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1. Numerical model of mitochondria and simulations

Before describing the conducted simulations, we must make a disclaimer: our model is very

simple as it considers a 1D filament in a pure viscous medium, which clearly deviates from

the conditions of mitochondria immersed in the cytoplasm. However, our goal is to explore

and quantify the effects of non-thermal kicks on a semiflexible filament with mechanical

characteristics similar to those of mitochondria. Therefore, we decided to use a simple model

as a first approximation to the real biological system.

We considered the Worm-Like Chain model1, as was described in Monastra et al2.

The filament is divided into N equal segments of length ΔL = L/N. The configuration is

determined by the (N + 1) coordinates, rn, of the endpoints of each segment, where 0 ≤ n ≤
N, so-called beads. In terms of these coordinates, elastic and bending potential energies are

written as:

where E is the Young modulus, A is the transverse area of the filament and I is the second

moment of area. The product EI is also called the flexural rigidity of a beam. In the limit ΔL
→ 0 these expressions tend to continuous elastic and bending energies in terms of strain and

curvature of the filament, respectively. Deriving the potential energies with respect to the

coordinate rn, elastic and bending forces are obtained,

which are applied to the corresponding bead n.

The viscous force is given by,

with an=1 for 1 ≤ n ≤ (N−1), and an=½ for the end beads n = 0 and n = N, corresponding to the

drag on both ending semi-segments. The parameter c is the drag coefficient per unit length3 ,

expressed as:
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that corresponds to a cylindrical filament of length L and diameter 𝜙, and η is the medium

dynamical viscosity.

Moreover, we considered eventual external active point-like forces Fact acting on the beads.

Supplementary Fig. S1 illustrates the model.

Supplementary Fig. S1. Schematic representation of a semiflexible filament in a viscous medium. FE, FB and Fact

are the elastic, bending and active forces considered in the model

Neglecting the inertia of the filament, we get (N + 1) coupled first-order differential

equations,

from where we computed the instantaneous velocity for each bead as:

From an initial configuration of the beads (t = 0), and the instantaneous velocities, the new

positions of the beads after a sufficiently small time interval 𝛿t can be inferred. These would

be the new positions at t = 𝛿t given by the deterministic forces. On top of this, the thermal

brownian motion given by the environment produces a normal diffusion whose variance in

each direction is proportional to 𝛿t 4. Therefore, the new positions were computed as
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with kB the Boltzmann constant and T the absolute temperature. Here, wn represents a

vector of independent Gaussian random numbers with zero mean and unit variance4.

Iterating the procedure, the evolution of the filament under the action of internal (elastic,

bending) and external forces (drag, active, and thermal) can be obtained. The value of 𝛿t
should fulfill the following condition to converge:

The simulations of this system were carried out using a Python code developed in our group,

and the parameters used in the numerical model are displayed in Supplementary Table S1.

These parameter values emulate the morphological and mechanical features of mitochondria

in X. laevis melanophores, as reported in previous studies 5,6.

Supplementary Table S1. Parameters used in the simulations.

Preliminary tests were conducted where the equilibrium distance between beads (∆L) and
the iteration time (𝛿t) were adjusted to determine the values that guarantee the stability of

the simulations for the different considered viscosities (see Supplementary Table S2)

Supplementary Table S2. Distance between beads and integration time step used in the simulations.

We performed simulations of semiflexible filaments starting from initial configurations that

reproduced the shapes of mitochondria tracked from the microscopy images (Supplementary

Fig. S2). Simulated filament shapes were saved with a sampling time = 1 s, the same orderΔ𝑡 
of magnitude as the experimental ones.

First of all, we found that the simulations done with η = 103 cP better approximate the

temporal evolution of experimentally recovered shapes. In the same total time, the filaments

in the more viscous medium showed almost no variation, while the shapes with a medium

viscosity of 102 cP exhibited greater mobility. Although this result cannot be generalized for

every experimental tracking data, we decided to use a viscosity of 103 cP to explore the

effects of active forces acting on the filaments.
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Supplementary Fig. S2. Representative simulation results. Two mitochondria shapes recovered from the

tracking of mitochondria in X. laevis melanophores (boxes) are compared to three simulations starting from the

same initial conditions (cyan curve) with viscosities: 102, 103and 104 cP.

Active forces were modeled as piconewton kicks acting in aleatory directions on individual

randomly chosen “active” beads (Supplementary Fig. S3). The magnitude and duration of the

applied forces were sampled from Poisson distributions, with mean values of 2 pN and 3

seconds, respectively. Different force configurations, i.e. fraction of “active” beads, were

explored and used for the analysis of the event detection algorithm’s performance.

Supplementary Fig. S3. Representative simulation results with two different force patterns. The initial

filament’s shape was the same in both simulations (cyan curve) and viscosity was 103 cP. The arrow indicates the

direction of the active forces.

2. Anomalous diffusion exponents and apparent diffusion coefficients within X. laevis

melanophore cells

We used a Gaussian mixture model8 to analyze the anomalous diffusion exponents . Thisα
model assumes that the data are a combination of samples obtained from M normal
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distributions with mean 𝞪m (m = 1, ..., M). The multimodal distribution f( ) can be expressedα
as:

where pm (m = 1, ..., M) represents the relative size of the m-subpopulation with:

The center 𝞪m of each subpopulation (i.e. mode) is a local maximum of the density

distribution. The maximum likelihood estimators of the parameters (σ, 𝞪m, pm) were obtained

using the Gaussian Mixture object from the Scikit learn Mixture package sklearn.mixture
in Python9. The model was selected following the Akaike information criterion10. The

parameters' errors were computed using a bootstrap procedure.

We tested models with 1 and 2 modes. Supplementary Fig. S4 shows the kernel density of α
and the models with M = 1 and 2 that better fit the data. In order to select which model

described better each experimental distribution, we asked that every population fraction (for

the case M = 2) was over 0.1 and that the confidence intervals of the mode's mean values did

not overlap.

We found that all conditions but latrunculin-B treatment, could be well fitted by a single

normal distribution (M = 1) with a mean value around = 1. For the case of latrunculin-Bα
treated cells, we found that a bimodal distribution (M = 2) fitted the data better, indicating

the presence of two different populations, notably a significant superdiffusive one. The

parameters of the chosen models are displayed in Supplementary Table S3.

Supplementary Table S3. Gaussian mixture model parameters. μm and σ correspond to the mean position and

standard deviation of gaussian m, respectively. fm is the fraction representing the contribution of gaussian m to

the overall distribution. Errors were computed following a bootstrap procedure with 100 repetitions. Asterisks

denote significant differences (p-value < 0.05) between data sets and control condition, as described in

Methods.
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Supplementary Fig. S4. Anomalous diffusion exponent ( ) distribution. The exponents obtained for eachα
experimental condition (light blue) were quantitatively analyzed as described above considering a mixture of

Gaussian functions with one (violet dashed) or two modes (solid bordeaux and dashed orange lines).

We also determined the apparent diffusion coefficients as the D* values whose

corresponding , as shown in Supplementary Fig. S5 and Supplementary Table S4.α ≃  1

Supplementary Fig. S5. Determination of apparent diffusion coefficients (Dapp). For each experimental

condition, Dapp were determined as the D* values whose corresponding , as indicated by the light blueα ≃  1
box in (a). Asterisks denote significant differences (p-value < 0.05).
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Supplementary Table S4. Apparent diffusion coefficient. Asterisks denote significant differences (p-value<0.05)

between data sets and control condition, as described in Methods. N is the number of data considered for each

condition.
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3. Events detection in the CSD data

As discussed in the manuscript, events in the CSD plots correspond to outliers in the K

distribution. However, a single event can be associated with multiple outliers. We

developed an algorithm to automatically detect extreme values from the K data, and

define single events based on a clustering criterion applied to these data.

a. Outliers detection from K data

We started from a discrete description of the filament, composed of material points,𝑁
𝑏

whose and coordinates at different times are obtained either through tracking or𝑥
𝑏

𝑦
𝑏

𝑡

as a result of numerical simulations.

We computed using the following equation:𝐾(𝑡) 

𝐾(𝑡) = 1/𝑁
𝑏

𝑏=1

𝑁
𝑏

∑  [(𝑥
𝑏
[𝑡 + Δ𝑡] −  𝑥

𝑏
[𝑡]) 2  + (𝑦

𝑏
[𝑡 + Δ𝑡] −  𝑦

𝑏
[𝑡]) 2  ] 

where is the sampling time (typically = 1 s).Δ𝑡 Δ𝑡

According to the simulations discussed in the first section, the distribution of K(t) is

expected to fluctuate around a stationary value in the absence of active forces, due to

thermal agitation. However, if the filament receives a significant kick, extreme values of K

- i.e. K*- will appear in the distribution (Supplementary Fig. S6).

Supplementary Fig. S6: Plot of K over time (top panel) for a simulation with a force of 5 pN applied between

t=25 s and t=30 s (bottom panel). K* denotes the outliers of K that emerge when the force is active.
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To determine the K* outliers from the K data, we used Tukey’s fences11 criterion based on

the interquartile range IQR: any K value larger than the threshold value K0 was considered

an outlier, with K0 given by

K0 = Q3 + q IQR,

where Q3 is the third quartile of the distribution of K, and q is a positive number.

We explored the performance of the criterion for different values of q in numerical

simulations, where the force patterns were known, to determine the best choice for q. We

ran 40 simulations of 150 seconds with a total of 134 force events with random direction

and localization. The magnitude, duration, and number of events per simulation were

sampled from Poisson distributions with mean values: 2 pN, 3 seconds, and 3 events,

respectively.

Supplementary Fig. S7 shows K distributions for three different simulations, alongside the

outliers computed using q = 1 and q = 4. When q = 1, the method detects the outliers in K

that correspond to the action of the forces (True Positives - TP), but it also spots outliers

that do not align with times when a force is applied (False Positives - FP). Conversely,

when q is increased to 4, the method becomes more precise at pointing out the

application of forces when an outlier is detected. However, as the value of q increases,

the method becomes less sensitive to the detection of forces and misses some events

with undetected outliers (False Negatives - FN).

Supplementary Fig. S7: Outlier detection for different q. The columns represent data from three

representative simulations, displaying K over time along with the corresponding K* values (shown in green),

calculated with q = 1 (top panel) or q = 4 (middle panel). Red arrows indicate instances where K* does not

coincide with periods of the force application (false detections). The blue arrow indicates an undetected

outlier (false negative). The periods and magnitudes of the activated forces are displayed in the bottom row.
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To evaluate the performance, we computed two magnitudes: Sensitivity -whether outliers

were detected during periods of active forces- as:

S = TP / (TP + FN)

and False Discovery Rate -whether the detections correspond to actual periods of active

forces:

FDR = FP / (FP + TP).

Both magnitudes take values between 0 and 1. Supplementary Fig. S8 shows detections and

false detections on the simulations based on different thresholds.

Supplementary Fig. S8: Performance evaluation of the force detection method with respect to q. Blue

dots show the Sensitivity (S) of the method in detecting forces, while red dots show the False

Discovery Rate (FDR).

Taking into account that the Sensitivity is almost constant for different values of q, while the

False Discovery Rate decreases drastically as q increases, we decided to use q = 4 for the

calculation of the threshold K0.

b. Determination of events from the outliers' data

Figure S7 shows that, sometimes, more than one outlier is associated with the action of the

same force. We want to group the outliers K* in such a way that each group represents a

single event. This will enable us to count the number of events (kicks) per trajectory.

Following an arbitrary criterion, we define that consecutive outliers are considered part of

the same event. We also consider that two outliers, K*(t1) and K*(t2), are regarded as the

same event if there is only one non-outlier, K, that separates them temporally. In other

words, if the time difference between them is equal or less than two time steps t, they will∆
be considered as a single event. Otherwise, they will be regarded as different events:

● t2-t1 2 t→ K*(t1) and K*(t2) are part of the same event≤ ∆
● t2-t1 2 t→ K*(t1) and K*(t2) are different events> ∆
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Supplementary Fig. S9 illustrates this condition:

Supplementary Fig. S9. Schematic representation of the clustering criteria used to determine events. Outliers

belonging to the same event are represented with the same color.

Finally, Supplementary Fig. S10 displays the events obtained from the analysis of the data

shown in Supplementary Fig. S7, with q = 4.

Supplementary Fig. S10: Events detection with q = 4. Each column of the panel represents data from

the simulations shown in Supplementary Fig. S7. The top row shows K alongside the identified K*

events that are color-coded to indicate their association with a specific detected event using q = 4 and

following the criterion illustrated in Supplementary Fig. S9. In the second row is the CSD with the

same color coding applied to values that are deemed to belong to the same force application event.

The periods and magnitudes of the active forces are displayed in the bottom row.
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c. Distribution of the stationary values of K

We computed the median of K(t) for each trajectory as a robust estimate of the stationary (basal)

values of K. Supplementary Fig. S11 shows the boxplot distribution of these median for each

experimental condition.

Supplementary Fig. S11: Median (med) of K values for each condition and sampling time (Table 1).
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4. Description of Supplementary Videos

Supplementary Video S1: X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.9 frames/s

(190 frames) in CTRL condition. Pixel size: 0.103 μm. Related to Fig. 2a.

Supplementary Video S2: X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.8 frames/s

(100 frames) in VIM– condition. Pixel size: 0.101 μm. Related to Fig. 2b, sub-diffusive example.

Supplementary Video S3: X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.6 frames/s

(140 frames) in NOC condition. Pixel size: 0.063 μm. Related to Fig. 2b, diffusive example.

Supplementary Video S4: X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.6 frames/s

(150 frames) in CTRL condition. Pixel size: 0.055 μm. Related to Fig. 2b, super-diffusive

example, and Fig. 3b.

Supplementary Video S5: X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.9 frames/s

(150 frames) in CTRL condition. Pixel size: 0.063 μm. Related to Fig. 3a.

Supplementary Video S6: X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.6 frames/s

(100 frames) in NOC condition. Pixel size: 0.063 μm. Related to Fig. 3a.

Supplementary Video S7. X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.90 frames/s

(80 frames) in LAT condition. Pixel size: 0.103 μm. Related to Fig. 3a.

Supplementary Video S8: X. laevis melanocyte expressing EGFP-XTP (green: microtubules) and

incubated with MitoTracker Deep Red FM (red: mitochondria) were imaged at 0.82 frames/s

(120 frames) in VIM– condition. Pixel size: 0.101 μm. Related to Fig. 3a.
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