

A range of 30–62% of functioning multiciliated airway cells is sufficient to maintain ciliary airway clearance

Niki T. Loges, June Kehlet Marthin , Johanna Raidt, Heike Olbrich, Inga M. Höben, Sandra Cindric, Diana Bracht, Julia König , Cynthia Rieck, Sebastian George, Tim Luis Kloth, Kai Wohlgemuth, Petra Pennekamp, Bernd Dworniczak, Mathias G. Holgersen , Jobst Römel , Christian Schmalstieg, Isabella Aprea, Jann Mortensen, Kim G. Nielsen and Heymut Omran

How many functional multiciliated airway cells are sufficient to maintain ciliary airway clearance?			
Studied individuals	Healthy male individuals (n=5) Healthy female individuals (n=26) Healthy female individuals (n=26) Healthy female individuals (n=26) Healthy female individuals (n=26)	Male PCD individuals (n=5) No X-chromosome inactivation Pathogenic variant	Female carriers (n=6) X X Random X-chromosome inactivation Pathogenic variant Pathogenic Progenitor cell
Clinical presentation	Healthy	Severe abnormal respiratory symptoms with bronchiectasis and abnormal lung function (reduced FEV ₁)	Normal or mild respiratory symptoms
Immunofluorescence analysis to identify ODA defects	DNAH5 GAS8 Merge Merge Normal DNAH5 localisation in all MCCs (normal ODA composition)	DNAH5 Abnormal DNAH5 localisation in all MCCs (abnormal ODA composition)	DNAH5 GAS8 Merge 30–62% of MMCs show normal DNAH5 localisation (other MMCs exhibit ODA defects due to random X-chromosome inactivation)
<i>In vitro</i> ciliary clearance assay (in ALI cultures)	Healthy individuals show normal ciliary clearance transport	Male PCD individuals with hemizygous pathogenic variants in DNAAF6 show no <i>in vitro</i> ciliary clearance transport	Female carriers show directed ciliary clearance transport and reduced particle velocity
In vivo measurement of ciliary clearence (radioaerosol studies)	Tracheobronchial velocity (bolus transport): 2.0–6.0 mm·min ^{−1} Lung retention (24 h): normal	Tracheobronchial velocity (bolus transport): 0 mm∙min ⁻¹ (severely abnormal) Lung retention (24 h): abnormal	Tracheobronchial velocity (bolus transport): 1.7–3.0 mm·min ^{−1} (slightly abnormal to normal) Lung retention (24 h): slightly abnormal to normal
Conclusion	Normal ciliary clearance	No ciliary clearance	Normal to slightly abnormal ciliary clearance \longrightarrow

GRAPHICAL ABSTRACT Overview of the study. PCD: primary ciliary dyskinesia; FEV₁: forced expiratory volume in 1 s; ODA: outer dynein arm; MCC: multiciliated cell.

A range of 30–62% of functioning multiciliated airway cells is sufficient to maintain ciliary airway clearance

Niki T. Loges¹, June Kehlet Marthin ^{0^{2,3}}, Johanna Raidt¹, Heike Olbrich¹, Inga M. Höben¹, Sandra Cindric¹, Diana Bracht¹, Julia König ¹, Cynthia Rieck¹, Sebastian George¹, Tim Luis Kloth¹, Kai Wohlgemuth¹, Petra Pennekamp¹, Bernd Dworniczak¹, Mathias G. Holgersen ¹, Jobst Römel ¹, Christian Schmalstieg¹, Isabella Aprea¹, Jann Mortensen^{2,5}, Kim G. Nielsen^{2,3} and Heymut Omran ¹

¹Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany. ²Danish PCD Centre, Danish Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. ³Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. ⁴Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. ⁵Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Corresponding author: Heymut Omran (Heymut.Omran@ukmuenster.de)

Shareable abstract (@ERSpublications)
Restoring cilia function in 30-62% of defective respiratory cells is sufficient to improve ciliary
clearance in PCD individuals https://bit.ly/45PQQg9Cite this article as: Loges NT, Marthin JK, Raidt J, et al. A range of 30-62% of functioning multiciliated
airway cells is sufficient to maintain ciliary airway clearance. Eur Respir J 2024; 64: 2301441
[DOI: 10.1183/13993003.01441-2023].This extracted version can be shared freely online.

Copyright ©The authors 2024.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/ 13993003.01573-2024

Received: 25 Aug 2023 Accepted: 16 June 2024

Abstract

Background Primary ciliary dyskinesia is a genetic disorder caused by aberrant motile cilia function that results in defective ciliary airway clearance and subsequently leads to recurrent airway infections and bronchiectasis. We aimed to determine: how many functional multiciliated airway cells are sufficient to maintain ciliary airway clearance?

Methods To answer this question we exploited the molecular defects of the X-linked recessive primary ciliary dyskinesia variant caused by pathogenic variants in *DNAAF6 (PIH1D3)*, characterised by immotile cilia in affected males. We carefully analysed the clinical phenotype and molecular defect (using immunofluorescence and transmission electron microscopy) and performed *in vitro* studies (particle tracking in air–liquid interface cultures) and *in vivo* studies (radiolabelled tracer studies) to assess ciliary clearance of respiratory cells from female individuals with heterozygous and male individuals with hemizygous pathogenic *DNAAF6* variants.

Results Primary ciliary dyskinesia male individuals with hemizygous pathogenic *DNAAF6* variants displayed exclusively immotile cilia, absence of ciliary clearance and severe primary ciliary dyskinesia symptoms. Owing to random or skewed X-chromosome inactivation in six female carriers with heterozygous pathogenic *DNAAF6* variants, 54.3±10% (range 38–70%) of multiciliated cells were defective. Nevertheless, *in vitro* and *in vivo* assessment of the ciliary airway clearance was normal or slightly abnormal. Consistently, heterozygous female individuals showed no or only mild respiratory symptoms.

Conclusions Our findings indicate that having 30–62% of multiciliated respiratory cells functioning can generate either normal or slightly reduced ciliary clearance. Because heterozygous female carriers displayed either no or subtle respiratory symptoms, complete correction of 30% of cells by precision medicine could improve ciliary airway clearance in individuals with primary ciliary dyskinesia, as well as clinical symptoms.