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Version 0: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
In this work, the authors have developed a robotic system using microfluidic liquid-core waveguide and AI-assisted
techniques to perform ultra-high-throughput chemical synthesis and screening of photocatalytic reactions, achieving up to
10,000 reactions per day and significantly reducing reaction times from hours to seconds. This is a nice work with that can
be insightful for the development of autonomous experimental workflow. 

I'd be happy to recommend this for publication in Nature Communications, once these few things are addressed: 

1. The methods section contains some information on how the descriptors were generated. However, there is no information
on model hyper-parameters used in Figures 3A2, Figures 4F&G, and how they were selected. These include the learning
rates, max-depths, regularization terms, etc. Please elaborate. 

2. t-SNE is generally not considered reasonable for feature selection and is rather used for visualization and understanding
the structure of high-dimensional data. How was 15 decided as the number of features? Please elaborate. Model
performance is quite high in the current setting by typically RFE methods are used for choosing the most promising
uncorrelated features. 

3. To allow reproducibility of the work, please provide the source code on github. 

Reviewer #2 

(Remarks to the Author) 
The manuscript by Jia-Min Lu, Hui-Feng Wang, Qi-Hang Guo et al. presents a roboticized platform for high-throughput
experimentation and screening in organic chemistry. 

In general, the manuscript presents a highly innovative, state-of-the-art system that addresses one of the main problems in
organic chemistry and catalysis research, namely the impossibility of covering the vast space of organic chemistry.
Additionally, such vast data-collection efforts are a requisite for the advancement of machine learning in chemistry. 

To this end, the authors use advanced microfluidics (liquid-core waveguide techniques) combined with photocatalysis to
shorten reaction times dramatically from hours to seconds. This is then coupled with UV-vis spectroscopy and integrated in
the iChemFoundry platform for screening and handling of conditions and reagents. Then, they push the system by moving to
non-steady state measurements, which would shorten the time spent per reaction even more. To assist them in processing
the non-steady state data, they use standard machine learning (ML) regressors. 

These latter efforts, unlike the rest of the manuscript, are not convincing for me. Thus, I'd have some major comments that I
would want to see addressed before publication: 

- The specific task at hand for the ML is never clearly stated. In page 12-13 it should be clearly said what are the inputs and
the outputs of the models, what exactly is the label that is then used to compute the RMSE, etc. It is claimed that the goal is
to "process the large numbers of the non-steady-state peak signals and predict the corresponding steady-state absorbance



data". But how are those peak signals fed to the model? 

- It is overall hard for me to believe that a model can be trained on steady state data to predict from non-steady state data
unless both the steady state and non steady state from the same conditions can be associated with the same label. Is this
the case? 

- Tests that predict steady state from steady state, such as the bottom of page 12, are not representative at all -- how would
those be? There is no data from the non-steady peak signal for those. So it has nothing to do, unless the goal is to predict
the absorbance directly from the conditions (how are the chemicals digitalized?) and then this has nothing to do with non-
steady state. 

- Additionally, the ML regression tasks are not properly cross validated, and therefore it is very hard to trust the reported
metrics. A thorough cross-validation study should be performed clearly, at least in the SI. 

- On that vein, note that tests with a "random" 10% of the data used for training are meaningless without either thorough 10-
fold cross-validation or several random splits (which then lead to a st. deviation in the metrics). 

- The same questions apply to the section "AI-assisted cross species prediction". Not clear, not cross validated. 

- Figure 3 is unreadable due to small font sizes and tiny panels. 

- Figure 4 is extremely hard to understand, should be cut into pieces probably and overhauled completely. 

In general, I suggest the authors overhaul the ML parts of the manuscript to make them clear, accompanied by concrete plots
that actually check the main hypothesis, which according to the test is predicting steady-state abs. from non-steady state
signal + conditions, with proper cross-validation. 

Otherwise, the authors can remove the ML part, which at the moment does not feel like an integrated part of the paper, and
just carry out detailed data analysis (as hinted in Figure 4). The experimental platform and the generated data is good and
valuable on its own. 

In my opinion, an interesting way to combine their platform with ML would be to use the 12,000 datapoints to predict yield, as
it is implied in "AI-assisted cross species prediction" (but explaining clearly how everything is represented in the ML model
inputs) then use an architecture with uncertainty, then use this in a bayesian opt. setting for quick optimization towards new
products, for instance. At the moment, much of the latter sections of the paper feels either blurry and unclear or plainly
disconnected (i.e. we can use these 12,000 data points for ML, but thats it). 

Version 1: 

Reviewer comments: 

Reviewer #1 

(Remarks to the Author) 
The authors have addressed all my comments in great details, and I am happy with the changes and recommend this work
for publication in Nature Communications. 

Reviewer #2 

(Remarks to the Author) 
The authors have devoted significant work to overhaul the ML/AI parts of the manuscript following my suggestions, clarifying
what was done, how and why. I appreciate their effort and congratulate them for this work. 

Nonetheless, I still think the AI/ML parts only serve an exemplary purpose and do not really add much to the story, since they
are not used proactively but rather retrospectively. 

In any case, I would ask the authors to give the new text blocks an additional read to smooth the writing, which is a bit weird
at some points. 
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Responses to the comments of the Reviewers 

 

Responses to the comments of Reviewer #1 

Comment 1: The methods section contains some information on how the descriptors 

were generated. However, there is no information on model hyper-parameters used in 

Figures 3A2, Figures 4F&G, and how they were selected. These include the learning 

rates, max-depths, regularization terms, etc. Please elaborate. 

Response: 

We appreciate the Reviewer for the comment. 

We are sorry for not clarifying how the model hyperparameters were generated. In 

the revised version, we have added detailed descriptions in both the AI-assisted 

absorbance prediction and AI-assisted cross-species prediction sections. 

We briefly mentioned the use of grid search to optimize the hyperparameters as 

“The training set was subjected to k-fold cross-validation, and the hyperparameter 

combinations of the models were optimized by grid search to improve the model 

performance.” on page 36, line 665-666. The related description about the AI-assisted 

absorbance prediction (Fig. 4 in the revised version) has been added in the revised 

version as “In the AI-assisted absorbance prediction, the performance of each AI model 

usually related to several to even a dozen of hyperparameters, from which 1-6 

hyperparameters with large impacts on model performance were empirically selected 

and optimized using the Grid Search method (i.e., the GridSearchCV in 

sklearn.model_selection). Based on the default values of each hyperparameter, the 

single training time consumed by the model, the characteristics of the dataset (i.e., 

amount of data and number of features), and prior experience, the selection ranges of 

these hyperparameters to be searched (i.e., the param_grid parameter in GridSearchCV) 

were generated in advance, and the AI models with different hyperparameter values 

were trained, evaluated, and optimized with 5-fold cross-validation. The optimal 

hyperparameter values were obtained from GridSearchCV's best_params_, and the 

optimal model was obtained from GridSearchCV's best_estimator_. For example, for 
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the Random Forest regression model, the selected hyperparameters and their values 

included: param_grid = {'n_estimators': [250, 350, 500], 'max_depth':[10, 30, 50], 

'max_features': [4, 6]}. The optimal hyperparameters and their values included: 

{'max_depth': 30, 'max_features': 6, 'n_estimators': 350}. Considering that each AI 

model involved different hyperparameters, each of the 10 AI models was analyzed 

specifically to obtain the optimal hyperparameter values, respectively (Fig. S7). The 

linear regression model was not optimized for hyperparameters as sklearn does not have 

hyperparameters set for it.” in Supplementary Information on page S24-S25. 

In addition, the software with user interface is also available on Github with a link 

as https://github.com/LJM-1997/NCOMMS-24-15301-T and a password for the 

datasets as NCOMMS-24-15301-T, and the Reviewers can obtain information related 

to model hyperparameter screening from the source code.  

 

 

Figure S7. Selected hyperparameters and their values of the 10 AI models, with 

the optimal hyperparameter values.  

 

The related description about the AI-assisted cross-species prediction (Fig. 6 in 

the revised version) has been added as “In the AI-assisted cross-species prediction, we 

used the XGBoost's default hyperparameters because they could offer good 

performance.” in Supplementary Information on page S25.  

 

Comment 2: t-SNE is generally not considered reasonable for feature selection and is 

rather used for visualization and understanding the structure of high-dimensional data. 

How was 15 decided as the number of features? Please elaborate. Model performance 
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is quite high in the current setting by typically RFE methods are used for choosing the 

most promising uncorrelated features. 

Response: 

We appreciate the Reviewer for the comment. 

Our feature includes two parts, Mordred descriptors of the substrate and the 

photocatalyst species described with the SMILES string and reaction conditions 

(including the 6 numerical variables, i.e., laser light intensity, flow rate, substrate 

concentration, photocatalyst ratio, photocatalyst concentration, and absorbance 

wavelength), both of which are of great importance for the photocatalytic [2+2] 

cycloaddition. However, the extensive number of Mordred descriptors (more than 1800 

descriptors per molecule) is significantly higher compared to reaction conditions 

(represented by 6 numerical variables), which may hinder the model's predictive 

performance. Given the specificity of our problem, where the number of Mordred 

descriptors far exceeds that of other numerical variables, we didn’t perform feature 

selection. Instead, we opted for dimensionality reduction while striving to preserve the 

high-dimensional structural relationships as much as possible, using the reduced 

molecular representation to represent the molecules. 

Given the large number of Mordred descriptors, the TSNE's ability to manage and 

reduce high-dimensional data efficiently is preferable. It allows us to reduce the 

dimension without losing significant information about the molecular relationships. 

Therefore, we applied TSNE and observed remarkable predictive performance. The 

exact dimensionality is not critical as long as it is reasonably close to the dimensions of 

other numerical variables. Initially, as we described in Methods, the number 15 was 

chosen randomly during our experiments. In the revised version, we also tried to reduce 

it to 2 dimensions and observed that this setting also yielded excellent predictive 

performance. Additionally, reducing to 2 dimensions could leverage TSNE's strengths, 

which included visualizing different molecules and observing their distribution, 

distances, and similarities. We have uploaded the code related to dimensionality 

reduction and the results after reduction to GitHub, hoping to facilitate future research 
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in this area. 

In responding to the comment of the Reviewer, we have further clarified this as 

“With the SMILES string of each molecule as part of the inputs of the models (Extended 

Data Figure 5), Mordred could generate both 2D and 3D descriptors, encompassing a 

list of more than 1800 descriptors. However, such a dimension of the Mordred 

descriptors was very high compared with other numerical variables (i.e., laser light 

intensity, flow rate, substrate concentration, photocatalyst ratio, photocatalyst 

concentration, and absorbance wavelength), which may hamper the predictive 

capabilities of the model. Given the specificity of our problem, where the number of 

Mordred descriptors far exceeded those of other numerical variables, we did not 

perform feature selection. Instead, we reduced the dimension of Mordred descriptor of 

each substrate and photocatalyst species from more than 1800 to 2 with T-distributed 

stochastic neighbor embedding (TSNE) algorithm, which is a widely used unsupervised 

dimension reduction technique owing to its advantage in capturing local data 

characteristics and revealing subtle data structures. Given the large number of Mordred 

descriptors, the TSNE algorithm is preferable due to its ability to manage high-

dimensional data. The reduced Mordred descriptors were then concatenated with other 

6 numerical variables to construct the final reaction fingerprints. 

We used the XGB algorithm for cross-substrate and cross-photocatalyst prediction, 

which is a highly efficient and flexible machine learning algorithm based on the 

gradient boosting framework. It is renowned for its outstanding performance and high 

efficiency, which are optimized through parallel processing and tree-pruning. 

Additionally, the XGB's regularization method could prevent overfitting, thereby 

improving the model's generalizability.” in Method on page 42, line 742-760. 

We appreciate the reviewer's insights and hope this will be helpful for clarifying 

our approach.  
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Comment 3: To allow reproducibility of the work, please provide the source code on 

github. 

Response:  

We appreciate the Reviewer for the reminding.  

In the AI-assisted prediction, the source code and datasets are available on Github 

with a link as https://github.com/LJM-1997/NCOMMS-24-15301-T and a password for 

the datasets as NCOMMS-24-15301-T. 
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Responses to the comments of Reviewer #2 

Comment 1: The specific task at hand for the ML is never clearly stated. In page 12-

13 it should be clearly said what are the inputs and the outputs of the models, what 

exactly is the label that is then used to compute the RMSE, etc. It is claimed that the 

goal is to "process the large numbers of the non-steady-state peak signals and predict 

the corresponding steady-state absorbance data". But how are those peak signals fed 

to the model? 

It is overall hard for me to believe that a model can be trained on steady state data 

to predict from non-steady state data unless both the steady state and non steady state 

from the same conditions can be associated with the same label. Is this the case? 

Tests that predict steady state from steady state, such as the bottom of page 12, are 

not representative at all -- how would those be? There is no data from the non-steady 

peak signal for those. So it has nothing to do, unless the goal is to predict the 

absorbance directly from the conditions (how are the chemicals digitalized?) and then 

this has nothing to do with non-steady state. 

Response:  

We appreciate the Reviewer for the comment.  

We are very apologetic that our insufficiently clear and detailed description has 

caused the Reviewers' understanding to be difficult. 

In fact, there are two applications of AI models in this work, AI-assisted 

absorbance prediction and AI-assisted cross-species prediction. In the response to 

the present comment (Comment 1) of Reviewer II, we provide further explanation and 

descriptions about AI-assisted absorbance prediction, and provide the explanation 

and descriptions about AI-assisted cross-species prediction in the response to 

Comment 3. 

We are sorry that the task as well as the inputs and outputs of the models in AI-

assisted absorbance prediction were not stated clearly enough. 

When ultrafast photocatalytic synthesis was achieved, we attempted to accomplish 

fast on-line characterization as well as high-throughput screening. Although the UV-
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Vis absorption spectroscopy method is a fast on-line characterization method, during 

the experiments we observed that the screening throughput was limited to 2,600 

reaction conditions per day due to the relatively long waiting time required when 

switching between different reaction conditions. Specifically, when the synthesis and 

characterization of the previous condition experiment were completed in the flow 

system, a new reaction solution needed to be introduced into the reactor and detection 

flow-cell channels.  

Due to the convection and molecular diffusion effects existed in the flow system, 

the previous reacted solution and the newly-introduced unreacted solution would mix 

with each other at their junction region, and the absorbance signals detected by the UV-

Vis detector exhibited dynamically-changing format (Fig. 3A1) during the solution 

switching process. The conventional method is to wait for the newly-introduced 

reaction solution to flush all of the previous solution out of the flow system to enable 

the detector to obtain a stable plateau-type steady-state absorbance signal for data 

reading. However, such a method requires much longer waiting time for obtaining the 

steady-state signal, such as 27 s, which far exceeded the time (<4 s) for photocatalytic 

synthesis and characterization for a reaction solution, severely limiting the 

improvement of the screening throughput for different reaction conditions (Fig. 3A2). 

In fact, this is one of the major limiting bottlenecks in the application of current flow 

chemistry systems to high-throughput screening.  

In the present work, we proposed the strategy of non-steady-state experimental 

mode instead of the steady-state mode to significantly improve the screening 

throughput by using the laser pulse irradiation method to rapidly switch the 

experimental laser intensity conditions, producing a series of non-steady-state 

continuous peak-shaped signals as shown in Figure 3A3. Under the non-steady-state 

mode, the waiting time for reaction solution switching was shortened to 6 s and the 

average time for each experimental cycle was shortened to 8.5 s.  

However, these non-steady-state peak signals included the combined absorbance 

information of the reactants and products from the previous and the newly-introduced 
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reaction solutions, which were influenced by multiple factors related to the convection 

and molecular diffusion effects, such as the reaction solution flow rate, the inner 

diameters and lengths of the reactor and the detection flow-cell channels, and the 

reactants and products molecular weights. Therefore, it was a great challenge to acquire 

the corresponding steady-state absorbance data from the non-steady-state peak signals 

for evaluating the reaction progress. 

In the AI prediction models, the non-steady-state absorbance data (i.e., 40 

absorbance data points recorded for each non-steady-state signal peak, Fig. 3A4) as 

well as the corresponding 8 reaction variables (i.e., flow rate, light intensity, wavelength, 

substrate concentration, photocatalyst ratio, photocatalyst concentration, substrate 

species, and photocatalyst species) were set as the inputs of the models (Fig. 4A).  

The corresponding steady-state absorbance data obtained experimentally using the 

steady-state mode with the same conditions (i.e., real steady-state absorbance data) 

were set as the targets of the models, and the predicted steady-state absorbance data 

were set as the outputs of the models.  

Since the aim of the AI prediction models was to predict the steady-state 

absorbance data from the non-steady-state data under the same conditions, there was 

no need to input the chemical structures of the reactants. The substrate and photocatalyst 

species were expressed in terms of relative molecular weight, which is directly related 

to the molecular diffusion effect. A total of 10 different AI regression models were 

evaluated, and the model with the best performance was selected based on the R2 and 

RMSE values of the test set. The RMSE values were calculated based on the targets 

(i.e., real steady-state absorbance data) and the outputs (i.e., predicted steady-state 

absorbance data) of the models. 

In responding to the comment of the Reviewer, in the revised version, we have 

further clarified this as “During the high-throughput screening experiments for different 

reaction conditions, when the synthesis and characterization of the previous condition 

experiment were completed in the flow system, a new reaction solution needed to be 

introduced into the reactor and detection flow-cell channels. Due to the convection and 
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molecular diffusion effects existed in the flow system, the previous reacted solution and 

the newly-introduced unreacted solution would mix with each other at their junction 

region, and the absorbance signals detected by the UV-Vis detector exhibited 

dynamically-changing format (Fig. 3A1) during the solution switching process. The 

conventional method is to wait for the newly-introduced reaction solution to flush all 

of the previous solution out of the flow system to enable the detector to obtain a stable 

plateau-type steady-state absorbance signal for data reading. However, such a steady-

state experimental mode requires much longer waiting time for obtaining the steady-

state signals. In the above photocatalytic screening experiment under the steady-state 

mode, the lasers kept irradiating the microreactor channel and the system spent most of 

the time (27 s of the 32 s of one experimental cycle time) in switching the different 

experimental conditions and waiting for a steady-state detection signal to be obtained 

(such as the laser light intensity experiment as shown in Figure 3A2). Such a waiting 

time far exceeded the time (<4 s) for photocatalytic synthesis and characterization for 

a reaction solution, severely limiting the screening throughput for different reaction 

conditions. In fact, this is one of the major limiting bottlenecks in the application of 

current flow chemistry systems to high-throughput screening.” on page 10, line 148-

166;  

“To increase the efficiency of time utilization and screening throughput, we 

proposed the strategy of non-steady-state experimental mode instead of the steady-state 

mode by using the laser pulse irradiation method to rapidly switch the experimental 

laser intensity conditions, producing a series of non-steady-state continuous peak-

shaped signals as shown in Figure 3A3. Under the non-steady-state mode, the waiting 

time for reaction solution switching was shortened to 6 s and the average time for each 

experimental cycle was shortened to 8.5 s, achieving an ultra-high throughput up to 

10,000 reaction conditions per day (Fig. 3A3, 3A4, 3B). 

However, these non-steady-state peak signals included the combined absorbance 

information of the reactants and products from the previous and the newly-introduced 

reaction solutions, which were influenced by multiple factors related to the convection 
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and molecular diffusion effects, such as the reaction solution flow rate, the inner 

diameters and lengths of the reactor and the detection flow-cell channels, and the 

reactants and products molecular weights.” on page 12-13, line 184-195;  

“We developed the AI-assisted absorbance prediction method by using the AI 

method to analyze the influencing factors related to the convection and molecular 

diffusion effects and decoupling the non-steady-state data of the adjacent reaction 

solutions mixed with each other, to predict the corresponding steady-state absorbance 

data of the respective reaction solutions.” on page 13, line 198-202;  

“We attempted to use 10 regression models based on the principles of linear 

models, decision tree, neural networks and integrated learning, to process the large 

numbers of the non-steady-state absorbance data and to predict the corresponding 

steady-state absorbance data under the same reaction condition. In these models, the 

non-steady-state absorbance data (i.e., 40 absorbance data points recorded for each non-

steady-state signal peak, Fig. 3A4) as well as the all corresponding 8 variables (i.e., 

flow rate, light intensity, wavelength, substrate concentration, photocatalyst ratio, 

photocatalyst concentration, substrate species, and photocatalyst species) of the present 

flow photocatalytic system were set as the inputs of the models (Fig. 4A). The 

corresponding steady-state absorbance data obtained experimentally using the steady-

state mode with the same conditions (i.e., real steady-state absorbance data) were set as 

the targets of the models, and the predicted steady-state absorbance data were set as the 

outputs of the models. The substrate and photocatalyst species were input to the models 

in the form of relative molecular weights instead of chemical structures, since they are 

directly related to the molecular diffusion effect. On the basis of the massive amounts 

of the output and target data of the 12,000 reaction conditions (Fig. 4B1), we evaluated 

the performance of the 10 regression models based on the R2 and RMSE values of the 

test set. The RMSE values were calculated based on the targets (i.e., real steady-state 

absorbance data) and the outputs (i.e., predicted steady-state absorbance data) of the 

models.” on page 15-16, line 230-246.  
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Fig. 3. Recordings of the typical and total absorbance signals obtained in the large-

scale screening experiment. (A) Typical recordings of the steady-state and non-steady-

state absorbance signals obtained in the screening for S-5, with a photocatalyst ratio of 

2 mol% and a S-5 concentration of 0.01 M. (A1) Typical absorbance recordings of 6 

different reaction conditions under the steady-state screening mode. (A2) Enlarged 

view of the absorbance recordings for the first two conditions of the 6 reaction 

conditions in (A1). It took an average time of 27 s in each condition cycle to obtain the 

steady-state absorbance signal, which was calculated from the difference between the 

reacted steady-state plateau absorbance and the unreacted blank absorbance. (A3) 

Typical absorbance recordings of 30 different reaction conditions under the non-steady-

state screening mode. (A4) Enlarged view of the absorbance recordings for the 17th and 

18th conditions of the 30 reaction conditions in (A3). Each condition cycle took an 

average time of ca. 4s, with a non-steady-state signal peak containing 40 absorbance 

data points, obtained using the laser pulse irradiation method. (B) Recordings of the 

non-steady-state peak signals obtained in the screening experiment of the total 12,000 

reaction conditions, which was replicated three times to test the repeatability. 
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Fig. 4. AI-assisted prediction of steady-state absorbance data from non-steady-

state absorbance data for condition screening of photocatalytic [2+2] cycloaddition. 

(A) Composition of the large dataset used in the AI-assisted steady-state absorbance 

prediction, including the 12,000 absorbance data with 48 eigenvalues (8 reaction 

variables and 40 data points for each non-steady-state signal peak) and 1 target (steady-

state absorbance data). (B) AI-assisted prediction models for predicting the steady-state 

absorbance data from the non-steady-state absorbance data. (B1) Predicted and real 

steady-state absorbance as the outputs and targets of the models, respectively. (B2) 10 

different regression models for the prediction of the steady-state absorbance data from 

the non-steady-state absorbance data, including partial least squares regression (PLSR), 

linear regression, adaptive boosting (AdaBoosting) regression, extremely randomized 

trees (ExtraTree) regression, support vector regression (SVR), k-nearest neighbor 

(KNN) regression, multi-layer perceptron (MLP) regression, random forest regression, 
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cascade forest regression, and extreme gradient boosting (XGB) regression models. The 

dashed line is the y=x line, and the solid line is a linear fit curve between the predicted 

and the true steady-state absorbance values. The two metrics, R2 and RMSE values, 

were calculated using the corresponding functions within sklearn.metrics. (B3) 

Performance of the test set of the XGB regression model. The prediction accuracy of 

the test set gradually decreases as the proportion of randomly selected training set data 

decreases from 70% to 2.5%. (C) Screening results of the total 12,000 reaction 

conditions obtained using the AI-assisted steady-state absorbance prediction method. 

(C1) Predicted steady-state absorbance data output from the XGB model with training 

set : test set = 10 : 90 were converted to product yields. (C2) Heatmap showing the 

screening results of a total of 12,000 reaction conditions, including the orthogonal 

combination of 5 substrate species, 5 photocatalyst species, 4 concentrations, 4 

photocatalyst ratios, 5 flow rates, and 6 laser light intensities under the non-steady-state 

mode. 

 

Comment 2: Additionally, the ML regression tasks are not properly cross validated, and 

therefore it is very hard to trust the reported metrics. A thorough cross-validation study 

should be performed clearly, at least in the SI. 

On that vein, note that tests with a "random" 10% of the data used for training are 

meaningless without either thorough 10-fold cross-validation or several random splits 

(which then lead to a st. deviation in the metrics). 

Response:  

We appreciate the Reviewer for the comment.  

As suggested by the Reviewer, in the task of AI-assisted absorbance prediction, 

i.e., using 10% of the non-steady-state absorbance data as the training set for the XGB 

model to predict the 12,000 steady-state absorbance data prediction, we have added a 

10-fold cross-validation study. The results of the 10-fold cross-validation study of the 

AI-assisted absorbance prediction are shown in Figure S8 in the revised Supplementary 

Information, and the methods and results were also added, described as “a 10-fold 
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cross-validation study was performed and the results are shown in Supplementary 

Information (Fig. S8).” on page 17, line 266-267, and “In the task of predicting 12,000 

steady-state absorbance data using 10% of the non-steady-state absorbance data as the 

training set of the XGB model, a 10-fold cross-validation study was performed on the 

entire dataset by dividing the dataset equally into 10 parts (i.e., 0-10%, 10-20%, ..., 90-

100%). Each time, one part of them was taken as the training set and the remaining 9 

parts as the test set, resulting in a total of 10 kinds of training/test sets. To ensure the 

randomness in the extracting of the training sets, the data in the dataset were disrupted 

in order before performing the 10-fold cross-validation. The optimized XGB regression 

model (i.e., n_estimators hyperparameter taking the value of 500 filtered by grid search) 

was trained and evaluated using the 10 training/test sets, and the model performance 

metrics including the MAE, RMSE, and R2 values and their means, standard deviations, 

and coefficients of variation (CV) were calculated (Fig. S8). The results showed that 

the model performance metrics obtained from the dataset as shown in Figure 4A had 

no significant difference, and the coefficients of variation were 4.50% for MAE, 5.44% 

for RSME and 0.49% for R2, respectively, indicating the good generalization ability of 

the model.” in Supplementary Information on page S25.  

 

  

Fig. S8. The 10-fold cross-validation study performed on the entire dataset in the 

AI-assisted absorbance prediction. The model performance metrics include the MAE, 

RMSE, and R2 values and their means, standard deviations, and coefficients of variation 
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(CV). 

 

Comment 3: The same questions apply to the section "AI-assisted cross species 

prediction". Not clear, not cross validated. 

Response:  

We appreciate the Reviewer for the comment.  

We are very sorry that the task as well as the inputs and outputs of the models in 

“AI-assisted cross-species prediction” were not stated clearly enough. 

In the section of “AI-assisted cross-species prediction” on page 20-21, the model 

was tasked with cross-species prediction of the product yields. The reaction conditions 

(i.e., the same 8 reaction variables as in the absorbance prediction section) were set as 

the inputs of the models, the product yields obtained experimentally were set as the 

targets of the models, and the predicted product yields were set as the outputs of the 

models. However, unlike the AI-assisted absorbance prediction under the same 

condition, the cross-species prediction of the product yields required detailed 

information of the chemical structures of the substrate and photocatalyst species. 

Therefore, SMILES strings were used to describe, digitize and input the chemical 

structure of the substrate and photocatalyst compounds to the models.  

In responding to the comment of the Reviewer, we have further clarified this as 

“To further utilize the above 12,000 data and preliminarily explore the potential 

possibility of applying AI technique to intelligent chemical synthesis screening, we 

used the XGB algorithm to perform AI-assisted prediction of product yields cross-

substrate and cross-photocatalyst. For cross-species prediction of product yields, the 

inputs of the models were the reaction conditions (i.e., the 8 reaction variables), the 

targets were the product yields obtained experimentally, and the outputs were the 

predicted product yields (Fig. 6A). Differing from the AI-assisted absorbance 

prediction, the cross-species prediction required detailed chemical structure 

information of the substrate and photocatalyst species, which were described, digitized, 

and input to the models using the SMILES strings to generate Modred descriptors 
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(Extended Data Figure 5). The Mordred descriptor dimensions of each substrate and 

photocatalyst species were reduced to 2 in order to match the dimensions of the other 

variables and facilitate visualization in subsequent study, as described in Methods. The 

inputs consisted of 10 dimensions, with 2 representing the substrate species, 2 

representing the photocatalyst species, and the remaining 6 representing the other 

variables (Fig. 6A).” on page 21, line 344-357, and “With the SMILES string of each 

molecule as part of the inputs of the models (Extended Data Figure 5), Mordred could 

generate both 2D and 3D descriptors, encompassing a list of more than 1800 descriptors. 

However, such a dimension of the Mordred descriptors was very high compared with 

other numerical variables (i.e., laser light intensity, flow rate, substrate concentration, 

photocatalyst ratio, photocatalyst concentration, and absorbance wavelength), which 

may hamper the predictive capabilities of the model. Given the specificity of our 

problem, where the number of Mordred descriptors far exceeded those of other 

numerical variables, we did not perform feature selection. Instead, we reduced the 

dimension of Mordred descriptor of each substrate and photocatalyst species from more 

than 1800 to 2 with T-distributed stochastic neighbor embedding (TSNE) algorithm, 

which is a widely used unsupervised dimension reduction technique owing to its 

advantage in capturing local data characteristics and revealing subtle data structures. 

Given the large number of Mordred descriptors, the TSNE algorithm is preferable due 

to its ability to manage high-dimensional data. The reduced Mordred descriptors were 

then concatenated with other 6 numerical variables to construct the final reaction 

fingerprints.” on page 42, line 742-755. 

   

 

Fig. 6. (A) Settings used for AI-assisted cross-species prediction, including inputs and 
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targets of the models. 

 

 

Extended Data Figure 5. SMILES strings for all the substrate and photocatalyst 

species. 

 

In the section “AI-assisted cross-species prediction”, we have also supplemented 

the cross-validation studies based on the Reviewers' valuable suggestions, and added 

the experiments with cross-photocatalyst and cross-substrate prediction for all possible 

cases.  

In the Supplementary Information, we have further clarified the cross-validation 

studies for AI-assisted cross-species prediction as “In the cross-species prediction, 

the cross-validation studies were performed for both cross-photocatalyst and cross-

substrate prediction. In the cross-photocatalyst prediction, the data of 4 photocatalyst 

species were used as the training set to predict the yields of the other 1 photocatalyst 

species, and the data of 3 photocatalyst species were used as the training set to predict 

the yields of the other 2 photocatalyst species, with box plots showing the product yield 

results (Fig. 5G, S9A).  

In the cross-substrate prediction, the data of 3 substrate species were used as the 

training set to predict the yields of the other 1 substrate species, and the data of 2 

substrate species were used as the training set to predict the yields of the other 2 
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substrate species, with box plots showing the product yield results (Fig. 5G, 2S9B). For 

instance, we used the data of S-1, S-2, and S-4 as the training set to predict the yields 

of S-5, achieving MAE=0.0698 and RMSE=0.0878 (Fig. S9B1). The distinct effects of 

the 5 photocatalyst species on S-5 were accurately predicted with Ir-1 as the optimal 

photocatalyst. With a smaller training set of S-1 and S-2, the prediction for S-4 and S-

5 were also completed with MAE=0.0772 and RMSE=0.0999 (Fig. S9B2).  

The performance parameters of the test set for all possible cases were obtained in 

the cross-validation studies, and their small errors demonstrated the stability of the 

method (Fig. 5H, Fig. S10).” in Supplementary Information on page S26. 

  

 

Fig. 6. AI-assisted cross-species prediction. (A) Settings used for AI-assisted cross-

species prediction, including inputs and targets of the models. (B) Typical results of the 

AI-assisted cross-substrate prediction, including prediction of S-5 from data of S-1, S-

2, and S-4 (B1), and prediction of S-4, S-5 from data of S-1 and S-2 (B3) with box plots 

showing product yields results (B2, B4), respectively. (C) Typical results of the AI-
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assisted cross-photocatalyst prediction, including prediction of Ir-3 from data of Ir-1, 

Ir-2, Ir-4 and Ir-5 (C1), and prediction of Ir-1, Ir-3 from data of Ir-2, Ir-4 and Ir-5 (C3) 

with box plots showing product yields results (C2, C4), respectively. Model 

performance metrics for the cross-validation studies, including the MAE and RMSE 

values are shown in (B1), (B3), (C1), and (C3). The entire results of the cross-species 

prediction are shown in Figure S9. 
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Fig. S9. Results of cross-validation studies for the cross-photocatalyst prediction (A) 

and the cross-substrate prediction (B). (A1) The cross-photocatalyst prediction using 
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data from 4 photocatalyst species as a training set to predict the yields of the other 1 

photocatalyst species. (A2) The cross-photocatalyst prediction using data from 3 

photocatalyst species as a training set to predict the yields of the other 2 photocatalyst 

species. (B1) The cross-substrate prediction using data from 3 substrate species as a 

training set to predict the yields of the other 1 substrate species. (B2) The cross-

substrate prediction using data from 2 substrate species as a training set to predict the 

yields of the other 2 substrate species. 

 

  

Fig. S10. Model performance metrics include the MAE and RMSE values, with 

their means and standard deviations, obtained in the cross-validation studies for 

the cross-photocatalyst prediction (A) and cross-substrate prediction (B). 

 

Comment 4: Figure 3 is unreadable due to small font sizes and tiny panels.  

Response:  

We appreciate the Reviewer for the reminding about Figure 3. 

We apologize that the images sizes of Figure 3 were too small for reading. We 

have revised Figure 3 and split it into two figures, as the new Figure 3 and Figure 4 in 
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the revised version.  

A large amount of data is contained in Figure 3B in the revised version, including 

the recording of all non-steady-state absorbance peak signals, so the size of each plot is 

largely limited by the page size. In order to maximize the size of each plot, we have 

modified the figure format from a horizontal version to a vertical version, making the 

size area of each plot increase to 3 times its original size and the font size is 2 sizes 

larger. To make it easier for readers to understand, three typical data plots under 

different conditions are used as examples, enlarged and placed on the top of Figure 3B.  

In order to make the ML model section clear, some modifications have been made 

in the new Figure 3 and Figure 4 in the revised version. First, we have added Figure 

3A2, showing a typical steady-state absorbance recording and a typical non-steady-

state absorbance recording including 40 absorbance data points. Second, in order to 

illustrate the inputs, targets, and outputs of the ML models, the figure about the large 

dataset, which was originally placed in Extended Data Figure 4 in Methods, has been 

moved to Figure 4A with the inputs and targets labeled, respectively. The model outputs 

and targets are illustrated (Fig. 4B1), and the R2 and RMSE values for each ML model 

were calculated according to these data (Fig. 4B2). Based on the relationship between 

the GC product yields and the steady-state absorbance data, the outputs of the optimal 

model (i.e., predicted steady-state absorbance data) were transformed into product 

yields and presented as a heatmap (Fig. 4C).  
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Fig. 3. Recordings of the typical and total absorbance signals obtained in the large-

scale screening experiment. (A) Typical recordings of the steady-state and non-steady-

state absorbance signals obtained in the screening for S-5, with a photocatalyst ratio of 

2 mol% and a S-5 concentration of 0.01 M. (A1) Typical absorbance recordings of 6 

different reaction conditions under the steady-state screening mode. (A2) Enlarged 

view of the absorbance recordings for the first two conditions of the 6 reaction 

conditions in (A1). It took an average time of 27 s in each condition cycle to obtain the 

steady-state absorbance signal, which was calculated from the difference between the 

reacted steady-state plateau absorbance and the unreacted blank absorbance. (A3) 

Typical absorbance recordings of 30 different reaction conditions under the non-steady-

state screening mode. (A4) Enlarged view of the absorbance recordings for the 17th and 

18th conditions of the 30 reaction conditions in (A3). Each condition cycle took an 

average time of ca. 4s, with a non-steady-state signal peak containing 40 absorbance 

data points, obtained using the laser pulse irradiation method. (B) Recordings of the 

non-steady-state peak signals obtained in the screening experiment of the total 12,000 

reaction conditions, which was replicated three times to test the repeatability. 
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Fig. 4. AI-assisted prediction of steady-state absorbance data from non-steady-

state absorbance data for condition screening of photocatalytic [2+2] cycloaddition. 

(A) Composition of the large dataset used in the AI-assisted steady-state absorbance 

prediction, including the 12,000 absorbance data with 48 eigenvalues (8 reaction 

variables and 40 data points for each non-steady-state signal peak) and 1 target (steady-

state absorbance data). (B) AI-assisted prediction models for predicting the steady-state 

absorbance data from the non-steady-state absorbance data. (B1) Predicted and real 

steady-state absorbance as the outputs and targets of the models, respectively. (B2) 10 

different regression models for the prediction of the steady-state absorbance data from 

the non-steady-state absorbance data, including partial least squares regression (PLSR), 

linear regression, adaptive boosting (AdaBoosting) regression, extremely randomized 

trees (ExtraTree) regression, support vector regression (SVR), k-nearest neighbor 

(KNN) regression, multi-layer perceptron (MLP) regression, random forest regression, 
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cascade forest regression, and extreme gradient boosting (XGB) regression models. The 

dashed line is the y=x line, and the solid line is a linear fit curve between the predicted 

and the true steady-state absorbance values. The two metrics, R2 and RMSE values, 

were calculated using the corresponding functions within sklearn.metrics. (B3) 

Performance of the test set of the XGB regression model. The prediction accuracy of 

the test set gradually decreases as the proportion of randomly selected training set data 

decreases from 70% to 2.5%. (C) Screening results of the total 12,000 reaction 

conditions obtained using the AI-assisted steady-state absorbance prediction method. 

(C1) Predicted steady-state absorbance data output from the XGB model with training 

set : test set = 10 : 90 were converted to product yields. (C2) Heatmap showing the 

screening results of a total of 12,000 reaction conditions, including the orthogonal 

combination of 5 substrate species, 5 photocatalyst species, 4 concentrations, 4 

photocatalyst ratios, 5 flow rates, and 6 laser light intensities under the non-steady-state 

mode.
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Extended Data Figure 4. AI-assisted prediction of the absorbance data and 

heatmap visualization of the product yields. (A) Three PCA schemes for 

downscaling the original eigenvalues using the XGB model, with the dataset divided 

into training and test sets with a proportion of 70% and 30%. (B) The heatmaps of the 

product yields converted from the non-steady-state absorbance data (B1), the steady-

state absorbance data (B2), and the absolute errors between them (B3), with the dataset 

divided into training and test sets with a proportion of 10% and 90%. (C) The heatmaps 

of the product yields converted from the non-steady-state absorbance data (C1), the 

steady-state absorbance data (C2), and the absolute errors between them (C3), with the 
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dataset divided into training and test sets with a proportion of 30% and 70%. The 

product yields are displayed in color gradient with blue indicating low product yields, 

and red indicating high yields. 

 

Comment 5: Figure 4 is extremely hard to understand, should be cut into pieces 

probably and overhauled completely. 

Response:  

We appreciate the Reviewer for the comment about Figure 4. 

We apologize that the previous Figure 4 is difficult to understand. In order to help 

understanding, we have added some related descriptions and optimized the figure 

design by dividing it into two figures (new Figure 5 and Figure 6) with several pieces 

cut in each figure. Since Figure 3 has split into 2 figures as we responded in Comment 

4, the original Figure 4 is now Figure 5 and Figure 6 in the revised version.  

Specifically, Figure 5A contains product yields of all 12,000 conditions in the form 

of multidimensional bubble plot, showing the effects of all discrete and continuous 

variables on the product yields. Box plots (Fig. 5B and 5C) show the effect of 

photocatalyst species and concentration on product yields of all 12,000 conditions, 

respectively. The results of the increased concentration experiments are shown in 

Figures 5D and 5E, including the yields and d.r. values obtained both in batch and flow 

synthesis mode.  

The dataset for AI-assisted cross-species prediction is illustrated in Figure 6A, 

along with input and output information. As part of the cross-species prediction, some 

results of the AI-assisted cross-substrate and cross-photocatalyst prediction are 

demonstrated in Figures 6B, 6C, with the remaining cross-species prediction results 

shown in the Supplementary Information (Fig. S9, Fig S10). 

In the revised version, the description about the AI-assisted cross-species 

prediction section in Figure 6 has been modified as “For cross-species prediction of 

product yields, the inputs of the models were the reaction conditions (i.e., the 8 reaction 

variables), the targets were the product yields obtained experimentally, and the outputs 
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were the predicted product yields (Fig. 6A). Differing from the AI-assisted absorbance 

prediction, the cross-species prediction required detailed chemical structure 

information of the substrate and photocatalyst species, which were described, digitized, 

and input to the models using the SMILES strings to generate Modred descriptors 

(Extended Data Figure 5). The Mordred descriptor dimensions of each substrate and 

photocatalyst species were reduced to 2 in order to match the dimensions of the other 

variables and facilitate visualization in subsequent study, as described in Methods. The 

inputs consisted of 10 dimensions, with 2 representing the substrate species, 2 

representing the photocatalyst species, and the remaining 6 representing the other 

variables (Fig. 6A).    

Both the results of the cross-species prediction with different training set ratios 

and the cross-validation studies are described in the Supplementary Information (Fig. 

S9B, Fig. S10). As a typical result of the cross-substrate prediction, we used the data of 

S-1, S-2, and S-4 as the training set to predict the yields of S-5, achieving MAE=0.0698 

and RMSE=0.0878 (Fig. 6B1). The distinct effects of the 5 photocatalyst species on S-

5 were accurately predicted and Ir-1 showed to be the optimal photocatalyst, which is 

consistent with the experimental results (Fig. 6B2). With a smaller training set of S-1 

and S-2, the prediction for S-4 and S-5 achieved with MAE=0.0772 and RMSE=0.0999 

(Fig. 6B3, 6B4). For the cross-photocatalyst prediction, the data of Ir-1, Ir-2, Ir-4 and 

Ir-5 could be used to predict the yields of Ir-3, with MAE=0.0364 and RMSE=0.0497, 

which presented similar results to the real product yields (Fig. 4C1, 4C2). When the 

training set was reduced to include three photocatalysts of Ir-2, Ir-4 and Ir-5, pretty 

good prediction for Ir-1 and Ir-3 could still be obtained with MAE=0.0667 and 

RMSE=0.0898 (Fig. 4G3, 4G4). ” on page 23, line 370-381. 
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Fig. 5. Screening results of 12,000 reaction conditions. (A) Multidimensional bubble 

plots of the 12,000 data, showing the effects of different variables on the product yield, 

including the species, concentrations, and ratios of the substrates and photocatalysts, 

laser light intensity, and flow rate of the reaction solutions. Each 6-dimensional bubble 

plot in (A1) contains 2400 product yield data of 1 substrate specie and 5 photocatalyst 

species. Each 5-dimensional bubble plots in (A2) contains 480 product yield data of 1 

photocatalyst and 1 substrate specie, corresponding to a data square in the heatmap 

shown in Figure 4C2. In each 5-dimensional bubble plot, the colors of the contour lines 

of the bubbles represent different photocatalyst species, the colors filled in the bubbles 

represent different photocatalyst ratios, and the sizes of the bubbles represent different 

substrate concentrations. (B) Box plot showing the effect of the photocatalyst species 

on the product yields of the 5 substrates. The three horizontal lines of each box from 
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top to bottom represent the first, median, and third quartiles of the product yield data, 

respectively. (C) Box plot showing the effect of the concentrations of the 5 substrates 

on the product yields. The three horizontal lines of each box from top to bottom 

represent the first, median, and third quartiles of the product yield data, respectively. 

(D) Comparisons of the variations of the product yield and d.r. with the increase of the 

S-1 concentration using the batch and present flow methods. (E) Variations of the 

product yield and d.r. with the increase of the residence time in the LCW microreactor 

using S-1 with a high concentration of 2.0 M, which is 200 fold of that in conventional 

batch systems.  

 

 

Fig. 6. AI-assisted cross-species prediction. (A) Settings used for AI-assisted cross-

species prediction, including inputs and targets of the models. (B) AI-assisted cross-

substrate prediction, including prediction of S-5 from data of S-1, S-2, and S-4 (B1), 

and prediction of S-4, S-5 from data of S-1 and S-2 (B3), with box plots showing 

product yields results (B2, B4), respectively. (C) AI-assisted cross-photocatalyst 
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prediction, including prediction of Ir-3 from data of Ir-1, Ir-2, Ir-4 and Ir-5 (C1), and 

prediction of Ir-1, Ir-3 from data of Ir-2, Ir-4 and Ir-5 (C3), with box plots showing 

product yields results (C2, C4), respectively. The model performance metrics for the 

cross-validation studies include the MAE and RMSE values. The entire results of the 

cross-species prediction are shown in Figure S9. 

 

Comment 6: In general, I suggest the authors overhaul the ML parts of the manuscript 

to make them clear, accompanied by concrete plots that actually check the main 

hypothesis, which according to the test is predicting steady-state abs. from non-steady 

state signal + conditions, with proper cross-validation. 

Otherwise, the authors can remove the ML part, which at the moment does not feel like 

an integrated part of the paper, and just carry out detailed data analysis (as hinted in 

Figure 4). The experimental platform and the generated data is good and valuable on 

its own. 

Response:  

We appreciate the Reviewer for the suggestions and for recognizing the capability 

of our experimental platform and the quality of our data. We apologize for the imprecise 

statement about the ML part, both in the text and in the figures, which led to some 

misunderstanding. In responding to the comments of the Reviewer, we have overhauled 

the ML parts to make it clearer and added descriptions of the relationship between ML 

experiments and robotic system.  

As we responded to the Comment 1 of the Reviewer, there are two applications of 

AI models in this work, AI-assisted absorbance prediction and AI-assisted cross-

species prediction. In fact, the application of the AI-assisted absorbance prediction 

is very helpful for this robotic system to break through the limitations of the screening 

throughput reported so far. With the aid of the ML absorbance prediction models, it is 

possible to analyze the complex influences on the convection and molecular diffusion 

effects in flow synthesis and predict steady-state absorbance data accurately from the 

non-steady-state absorbance data and the reaction variables, thus significantly 



34 
 

improving the system’s screening throughput for 2,600 to 10,000 conditions per day. 

Based on the Reviewers' valuable suggestions, we have modified the ML parts to make 

it clearer as we responded in Comment 1, and added the cross-validation studies to 

complete the ML section as we responded in Comment 2 and Comment 3.  

As suggested by the Reviewer, we have added the related description about the 

importance of the ML models to improve the screening throughput in the revised 

version, described as “These results showed that with the use of the non-steady-state 

mode and the AI-assisted absorbance prediction method, the long-standing challenge 

limiting the improvement of screening throughput of flow chemical screening systems 

caused by inefficient and time-consuming condition switching could be solved. 

Correspondingly, the screening throughput for the photocatalytic [2+2] cycloaddition 

reaction conditions increased from 2,600 to 10,000 conditions per day, which is the 

highest level reported in the field of organic synthesis so far.” on page 16, line 252-257. 

In addition, in the form of subheadings, we have added two sub-headings in the 

part "AI-assisted ultra-high-throughput photocatalytic synthesis and screening" in 

the revised version, as “Steady-state and non-steady-state experimental mode” (on 

page 10, line 143) and “AI-assisted absorbance prediction” (on page 13, line 180), to 

facilitate readers' understanding. 

As for the section of AI-assisted cross-species prediction, since we obtained 

large-scale of 12,000 high-quality data, for further utilizing these data, we attempted to 

perform AI-assisted prediction of product yields cross-substrate and cross-

photocatalyst to preliminarily explore the potential possibility of applying AI technique 

to intelligent chemical synthesis screening. As shown in Figure 6, Figure S9 and Figure 

S10, although the attempts were preliminary, the results were encouraging, with some 

good results obtained in both cross-substrate and cross-photocatalyst predictions. We 

hope that these results may provide some inspiration for the study of intelligent 

chemical synthesis screening.  

In responding to the comment of the Reviewer, we have added the related 

description about the aim of the AI-assisted cross-species prediction as “To further 
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utilize the above 12,000 data and preliminarily explore the potential possibility of 

applying AI technique to intelligent chemical synthesis screening, we used the XGB 

algorithm to perform AI-assisted prediction of product yields cross-substrate and cross-

photocatalyst.” on page 21, line 344-346. In the revised version, according to the 

Reviewers' valuable suggestions, we have specifically used a new figure (Figure 6) 

showing the parameters and results of the cross-species predictions to illustrate this 

section more clearly. We have also modified the ML parts to make it clearer, and added 

the cross-validation studies to complete the ML section as we responded in Comment 

2 and Comment 3. 

 

Comment 7: In my opinion, an interesting way to combine their platform with ML 

would be to use the 12,000 datapoints to predict yield, as it is implied in "AI-assisted 

cross species prediction" (but explaining clearly how everything is represented in the 

ML model inputs) then use an architecture with uncertainty, then use this in a bayesian 

opt. setting for quick optimization towards new products, for instance. At the moment, 

much of the latter sections of the paper feels either blurry and unclear or plainly 

disconnected (i.e. we can use these 12,000 data points for ML, but thats it). 

Response:  

We are very grateful to the Reviewer for the valuable insights and indicating a very 

promising direction for our future research.  

In this work, we mainly focused on building a fully automated high-throughput 

platform enabling automated chemical photocatalytic synthesis, characterization and 

screening with the ability to generate large-scale data. As a preliminary extension of 

this main work, we used the acquired data to initially explore the potential possibility 

of using AI techniques for cross-species prediction. In the revised version, we have 

clarified the aim of performing the cross-species prediction as “To further utilize the 

above 12,000 data and preliminarily explore the potential possibility of applying AI 

technique to intelligent chemical synthesis screening, we used the XGB algorithm to 

perform AI-assisted prediction of product yields cross-substrate and cross-



36 
 

photocatalyst.” on page 21, line 344-346. 

We also realize that there is still a lot of work to do in further exploring the large 

amount of data and utilizing the cross-species prediction method. The inspiring 

suggestions of the Reviewer pointed us in a meaningful research direction. In the future 

work, we will continue to explore this data deeper and conduct more and widespread 

attempts, to explore more possibilities of intelligent synthesis, such as using an 

architecture with uncertainty and Bayesian optimization setting for quick optimization 

of new products, as pointed by the Reviewer.  

In response to the Reviewer’s comment, we have added a description about this in 

the conclusion in the revised version, as “As we initially demonstrated in AI-assisted 

cross-species prediction, such a large amount of data from the same experimental 

system could provide a solid data base for AI applications. In the future, it would be 

meaningful to make full use of the 12,000 data and further incorporate AI techniques, 

such as Bayesian optimization method for rapid optimization of new products.” on page 

24, line 394-398. 



Responses to the comments of the Reviewers 

Responses to the comments of Reviewer #2 

Comment 1: The authors have devoted significant work to overhaul the ML/AI parts of 

the manuscript following my suggestions, clarifying what was done, how and why. I 

appreciate their effort and congratulate them for this work. 

Nonetheless, I still think the AI/ML parts only serve an exemplary purpose and do 

not really add much to the story, since they are not used proactively but rather 

retrospectively. 

In any case, I would ask the authors to give the new text blocks an additional read 

to smooth the writing, which is a bit weird at some points. 

Response: 

We sincerely appreciate Reviewer #2 for the recognition to our revisions to the 

manuscript and the comment. 

According to the Reviewer’s comment, we have carefully read through both the 

AI-assisted absorbance prediction and AI-assisted cross-species prediction sections 

and modified some descriptions to further improve the smoothness of the writing in the 

revised version as “Due to the convection and molecular diffusion effects existed in the 

flow system, the previous reacted solution and the newly-introduced unreacted solution 

would mix with each other at their junction region, and the absorbance signals detected 

by the UV-Vis detector exhibited a dynamically-changing format (Fig. 3A1) during the 

switching process of different solutions. The conventional method is to wait for the 

newly-introduced unreacted reaction solution to flush all of the previous reacted 

solution out of the flow system to enable the detector to obtain a stable plateau-type 

steady-state absorbance signal for data reading.” on page 7, line 135-142; 

“To increase the efficiency of time utilization and screening throughput, we 

proposed the strategy of non-steady-state experimental mode instead of the steady-state 

mode by using the laser pulse irradiation method to turn the irradiation laser on and off 

for achieving the rapid switching between the reacted and unreacted solutions, 

producing a series of non-steady-state continuous peak-shaped signals as shown in 



Figure 3A3.” on page 8, line 152-156; 

“For achieving this complex and challenging task, we developed the AI-assisted 

absorbance prediction method by using the AI method to analyze the influencing factors 

related to the convection and molecular diffusion effects and decoupling the non-

steady-state data of the adjacent reaction solutions mixed with each other, to predict the 

corresponding steady-state absorbance data of the respective reaction solutions. 

In order to obtain accurate prediction results, we attempted to use 10 regression 

models based on the principles of linear models, decision tree, neural networks and 

integrated learning, to process the large numbers of the non-steady-state absorbance 

data and to predict the corresponding steady-state absorbance data under the same 

reaction condition, from which we searched for the best-performing model.” on page 

8-9, line 167-176; 

“We tried to use less data to predict more data (such as 2.5% of the data as the 

training set and 97.5% of the data as the test set) to further test the predictive 

performance of the XGB regression model. Pretty good result was still obtained where 

300 conditions data were used to predict the remaining 11,700 conditions with a RMSE 

of 0.0550 and R2 of 0.859 (Fig. 4B3).” on page 9-10, line 192-196; 

“Correspondingly, the screening throughput for the photocatalytic [2+2] 

cycloaddition reaction conditions increased from 2,600 to 10,000 conditions per day 

using the non-steady-state experimental mode, which is the highest level reported in 

the field of organic synthesis so far.” on page 10, line 100-203; 

“We further increased the concentration of substrate S-1 using 50 μL/min flow rate 

(i.e., 13.2 s residence time) in the present system, the results showed that the product 

yield decreased slightly from 91% to 85% when the substrate S-1 concentration 

increased from 0.01 M to 1.0 M, and further reduced to 67% when the substrate S-1 

concentration reached its solubility limit of 2.0 M (Fig. 5D).” on page 12, line 254-259; 

“The 12,000 experimental data were divided into training and test sets with 

different ratios for AI-assisted cross-species prediction.” on page 13, line 284-285. 

For details of the revisions, please see the revised manuscript with the marked 

revisions. 
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