© 2021 Wiley-VCH GmbH

ADVANCED MATERIALS

Supporting Information

for Adv. Mater., DOI: 10.1002/adma.202006341

Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures

Frederik Kotz,* Alexander S. Quick, Patrick Risch, Tanja Martin, Tobias Hoose, Michael Thiel, Dorothea Helmer, and Bastian E. Rapp

Supporting Information

Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures

Frederik Kotz*, Alexander S. Quick, Patrick Risch, Tanja Martin, Tobias Hoose, Michael Thiel, Dorothea Helmer, Bastian E. Rapp

Figure S1: Roughness characterization of sintered Glassomer component in Figure S2 using white light interferometry showing a surface roughness of $R_a \sim 1$ nm.

Figure S2: Minimum pore size in sintered Glassomer. The minimum achievable pore size was $14 \,\mu\text{m}$ (scale bar: 65 μm)

Figure S3: Pseudo-color image of a sintered microlenses. a) Sintering on top of a commercial fused silica glass slide results in a partially anisotropic shrinkage. The color mapping depicts the deviation of the produced shape from an ideal hemisphere. The S_a value was measured to be 700 nm. b) Sintering of the upright microlens on a compensationg pedestal from Fig. 2e results in an isotropic shrinkage. The S_a value was measured to be 250 nm. These deviations occurred already during the printing process.

WILEY-VCH

Figure S4: Simulation of focal length of the lens shown in Figure 2e based on beam propagation. Input: a Gaussian beam with a mode field diameter of 150 μ m, a wavelength of 520 nm, and the refractive index of fused silica glass. a) For the configuration convex-plano the focal length is about 790 μ m. b) For the configuration plano-convex the focal length is about 880 μ m. The plotted color coding describes the normalized electrical field. The blue contour line shows the 1/e electrical field value of the gaussian beam. The lens is depicted by the white contour line.

Figure S5: UV/Vis transmission spectra of sintered fused silica glass and a commercial fused silica substrate with a thickness of 1 mm.

Figure S6: Magnification of an imaging demonstration for an upright lens shown in Figure 2h.

WILEY-VCH

Thermal debinding and sintering of the Glassomer nanocomposites was done using the protocol shown in Table S1.

Program	Temperature/°C	Heating rate/°C/min	Holding Phase/min
Thermal Debinding	150	0.5	120
	320	0.5	240
	600	0.5	120
	25	10	-
Sintering	1300	3	120
	25	3	-

Table S1. Heat treatment for thermal debinding and sintering