidinium), PbI2, and PbBr2, with GBL γ-butyrolactone as solvent
is mixed. This solution is then filtered and slowly heated to 130◦C temperature, whereby the single crys-
tals are formed in the black phase of FA0.9Cs0.1PbI2.8Br0.2, following the reaction

PbI2 + PbBr2 + FAI + CsI
[GBL]→ FA0.9Cs0.1PbI2.8Br0.2 + R.

Afterwards the crystals are separated by filtering and drying. A typical crystal used for this study is
shown in Figure S1b. It has a size of about 2 mm. The crystallographic analysis suggests that one of
the principal axis a, b, c is normal to the front facet, thus pointing along the optical axis. In cubic ap-
proximation a=b=c. The pseudo-cubic lattice constant for hybrid organic perovskite (HOP) is around
6.3 A [8], but not determined for this specific sample.

S2 Theory of electron and hole spin dynamics in perovskites

S2.1 Basics of the band structure

Hybrid organic-inorganic lead halide perovskites, e.g. MAPbI3 and FAPbI3, at high temperatures have
cubic symmetry with the Pm3̄m (221) space group and the Oh point symmetry group [9, 10]. While at
low temperatures the crystals undergo phase transitions to the tetragonal or orthorhombic phases, we
disregard such modifications of the crystal structure for the purposes of our study. The cubic approxi-
mation for the studied FA0.9Cs0.1PbI2.8Br0.2 sample, is confirmed experimentally by the almost isotropic
Zeeman splitting of the electrons and holes.
In the Pm3̄m space group the Brillouin zone is cubic, and the direct band gap is formed at the R point,
i.e., at the corner of the cube along the [111] direction. We recall that the orbital Bloch function of the



Figure S1: a, Simplified crystal structure of FAPbI3 [1]. Black lead (Pb) atoms and red I atoms form a cubic crystal. In-
side the cell is the FA molecule, with white hydrogen (H), blue nitrogen (N) and orange carbon (C) atoms. b, Microscopy
image of FA0.9Cs0.1PbI2.8Br0.2 single crystal.

valence band top is invariant (R+
1 representation [11]) and the conduction band bottom is formed by three

orbital functions transforming according to the R−4 representation (as vector components). With account
for the spin and spin-orbit coupling (R+

6 is the spinor representation for spin 1/2 states) one obtains for
the valence band: R+

1 ×R+
6 = R+

6 , and for the conduction band: R−4 ×R+
6 = R−6 +R−8 . The valence band is

two-fold spin degenerate. The conduction band is, in general, complex, but the bottom of the conduction
band is also two-fold spin degenerate and has R−6 symmetry.
Atomistic modeling (see, e.g., [10, 12]) demonstrates that the valence band is composed of the s-orbitals
of the metal (Pb in our case), |S0〉, with an admixture of the halogen (I and Br) p-orbitals (a combina-
tion ∝ |X1〉+ |Y2〉+ |Z3〉 with appropriate phase choice):

R+
1 : |v.b.〉 = Cv.b.

s |S0〉+
Cv.b.

p√
3
{|X1〉+ |Y2〉+ |Z3〉} , (S1a)

with the admixture coefficients |Cv.b.
s |2 + |Cv.b.

p |2 = 1. Here the subscript 0 refers to the Pb atom and
the subscripts 1, 2, 3 enumerate the surrounding halogens [10]. For the conduction band the main contri-
bution comes from the p-orbitals of the metal, |X0〉, |Y0〉, |Z0〉 with an admixture of the s-orbitals of the
halogen |S1〉 (|Cc.b.

p |2 + |Cc.b.
s |2 = 1):

R−4 :


|c.b., x〉 = Cc.b.

p |X0〉+ Cc.b.
s |S1〉,

|c.b., y〉 = Cc.b.
p |Y0〉+ Cc.b.

s |S2〉,
|c.b., z〉 = Cc.b.

p |Z0〉+ Cc.b.
s |S3〉.

(S1b)

With account for the spin-orbit coupling the Bloch amplitudes at the R-point of the Brillouin zone take
the form

valence band, R+
6 :

{
uv,1/2(r) = |v.b.〉| ↑〉,
uv,−1/2(r) = |v.b.〉| ↓〉,

(S2a)

conduction band: R−6 :


uc,1/2(r) = − sin θ|c.b., z〉| ↑〉 − cos θ

|c.b., x〉+ i|c.b., y〉
√

2
| ↓〉,

uc,−1/2(r) = + sin θ|c.b., z〉| ↓〉 − cos θ
|c.b., x〉 − i|c.b., y〉

√
2

| ↑〉,
(S2b)

with ↑ and ↓ being the basic spinors, and tan 2θ = 2
√

2 in the cubic approximation. A sketch of the
band diagram is shown in Figure 1e of the main text.

S2.2 Electron and hole spin dynamics

Before discussing the interplay of the carrier and nuclear spin dynamics in perovskite crystals, let us briefly
analyze the mechanisms of the spin relaxation of electrons and holes unrelated to the hyperfine interac-



tion. It is well known that for free charge carriers the driving force of the spin dynamics is the spin-orbit
interaction [13, 14]. Despite the fact that bulk perovskite crystals are centrosymmetric there is strong
evidence for a symmetry reduction resulting in Rashba- and Dresselhaus-like contributions to the spin-
orbit splitting of the conduction and valence bands [15, 16, 17]. Thus, if the electrons and holes are free
to propagate in the crystal, one could expect a rather rapid spin relaxation and dephasing via the Dyakonov-
Perel’ mechanism (DP) with the rate [18]

1

τ
(DP )
s

∼ 〈Ω2
kτ〉, (S3)

where Ωk is the effective frequency of the carrier spin precession in the wavevector k dependent spin-
orbit field, introduced as H = ~Ωk · S with S being the charge carrier spin operator, τ is the scattering
time, and the angular brackets denote the averaging over the thermal distribution. The estimates show
that τs can range in picoseconds to nanoseconds scale for a realistic set of system parameters. Also, fluc-
tuations of the spin-orbit interaction caused, e.g., by random electric fields (as well as the Elliott-Yafet
mechanism) can result in the spin relaxation of free charge carriers [19, 20].
In semiconductors under conditions of optical orientation, where spin-polarized carriers are photogen-
erated, the Bir-Aronov-Pikus mechanism can also be important [21]. This mechanism is related to the
electron-hole exchange interaction described by the Hamiltonian

H = πa3
BD̂δ(re − rh)δke+kh,k′e+k′h

. (S4)

Here D̂ is the operator acting on the electron and hole spins and describes the exchange interaction, aB
is the exciton Bohr radius, re (rh) is the electron (hole) position-vector, ke (kh) is the electron (hole)

wavevector and primes denote the wavevectors after the electron-hole collision. The operator D̂ = D̂short+
D̂long contains both the short-range and long-range contributions:

D̂short = ∆(Se · Sh), D̂long = ~ωLT

[
1−

(
Ĵ · K

K

)2
]
. (S5)

Here ∆ is the short-range interaction parameter, ~ωLT is the longitudinal-transverse splitting of the bulk
exciton, K = ke + kh is the exciton translational wavevector, and Ĵ is the matrix of angular momentum
J describing the states of the bright exciton triplet. For free carriers the Bir-Aronov-Pikus mechanism
is efficient if there is residual doping or one type of carriers is efficiently depolarized by other means: In
both cases the majority of collisions takes place between polarized electrons and unpolarized holes (or
vice versa) and the spin relaxation rate can be roughly estimated as

1

τ
(BAP )
s

∼ 〈D̂
2〉

E2
B

τ−1
eh , (S6)

with 〈D̂2〉 being the appropriately averaged spin-flip matrix element of the operator D̂ in Eq. (S5), τeh is
the effective electron-hole scattering time and EB = ~2/(2meaB)2 is the Bohr energy.
Importantly, the exchange interaction results also in the depolarization of bound electron-hole pairs [22].
In this case the spin dephasing rate is associated with the characteristic value of the exciton fine struc-
ture splitting δ/~ resulting from Eq. (S4) [23].
For localized carriers an important contribution to the spin dephasing is provided by the hyperfine in-
teraction with the nuclear spins (discussed below) [24] and also, in the presence of a magnetic field, by
the carrier g-factor fluctuations. The latter effect contributes to the carrier spin dephasing rate in the
ensemble with the rate

1

T ∗2
∼ ∆gµB|B|

~
, (S7)

providing the characteristic T ∗2 ∝ 1/B dependence observed in experiment (Figure 2e of the main text) [25],
∆g in Eq. (S7) is the g-factor spread and µB is the Bohr magneton.



Table S1: Major abundant non-zero nuclear spin isotopes in FA0.9Cs0.1PbI2.8Br0.2. The table columns give: isotope num-
ber, natural abundance α, nuclear spin I, relative dipole moment of the isotope µ relative to the nuclear magneton µN,
gyromagnetic ratio γ.

isotope α I µ/µN γ [MHz T−1]
207Pb 22.1% 1/2 0.58 8.882
127I 100% 5/2 2.81 8.578
79Br 50.7% 3/2 2.1 10.704
81Br 49.3% 3/2 2.27 11.538
133Cs 100% 7/2 2.58 5.623
1H 100% 1/2 2.8 42.577
14N 100% 1 0.4 3.077
13C 1% 1/2 0.7 10.708

S2.3 Hyperfine interaction

We turn now to the hyperfine interaction of the carrier spins with the host lattice nuclei. This interac-
tion is the driving force of the spin dynamics of localized carriers. The hyperfine interaction both for the
electron, Se, and hole, Sh, spins with the spin of a single nucleus, I, in bulk perovskite crystals can be
written in the form [25, 24]

Hhf,e(h) = Ae(h)v0|ϕe(h)(R)|2(I · Se(h)). (S8)

Here R is the position of the nucleus, ϕe(R) (ϕh(R)) is the electron (hole) envelope function, v0 is the
unit cell volume, and Ae (Ah) are the corresponding hyperfine constants. The scalar-product form of the
hyperfine interaction in Eq. (S8) follows from the symmetry of the system: The valence band and con-
duction band states transform according to the irreducible representations R+

6 and R−6 of the Oh point
symmetry group, resulting in the direct product R±6 × R±6 = Γ+

1 + Γ+
4 . Thus, the interaction with the

effective magnetic field produced by the nucleus ∝ I is isotropic. It can be expected that the symmetry
reduction will produce a small anisotropy of the hyperfine interaction that is neglected in what follows.
Preliminary model considerations and estimates of the hyperfine interaction in perovskite crystals were
performed in Ref. [25]. The situation with the hyperfine coupling in the valence band is straightforward:
The valence band Bloch wavefunctions have a considerable contribution of the s-type lead orbitals, which
dominate the hyperfine coupling with the 207Pb isotope (abundance α = 22.1%) with the hyperfine cou-
pling constant Ah(207Pb) ≈ 100|Cv.b.

s |2 µeV [25], where the coefficient Cv.b.
s is introduced in Eq. (S1a).

The coefficient Cv.b.
s is significant (and can be in the range ∼ 1/3 . . . 1, depending on the microscopic

model of the band structure which makes it possible to neglect the contribution of the p-orbitals of the
halogens to the valence band hyperfine interaction, thus the hyperfine coupling constant in the valence
band is roughly several 10’s to 100 µeV depending on Cv.b.

s . The situation is much less obvious for the
conduction band electrons. According to Refs. [10, 26], the conduction band is mainly formed by the p-
orbitals of lead with an admixture of the s-orbitals of halogen. The estimates according to Refs. [27, 28]
show that the hyperfine coupling constant with 207Pb for the conduction electrons Ae(

207Pb) ≈ 6|Cc.b.
p |2 µeV.

For the halogen the calculations show that Ae(
127I) ≈ 85|Cc.b.

s |2 µeV and Ae(
79Br) ≈ Ae(

81Br) ≈ 90|Cc.b.
s |2 µeV,

where Cc.b.
s is the admixture coefficient of the s-shell orbitals of halogen to the mainly p-shell conduction

band function, see Eq. (S1b). For a not too large admixture |Cc.b.
s |2 ∼ 5% . . . 10%, we obtain conduction

band hyperfine coupling constants on the order of several µeV. Note that both for the valence and con-
duction band the hyperfine coupling constants are positive because all isotopes have positive magnetic
moments. We correct here the inconsistency in the discussion of the conduction band hyperfine coupling
in Ref. [25] (where the contribution due to the p-orbitals of halogen has been evaluated). Note that the
order of magnitude of the hyperfine interaction in the conduction band of several µeV is the same for
the Pb, I and Br isotopes. The parameters of the abundant non-zero nuclear spin isotopes are given in
Table. S1.



S2.4 Dynamic nuclear polarization

The scalar-product form of the hyperfine coupling Hamiltonian (S8) makes it possible to apply the stan-
dard theory of dynamic nuclear polarization (DNP) [29, 13, 24, 25]. In what follows we assume that the
carriers are localized, otherwise the dynamic nuclear polarization is quite inefficient. The flip-flop pro-
cesses result in the transfer of angular momentum from the carriers to the nuclei and the build-up of dy-
namic nuclear polarization, see the scheme in Figure 3a of the main text.

〈I〉 = `
4I(I + 1)

3

B(B · 〈S〉)
B2

. (S9)

Here 〈S〉 = 〈Se(h)〉 is the steady-state polarization of the electron (〈Se〉) or hole (〈Sh〉) induced by optical
orientation�, 0 < ` < 1 is the leakage factor describing the relative efficiency of the hyperfine coupling-
unrelated nuclear spin flip processes. For the general discussion we omit further in this section the sub-
scripts e or h denoting the type of the carrier. The nuclear polarization builds up along the direction of
the projection of the photocreated spin onto the magnetic field. The dynamic nuclear polarization 〈I〉
produces the Overhauser field acting on the carrier spins

BN =
αA〈I〉
gµB

, (S10)

where α is the abundance of the corresponding isotope. If several isotopes are relevant, the total Over-
hauser field results from summation of the fields of the individual isotopes. The presence of the Over-
hauser field gives rise to a change of the carrier spin precession frequency: In the presence of DNP the
Larmor frequency reads

ωL =
gµB

~
(B + BN) =

gµBB

~
+
αA

~
〈I〉. (S11)

Depending on the direction of the DNP provided by 〈I〉 and the g-factor sign, the Larmor precession fre-
quency can increase or decrease in the presence of DNP, see Figure 3 in the main text.
The efficiency of the DNP is determined by the leakage factor [24]

` =
T1N

T1

=
Td

T1 + Td
, (S12)

in Eq. (S9), which describes the ratio of the total longitudinal nuclear spin relaxation time, T−1
1N = T−1

1 +
T−1
d , to the hyperfine-coupling-induced spin-flip time T1, the time Td describes the nuclear spin-flips due

to the processes unrelated to the hyperfine coupling. The hyperfine coupling induced nuclear spin-flip
rate can be estimated within the correlation time approximation for the carrier spin dynamics as

1

T1

∼
(

A

~Nc

)2
Fτc

1 + (ωLτc)2
. (S13)

Here Nc is the number of unit cells within the carrier orbit*, F is the probability of finding the carrier
at the localization site, i.e., the average occupancy of the site, τc is the carrier correlation time and ωL is
given by Eq. (S11). In this equation we, as above, neglected the nuclear Zeeman splitting as it is small
compared to that of the carriers. The denominator 1 + (ωLτc)

2 describes the suppression of the nuclear
spin flip processes because of the mismatch of the electron or hole and nuclear Zeeman energies. Natu-
rally, a larger hyperfine coupling, generally, results in a larger nuclear spin flip rate T−1

1 , higher ` and,
accordingly, higher DNP.
Importantly, depending on the directions of B and 〈I〉 and the signs of A and g, the DNP can result
either in an increase or a decrease in ωL and, accordingly, in a decrease or an increase of T−1

1 . Indeed,

�The thermal polarization of carriers and nuclei can be neglected in our case. We also disregard the Knight field effect on the nuclei and
assume that the external magnetic field exceeds by far the local fields acting on the nuclear spins via the dipole-dipole interactions.

*For simplicity we employ the box model assuming homogeneous hyperfine interaction within the charge carrier localization volume, see also
Eq. (S15) below.



for parallel αAI and gµBB the Larmor precession frequency increases yielding an increase in the mis-
match of the Zeeman splittings and suppressing T−1

1 and DNP. If αAI and gµBB are antiparallel, the
DNP results in a reduction of the charge carrier Zeeman splitting (decrease of ωL) and an increase of
T−1

1 . Note, that in conventional semiconductor nanostructures this may give rise to a bistable behavior
of the DNP [24].
Variation of the temperature or pump power can result in a variation of τc and F , yielding a different
dependence of the Overhauser field on these two parameters. For instance, in the limit of short correla-
tion times ωLτc � 1 the nuclear spin-flip rate T−1

1 ∝ Fτc and a temperature increase can result in the re-
duction of τc and F , e.g., due to the thermal delocalization of the charge carriers. Hence, a smaller T−1

1

and a smaller DNP are expected with increasing temperature and pump power. By contrast, for long
correlation times, ωLτc � 1, T−1

1 ∝ F/τc and the DNP temperature dependence can be non-trivial.
Also, with increasing pump power, not only 〈S〉 in Eq. (S9) increases, but also τc can be reduced yield-
ing a saturation in DNP.
Let us now address in more detail the differences of the DNP induced by electrons and holes. Interest-
ingly, the experiment demonstrates an Overhauser field acting on the electron spin, Figure 3e of the main
text, and accordingly the build-up of DNP, despite the smaller hyperfine interaction constants in the
conduction band. On the one hand, it could be assumed that the lead spins polarized via the hyperfine
interaction with holes produce the Overhauser field acting on the electron spins. However, it is com-
monly accepted that the electrons and holes are spatially separated in the studied perovskite samples,
as also confirmed by the TRKR experiments [25]. Also, this scenario can be ruled out by comparing the
nuclei-induced shifts of the electron and hole spin precession frequencies as functions of the pump power,
compare Figures 3f and 3e in the main text with respect of the temperature effect. While for the Over-
hauser field acting on the hole spins a saturation and even a non-monotonous behavior are observed de-
pending on the temperature, the Overhauser field acting on the electron is a linear function of the pump
power and is almost unaffected by the temperature. Thus, the very same nuclei cannot produce the fields
acting on the electron and hole spins in the studies sample.
Thus, the electron polarizes the nuclear spins of the lead (unaffected by the hyperfine interaction with
the holes) or of the halogen. Their similar values of the hyperfine interaction make it difficult to distin-
guish the isotopes from the viewpoint of the theory. However, the ODNMR experiments show that there
is almost no effect of the RF field on the Overhauser field experienced by the electrons at the 207Pb reso-
nance frequency. Thus, it is likely that the DNP induced and experienced by the electrons comes from
the halogen isotopes, Br and I in our case. Note that the large spin of iodine (I = 5/2) makes these
nuclei particularly sensitive to quadrupole splittings which can, in our samples, be caused by inhomo-
geneous strain and electric field gradients, making it difficult to observe the ODNMR of these nuclei.
Note that for photoexcitation of electron-hole pairs in perovskites by circularly polarized light, the spins
of electron and hole are parallel to each other, thus the direction of the dynamical nuclear polarization
is the same regardless of the type of carrier. At the same time, the direction of the Overhauser field is
controlled also by the sign of the carrier g-factor, Eq. (S11), which gives rise to a difference in the Over-
hauser field signs as schematically shown in Figure 3a and confirmed experimentally in Figures 3e,f of
the main text.
So far, the DNP has been considered under the assumption that the photocreated carriers are separated
after optical excitations and contribute to the DNP independently. In fact, this is not the only possible
scenario. For instance, the spin coherence of the resident carriers and subsequent DNP can arise, like in
conventional semiconductor quantum dot structures [30, 24], due to the resonant excitation of trions or
D0X complexes with two identical charge carriers forming a spin singlet and an unpaired opposite charge
carrier. Here, in principle, the DNP can be generated via the flip-flop of the unpaired carrier spin and
the nuclear spin resulting in a non-trivial situation where the Overhauser field acting on the resident
electron is created by the photocreated opposite charge carrier. For instance, in n-doped perovskites (or
regions of the sample with resident electrons) the DNP acting on the electrons would be caused by the
photo-holes then. However, this situation does not seem to be the case in the experiment: Indeed, on the
basis of the theoretical analysis the hole mainly interacts with the Pb isotopes, and the ODNMR of the



lead is indeed observed in the Overhauser field acting on the holes rather than on the electrons.

S2.5 Nuclear spin fluctuations

We estimate the dispersion of the carrier Larmor frequency due to the hyperfine coupling with the host
lattice nuclei. Following Ref. [24] we recast 〈ω2

L〉 = (gµB/~)2〈B2
N〉 as

〈ω2
L〉 =

1

Nc

∑
j

Ij(Ij + 1)

~2
αj (Aj)

2 , (S14)

where Nc is the number of the unit cells within the charge carrier localization volume,

Nc = v0

∫
|ϕ(r)|4dr, (S15)

with v0 being the unit cell volume, and the summation is carried out over the relevant nuclei in the unit
cell enumerated by j. The nuclear fluctuations provide the spin dephasing of localized electrons and holes
at zero or small magnetic fields. The characteristic spin dephasing time

T ∗2,0 ∼
1√
〈ω2

L〉
. (S16)

We make a rough estimate using the hyperfine coupling constants discussed in Sec. S2.3. For the hole
spin dephasing related to the hyperfine interaction with 207Pb (I = 1/2, α = 22.1%) we take |Cv.b.

s |2 =

1/3 and get Ah ≈ 33 µeV. For the Nc,h = 104, we have
√
〈ω2

L,h〉 ≈ 0.2 ns−1 and T ∗2,0 ≈ 5 ns, in reasonable

agreement with the experiment.� For the electron spin dephasing we assume that 127I is relevant, take
|Cc.b.

s |2 = 0.05 and arrive at Ae = 4.25 µeV. Taking into account that there are three iodine atoms within
the unit cell we obtain the electron T ∗2,0 ≈ 8 ns for Nc,e = 7 × 104, i.e., for a somewhat larger electron
localization volume as compared with that of the hole. The corresponding localization lengths of the car-
riers (evaluated taking into account the lattice constant of about 0.6 nm) are about 10 nm, see also [25].
We stress that these estimates can be considered as a general guide only, further microscopic calculations
are needed to firmly establish the hyperfine coupling parameters in perovskites.
The estimate of the Nc,h obtained above and the experimental value of the Knight field BK ≈ 2 mT ob-
tained from ODNMR allows us to estimate the spin polarization degree of holes achieved in our experi-
ment:

Ph = 2〈Sh〉 = 2
BK

ghµN

Nc,h

Ah

≈ 6.6%, (S17)

for the previously quoted values of Ah ≈ 33 µeV and Nc,h = 104.

S3 Experimental results

S3.1 Time-resolved Kerr rotation signals with applied RF

Time-resolved Kerr rotation signals with (red line) and without (black) applied RF of 6.66 MHz are shown
in Figure S2a. They are measured in a magnetic field of 750 mT, ϕ = 60◦. The used RF corresponds
to the NMR resonance detected via the maximal changes in the KR amplitude measured at 320 ps time
delay, see Figure S2b. The applied RF reduces the DNP, i.e., reduces the Overhauser field by ∆BN =
BN(no RF) − BN(with RF). For instance, as one can see in Figure S2a, with applied RF the Larmor pre-
cession period of the holes (the signal component with larger amplitude and smaller Larmor frequency)
becomes shorter. This is most clearly seen at time delays exceeding 600 ps. Fits of the KR signals al-
low us to decompose them into the hole and electron components, which are shown individually in Fig-
ures S2c,d. For the holes (Figure S2c) ∆BN,h = 14.3 mT, which corresponds to 40% of the Overhauser

�Note that in Ref. [25] we used |Cv.b.s |2 = 1 and obtained a shorter T ∗2,0 ≈ 2 ns for a similar localization volume.



field BN,h = −37.3 mT acting on the holes for these experimental conditions. For the electrons the RF
effect is much smaller, but can be distinguished by an accurate fit as ∆BN,e = 0.18 mT. It corresponds
to a 5% reduction of BN,e = 3.8 mT.
As the RF coil covers an area of ≈1 mm2 it depolarizes all lead spins independently of the origin of their
polarization, via electrons or via holes. As the effect of RF on the hole and electron spin dynamics dif-
fers strongly, and in particular the electron-induced and -experienced DNP is almost unaffected by the
RF excitation, it is likely that the Overhauser field for the electrons originates from different isotopes
than for the holes, like the halide, as corroborated by our theoretical analysis, sec. S2.3.
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Figure S2: a, Example of time-resolved KR signals with (red) and without (black) resonant RF radiation at 6.66 MHz for
B = 750 mT and P = 25 mW of σ+ polarized pump. b, ODNMR resonance at given field, 200 kHz FWHM. c,d, Fit com-
ponents after decomposition for hole (c) and electron (d) at long time delays. For the hole (dashed red and black lines)
the difference is evident, while for the electron (solid black and dashed yellow line) no change is visible.

S3.2 Temperature dependence

Experimental data of the temperature dependence of the KR signal are given in Figure S3. The data are
shifted vertically for clarity and not normalized. To keep the influence of laser-induced heating of charge
carriers and lattice low, the pump power is set to 0.5 mW. Starting from T = 6 K a rapid decrease in
both signal amplitude and spin dephasing time (T ∗2 ) is seen, resulting in a vanishing KR signal for tem-
peratures exceeding 33 K. The decrease of T ∗2 is presented in Figure 2 of the main text.
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Figure S3: a, TRKR dynamics for various temperatures at B⊥ = 100 mT. Data are shifted vertically for clarity and not
normalized. Pump power is kept low at 0.5 mW. b, KR amplitude at zero time delay versus temperature for electron (red)
and hole (blue). The KR amplitude is interpolated via a fit and not phase corrected.

S3.3 ODNMR anisotropy

In general, the hyperfine interaction is anisotropic [31]. For instance, in Refs. [32, 33] the chemical shift
or shielding of nuclei is demonstrated to be anisotropic. With the use of a 3D vector magnet, we are able
to test the anisotropy by solely rotating the magnetic field and keeping all other experimental conditions
constant. The magnetic field is rotated in the horizontal plane from Voigt (ϕ = 90◦, B ⊥ k) to Faraday
(ϕ = 0◦, B ‖ k) field direction. A fixed time delay of 613 ps is set which is nominally half the period of
the Larmor precession of the hole at ϕ = 60◦, but is not rechecked for different angles in order to opti-
mize the signal amplitude.
In Figure S4a ODNMR signals are shown for several angles. It is seen that for ϕ = 60◦ ± 20◦ pronounced
ODNMR signals are obtained. The amplitude shows a maximum for ϕ = 60◦ and decreases with tilting
away from this orientation in both direction. This is shown in Figure S4b, where the normalized ampli-
tude on its value at ϕ = 60◦ is plotted. For ODNMR, a compromise between magnetic field tilting to-
wards Faraday (providing larger DNP) and Voigt (better read-out via Kerr rotation) needs to be found [34].
The ODNMR resonance frequency is not changing significantly with angle Figure S4c, at least within
the FWHM of about 170 kHz. Note that the line width here is broadened in comparison to the ODNMR
shown in the main text due to a higher applied RF power by using an additional self-built audio ampli-
fier not rated in the power output.
For comparison, from data of NMR spectroscopy it is useful to express the shift in units of parts per
million, i.e. as relative shift to central position. The shift amounts up to 5000 ppm. This would be a
large shift for high field NMR experiments (typical range 100 − 1000 ppm) but is rather normal for low
field ODNMR measurements where the denominator is small, i.e. the within sensitivity of our experi-
ments. For illustration in Figure S4c, we specified an error given by the magnetic field accuracy of 0.5 mT
(0.2%) immanent as reproducibility error for superconducting magnets, like remanence etc. Within the
TRKR accuracy the ODNMR signal is nearly isotropic.
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S3.4 Carrier g-factor anisotropy

The g-factor anisotropy for electrons and holes is measured with the vector magnet, maintaining the op-
tical alignment and rotating the magnetic field, Figure S5. The magnetic field orientation with respect
to the incidence light vector k is sketched in Figure S5d, ϕ = θ = 0◦ which corresponds to B‖,z. Two
planes, namely Voigt-Voigt (B⊥,x to B⊥,y) and Faraday-Voigt (B‖ to B⊥,x) are measured. The g-factors
for all other solid angles are assumed to be determinable by interpolation between these planes. The g-
factor anisotropy is rather small in FA0.9Cs0.1PbI2.8Br0.2 crystals, not exceeding 3% for electrons and 4%
for holes (details will be published elsewhere).



0 1 2 3
Time [ns]

T
R

K
R

0 1 2 3
Time [ns]

T
R

K
R

0

1

2

3

4

g-
fa

ct
or

B=0.1 T, θ=0°, φ=90°

θ=0°, φ=120°

θ=0°, φ=150°

θ=0°, φ=180°

hole

electron

B=0.1 T, θ=0°, φ=90°

θ=30°, φ=90°

θ=60°, φ=90°

θ=90°, φ=90°

FV plane (φ)

VV plane (θ)

a

b

a

b

c

d

0 90 180 270 360
−1.5

−1

−0.5

0

Angle φ/θ [°]

Figure S5: g-factor anisotropy. a, TRKR signals within the Voigt-Voigt plane (ϕ = 90◦, θ scanned). b, TRKR signals
within the Faraday-Voigt plane (ϕ scanned, θ = 0◦). T = 1.6 K, P = 10 mW. c, g-factor dependence on solid angle ϕ
(blue), θ (red). d, Sketch of magnetic field orientation with respect to the incident light vector k. Red (blue) plane corre-
sponds to Voigt-Voigt (Voigt-Faraday) plane. ϕ = θ = 0◦ corresponding to B‖,z.

S3.5 Time-resolved photoluminescence

We have measured recombination dynamics in the FA0.9Cs0.1PbI2.8Br0.2 crystal at a maximum of the
photoluminescence (PL) line at a temperature of T = 1.7 K. PL was excited by a pulsed laser with a
photon energy of 2.33 eV (wavelength of 532 nm) having a repetition frequency of 10 kHz and an av-
erage excitation power of 8 µW. The signal has been detected by an avalanche photodiode and a time-
of-flight card with a time resolution of 30 ns. Recombination dynamics in a wide temporal range up to
100 µs is shown in Figure S6. One can see that the recombination dynamics is strongly non-exponential.
It has recombination times ranging from 0.2 up to 44 microseconds, which by far exceed the typical life-
times of excitons and is characteristic for the recombination of spatially separated electrons and holes
having considerable dispersion in their separation lengths. This is in good agreement with our conclu-
sions made on the spin-dependent experiments, that at low temperatures in this crystal we have a con-
siderable concentration of spatially separated long-living electrons and holes (we call them resident elec-
trons and holes in the main text).
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Table S2: Notations used in the paper.

Notation Definition

B - external magnetic field
BK,e - Knight field of electron
BK,h - Knight field of hole
BN,e - Overhauser field on electron
BN,h - Overhauser field on hole
ge - g factor of conduction band electron
gh - g factor of valence band hole

ωL,e - Larmor precession frequency of electrons
ωL,h - Larmor precession frequency of holes
ωL - Larmor precession frequency
T - lattice temperature

T1,N - longitudinal spin relaxation time of nuclei
T1,e - longitudinal spin relaxation time of electron
T1,h - longitudinal spin relaxation time of hole
T ∗2,e - spin dephasing time of electron ensemble
T ∗2,h - spin dephasing time of hole ensemble
Td - nuclear spin-flip time unrelated to hyperfine coupling

B⊥ - Voigt magnetic field (also B⊥,x and B⊥,y)
B‖ - Faraday magnetic field (also B‖,z)

|c.b.〉 , |v.b.〉 - conduction band, valance band wave function
|Sn〉 , (|Xn〉 , |Yn〉 , |Zn〉) - s (p)-type wavefunction, subscript n denoting respective atom Pb, I

Cc.b.s , Cc.b.p , Cv.b.s , Cv.b.p - orbital admixture coefficients
1

τ
(DP )
s

- spin relaxation rate via Dyakonov-Perel’ mechanism

Ωk - effective frequency of the carrier spin precession in spin-orbit field
τ - scattering time

aB - exciton Bohr radius

D̂ - charge exchange interaction operator
Se(h) - electron (hole) spin operator
re(h) - electron (hole) position-vector
ke(h) - electron (hole) wavevector-vector, (primes denote scattering event)
~ωLT - longitudinal-transverse splitting of bulk exciton

Ĵ - matrix of angular momentum
K - exciton translational wavevector

1

τ
(BAP )
s

- Bir-Aronov-Pikus relaxation rate

τeh - electron-hole scattering time
EB = ~2/2mea

2
B - the Bohr energy
g - g-factor

∆g - spread of g-factor
Ae(h) - electron (hole) hyperfine constant
v0 - unit cell volume

φe(h)(R) - electron (hole) envelope function
I - nuclear spin
α specific isotope abundance
l - leakage factor

Nc - unit cells within the charge carrier localization volume
F - probability to find carrier at localization site
τc - carrier correlation time
Ph - polarization degree of holes
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