1	
2	
3	
4	Title: Microbiome-derived metabolite effects on intestinal barrier integrity and
5	immune cell response to infection
6	
7	
8	Authors: Lauren Adams ¹ , Xiang Li ¹ , Richard Burchmore ¹ , Richard Goodwin ^{1,2} , Daniel
9	M. Wall ¹
10	
11	¹ School of Infection and Immunology, College of Medical, Veterinary and Life
12	Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA,
13	United Kingdom.
14	² Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences,
15	Biopharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, U.K.
16	
17	Corresponding author email address: <u>Donal.Wall@glasgow.ac.uk;</u>
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	Supplementary Materials
28	
29	
30	
31	
32	
33	
34	

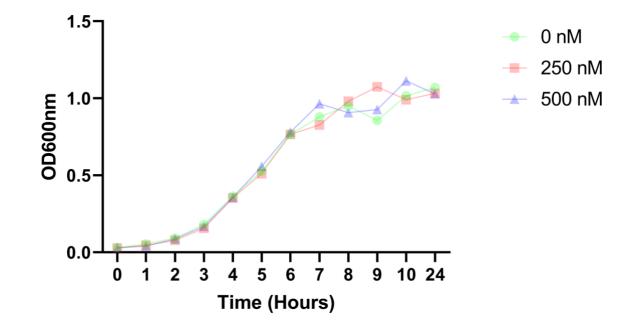
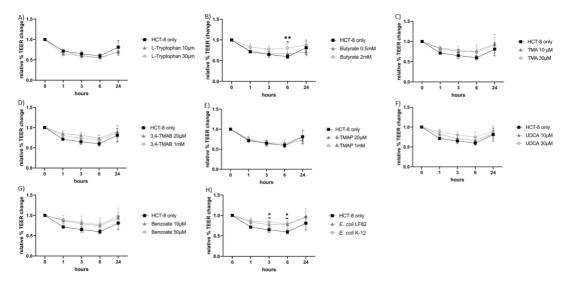



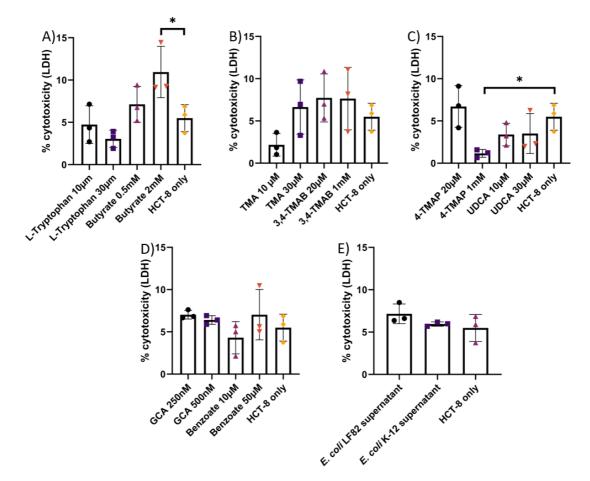
Figure S1. Growth curve of E. coli LF82 in GCA supplemented media. Bacteria were cultured in LB and supplemented with 0, 250 or 500 nM GCA and grown at 37°C in a shaken incubator. Results shown as mean of three biological replicates. Two-way ANOVA did not show any significant changes in growth between control condition (0 nM) and the two GCA supplemented conditions.

50 Figure S2. TEER as a model for HCT-8 barrier function in response to

51 **metabolites.** HCT-8 cell monolayers were treated with indicated metabolites or

52 control supernatants from *E. coli* LF82 and *E. coli* K-12. TEER was measured over a

53 24 h period and results are shown as a relative percentage change compared to


54 control (0 h TEER reading). Data shown is the mean of three biological replicates \pm

55 standard deviation (SD) (error bars). Two-way ANOVA was performed to test

significance between untreated and monolayers treated with different molecule

57 concentrations at each time point. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 was

- 58 considered statistically significant.
- 59

70

Figure S3. LDH release from HCT-8 cells as an indicator of metabolite 61 cytotoxicity. (A-E) HCT-8 cells were exposed to metabolites and the supernatants 62 from E. coli LF82 and K-12 for 24 h. HCT-8 cells only and cells treated with 2% triton-63 x were used as low and high LDH release controls, respectively. The percentage of 64 65 cytotoxicity was calculated as %=[(measured absorbance of sample-low control)/(high control-low control)] x100. Data are shown as the mean of three biological replicates 66 ± standard deviation (SD) (error bars). One-way ANOVA was performed across all 67 metabolites and *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus the control 68 69 condition (cells without molecules) was considered statistically significant.

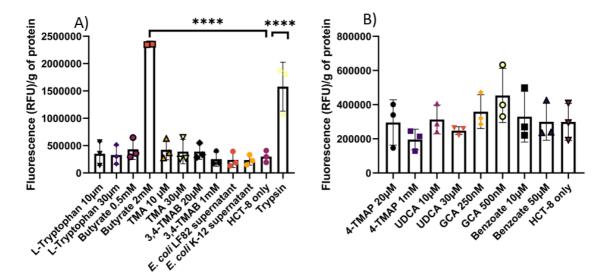


Figure S4. Caspase-3/7 activation in metabolite-treated HCT-8 cells. HCT-8 cells were treated with metabolites and supernatants from *E. coli* LF82 and K-12. Relative fluorescence units (RFU) were normalised to per gram of protein in the cell lysate. Data are shown as the mean of three biological replicates \pm standard deviation (SD) (error bars). One-way ANOVA was performed across all metabolites and **p*<0.05, ***p*<0.01, ****p*<0.001, *****p*<0.0001 versus the control condition (cells without molecules) was considered statistically significant.

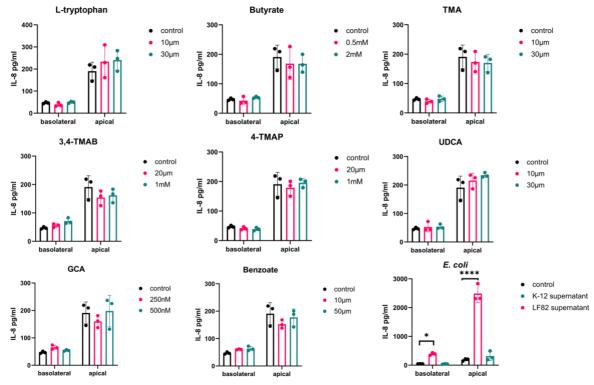


Figure S5. IL-8 release into apical and basolateral epithelial compartments. 96 Apical treatment of HCT-8 monolayers was carried out with named metabolites or 97 bacterial supernatants as controls. After 24 h supernatants were collected from the 98 apical and basolateral epithelial compartments and IL-8 quantified. The data is 99 shown as the mean of 3 biological replicates ± standard deviation (SD) (error bars). 100 101 Two-way ANOVA was performed for each molecule versus the control condition (cells without treatment). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 was 102 considered statistically significant. 103 104 105 106