
Supplemental Notes

Supplemental Note 1

The following was used to generate the gene counts for Supplemental File 1.

intersectBed -c -a GRCh38_mrg_full_gene.bed -b patho_hifi_ilm.tsv > \
GRCh38_mrg_full_gene_FNcounts.bed

grep Illumina patho_hifi_ilm.tsv | \
intersectBed -c -a GRCh38_mrg_full_gene.bed -b stdin > \
GRCh38_mrg_full_gene_FNcountsIllonly.bed

grep both patho_hifi_ilm.tsv | \
intersectBed -c -a GRCh38_mrg_full_gene.bed -b stdin > \
GRCh38_mrg_full_gene_FNcountsboth.bed

grep SNV patho_hifi_ilm.tsv > patho_hifi_ilm_SNV.tsv

intersectBed -c -a GRCh38_mrg_full_gene.bed -b patho_hifi_ilm_SNV.tsv > \
GRCh38_mrg_full_gene_SNV_FNcounts.bed

grep Illumina patho_hifi_ilm_SNV.tsv | \
intersectBed -c -a GRCh38_mrg_full_gene.bed -b stdin \
> GRCh38_mrg_full_gene_SNV_FNcountsIllonly.bed

grep both patho_hifi_ilm_SNV.tsv | \
intersectBed -c -a GRCh38_mrg_full_gene.bed -b stdin > \
GRCh38_mrg_full_gene_SNV_FNcountsboth.bed

paste GRCh38_mrg_full_gene_FNcounts.bed \
GRCh38_mrg_full_gene_FNcountsIllonly.bed \
GRCh38_mrg_full_gene_FNcountsboth.bed \
GRCh38_mrg_full_gene_SNV_FNcounts.bed \
GRCh38_mrg_full_gene_SNV_FNcountsIllonly.bed \
GRCh38_mrg_full_gene_SNV_FNcountsboth.bed \
GRCh38_mrg_full_gene_merged_FNcounts.txt

Where GRCh38_mrg_full_gene.bed is a list of all genes in GRCh38 (found in
https://github.com/usnistgov/giab-cmrg-benchmarkset/blob/master/data/manually_creat
ed_files/GRCh38_mrg_full_gene.bed) and patho_hifi_ilm.tsv (Supplemental File 2)
is a list of pathogenic variants with >90% likelihood of being missed by Hifi or Illumina
as calculated by Stratomod.

https://github.com/usnistgov/giab-cmrg-benchmarkset/blob/master/data/manually_created_files/GRCh38_mrg_full_gene.bed
https://github.com/usnistgov/giab-cmrg-benchmarkset/blob/master/data/manually_created_files/GRCh38_mrg_full_gene.bed


Supplemental Note 2

Predicting Precision in PCR-free vs PCR-plus

We asked if StratoMod could be used to predict where Illumina PCR-plus and PCR-free
sequencing technologies have higher sequencing or mapping error rates that could produce
incorrect variant calls (ie lower precision) (Supp Fig 6a). This choice in comparison was
motivated by the fact that PCR amplification is known to produce insertions and deletions in
homopolymer repeats (stutter1) (Supp Fig 6b) and thus we hypothesized that the model would
be able to precisely show the effect of homopolymer length on error rate, in addition to other
repetitive genomic contexts.

We trained two models (for SNVs and INDELs) using Illumina PCR-free/plus VCF files. These
models differed from those previously trained in “use-case 1” above in several ways. First, we
used FP instead of FN as the error class, since in this case we were concerned with sequencing
error modalities that could falsely give rise to variants. Second, we used all candidate sites
(before filtering) from the DeepVariant VCFs since DeepVariant would likely filter out the
sequencing errors we wished to interrogate. Third, we included DP and VAF as features in our
model, bringing the total feature count up to 24 (see Supp Table 1). For these models, we
observed that both precision and recall (measured by AUC) were similar between HG004 and
HG007 (with HG007 lagging slightly behind as expected given it was the holdout dataset) (Supp
Fig 6c, Supp Fig 7). The negative class in the training sets for SNV and INDEL were 63% and
85% percent respectively (Supp Table 2).

Overall, the largest driving features (unsurprisingly) were VAF and DP as read from the input
VCF files (Supp Fig 7), as many errors had low VAF and abnormally low or high DP (Supp Fig
8). However, other features with large effect included homopolymer length and homopolymer
imperfect fraction (Supp Fig 7a). When observing the homopolymer length feature profiles
directly from the model, we found that the precision generally increased with increasing length
as expected from PCR stutter and sequencing biases. For INDELs, PCR-plus generally
predicted more errors, with relatively small interactions between PCR and homopolymer length
(Supp Fig 6d). Most homopolymers fell between the lengths of 0 to 50 or 0 to 15 bp for A/T and
G/C homopolymers respectively, with the number of variants decreasing exponentially with
increasing length and ~100x more variants in A/T than in G/C homopolymers longer than 10 bp
(Supp Fig 9). Previous work had found that the number of incorrectly called INDELs in A/T
homopolymers was much larger than in G/C homopolymers,2 which was reflected in the feature
rankings by Stratomod, but Stratomod also showed that G/C homopolymer length similarly
predicts more incorrectly called variants. Additionally, these feature plots provide more precise
information regarding the length at which a certain relative error threshold will be crossed. In the
case of SNVs, A homopolymers became more error-prone compared to the non-homopolymer
baseline (the dotted lines in Supp Fig 6d) after 10 bp; G homopolymers of any length were
more error-prone (note that both A and G homopolymer profiles were similar to their
complements, see Supp Fig 9). Increased SNV error rates in G/C homopolymers have been
attributed to inhibition of base elongation in GC-rich regions during sequencing by synthesis3 or
to formation of non-B-DNA stem-loop motifs at G quadruplexes.4 For INDELs, these thresholds
were conditional on the sequencing technology, where PCR-free and PCR-plus were more
error-prone than baseline after 13 and 11 bp respectively for A homopolymers. For G
homopolymers this drop off occurred around 10 bp for both PCR-free and PCR-plus (note that in
the case of C homopolymers these thresholds were 12 and 10 bp for PCR-free and PCR-plus
respectively, see Supp Fig 9).

https://paperpile.com/c/ZIo0R7/ux4Do
https://paperpile.com/c/ZIo0R7/OMdGe
https://paperpile.com/c/ZIo0R7/VdF33
https://paperpile.com/c/ZIo0R7/gv9jr


For INDELs, we also observed an unexpected increase from baseline (i.e., higher precision
relative to non-homopolymers) in both A and G homopolymers for short lengths of between 4
and ~10 bp, with a peak around 8 bp. Because the EBM score is a function of both correct and
incorrect variant call rates, we hypothesized that the rate of correct calls increases faster than
the rate of sequencing errors in short homopolymer regions. Supporting this hypothesis, the
ratio of correct to incorrect calls was higher for short homopolymers than for non-homopolymers,
which may be caused by the higher rate of true INDEL variants in homopolymers (e.g., 39% of
benchmark INDELs are in homopolymers 7 to 10 bp, while only 1.7% of the benchmark regions
are in these homopolymer regions, Supp Table 3). Indeed, when plotting the correct and
incorrect call rates per base pairs covered by each homopolymer size, we saw that the correct
call rate increased faster than the incorrect call rate for small homopolymers. As the
homopolymer length increased, the incorrect call/bp rate increased more than the correct call/bp
rate, which was reflected in the decreased EBM score. Interestingly, both rates decreased for
very large homopolymers, likely because large homopolymers are more likely to be excluded
from the v4.2.1 GIAB benchmark, reflecting a limitation of the current training dataset (Supp Fig
10). These results explain the increase in EBM score for short homopolymers, followed by a
decrease, before flattening out due to the small number of very long homopolymers included in
the v4.2.1 benchmark. This deep-dive into a counter-intuitive result highlights both the
challenges in interpreting the model’s results, particularly that it is modeling the ratio of correct
to incorrect variant calls rather than the incorrect call rate per genomic bp, as well as its power
in identifying unexpected associations of features with error rates.

We also noticed that the EBM INDEL predictions had some sharp downward peaks for particular
values of segmental duplication length and identity (Supp Fig 11a). When examining variants in
the 2 largest peaks near 20 kbp, we found that they were caused by segmental duplication
between chr7:142,450,000-142,526,000 on GRCh38 inside the T cell receptor beta locus. This
region has a known issue in GRCh38, and the patch contains a ~20 kbp insertion, which is an
extra tandem copy of the segmental duplication and causes many incorrect variant calls in
Illumina and HiFi (Supp Fig 11b). It also intersects with 2 types of problematic reference regions
identified in the recent T2T variants work: GRCh38 collapsed duplications and regions with
many variants filtered by gnomAD due to abnormal inbreeding coefficient, both of which
annotate regions with higher likelihood of falsely calling a variant due to reads from extra copies
of the region that are in most genomes but missing from the reference.5 This result highlights a
strength of this model to identify unexpected relationships between features and errors, and
also suggests the possibility of adding new features associated with reference errors to future
versions of the model.

These results indicate that these models can be used to predict precision with respect to a
meaningful, interpretable genomic context, which in turn could be useful in defining more
accurate stratifications.

Comparison of EBM performance to DeepVariant performance within candidate regions

We next compared the accuracy of StratoMod’s precision prediction to DeepVariant’s, for the
candidates generated by DeepVariant. We first examined the calibration of DeepVariant’s
genotype quality score (GQ) (Supp Fig 12a) and StratoMod’s probability score (Supp Fig 12b).
As expected from DeepVariant’s richer information used for classification, it provided useful
phred-based quality scores up to empirical scores of >50 (1 in 100,000 error rate) vs. the v4.2.1
benchmark, though it was somewhat overconfident for INDELs. StratoMod provides
well-calibrated scores up to about 35 (1 in 3000 error rate) for SNVs and 25 (1 in 300 error rate)
for INDELs. In Supp Figure 12b, we assign a label on “1” to any StratoMod probability > .5 and

https://paperpile.com/c/ZIo0R7/K7XmC


“0” otherwise. We then made a Venn diagram showing intersections between DeepVariant and
StratoMod predicted precision against the benchmark when combining SNVs and INDELs for
PCR-free and PCR-plus Illumina. 99.4% of the benchmark variants were classified as correct
calls by both StratoMod and DeepVariant. Of the remaining 0.6%, most (36,675) were classified
incorrectly as incorrect calls by StratoMod and correctly as correct calls by DeepVariant,
whereas 1,765 were correctly classified as correct calls by StratoMod and not DeepVariant. In
addition, StratoMod incorrectly classified 44,629 variants as correct that were correctly filtered
by DeepVariant, many more than the 3,930 uniquely incorrect correct calls in DeepVariant.
When intersecting these uniquely mis-classified variants with features, DeepVariant uniformly
performed better, but ~25% of incorrect variants uniquely classified as correct by DeepVariant
were in regions difficult to map with 250 bp reads, suggesting DeepVariant may benefit from
additional genome mappability features.

Comparison of EBMs to other commonly used models

We compared the performance of an EBM model to XGBoost (XGB), Random Forest (RF),
Logistic Regression (LR), and Decision Tree (DT) models in classifying variants as errors using
the same training and testing data. In all cases, performance was comparable when examining
the area under the curve (AUC) for the receiver operator characteristic (ROC) curve and
precision-recall (PR, note that “precision” and “recall” here refer to classification performance
and not the predicted precision or recall represented by StratoMod’s output) curves (Supp
Table 4). Note that the RF SNV model did not complete within the constraints imposed by our
compute cluster.

While similar, StratoMod performed slightly better than both DT and LR models and slightly
worse than RF and XGB models for both SNVs and INDELs. This is not surprising considering
that RF and XGB are much more flexible than EBMs, and EBMs in turn are more flexible than
LR models. DT models might be more flexible than EBMs given that they have less restrictions
when building trees, but DT models also tend to be brittle as they are not ensemble models
(unlike EBMs). Notably, the models that did perform slightly better than EBMs were also
blackbox models (e.g. unable to be inspected analogously to EBMs).

These data demonstrated that for this use case, using EBMs for the classification algorithm in
StratoMod performed similarly to other commonly used models. Slight performance benefits
may be had with blackbox models such as random forest or XGBoost, albeit with a loss of
interpretability and potentially much higher compute requirements.



Supplemental Note 3

The data for Figure 5 was generated using the following command:

bcftools isec -p <out_dir> -O z --threads 8 gnomad.vcf.gz clinvar.vcf.gz

The clinvar.vcf.gz file was the downloaded ClinVar release vcf modified to have the
clinical significance in the INFO column and StratoMod’s predicted probability in the
SAMPLE/FORMAT fields.

The isec command above produces 4 files corresponding to the overlap between the
two vcf files. The last two files (named 0002 and 0003) are Supplemental Files 5 and 6
respectively for INDELs and 7 and 8 for SNVs. Files 0002 and 0003 denote shared
variants between gnomAD and ClinVar respectively.



Supplemental Note 4

Mathematical interpretation of StratoMod’s predictions

StratoMod’s probability may be interpreted in several ways depending on the variant calling
results that are used to train the model. These are briefly outlined in Figure 1c but are
discussed more precisely here.

When comparing a query variant callset to a benchmark callset, a variant can be labeled as a
true positive (TP, “in both”), false positive (FP, “only in query”), or false negative (FN, “only in
benchmark”). Since StratoMod is a binary classifier, it can only assess two of these outcomes at
once, which means either we need to choose two labels, or we need to combine two labels.
Logically, TP is always the positive class, and the negative class can either be FN, FP, or both.

Subsetting or combining these labels has different consequences for how one must interpret
StratoMod’s output. Considering only TP and FN, this means StratoMod is predicting “the
likelihood of a variant being in both the query and benchmark given that it is in the benchmark.”
In mathematical terms, this is P(Q|G) where Q = variant in query and G = variant
in genome (where a benchmark is a special genome for which the truth is known and thus a
model can be trained). This follows because G can only have variant calls labeled as TP or FN,
and Q can only have TP calls (the query also has FP calls but these are subset out of the
training set). Furthermore, this is analogous to recall, since recall = TP / (FN + TP).
Thus subsetting StratoMod’s training set to TP and FN leads to its output reflecting the predicted
recall of a variant.

This interpretation should not change when making predictions using a ClinVar VCF which is not
a benchmark itself. In this case, StratoMod is regarding each ClinVar variant as if it exists in the
target genome being sequenced via the pipeline that generated the training data for StratoMod,
and then predicting how likely it will be detected in the query.

By similar reasoning, subsetting to FP and TP leads to StratoMod’s output reflecting predicted
precision. This is exactly the reverse of the predicted recall above. Since TP can only be in the
benchmark and FP and TP can be in the query, it follows that StratoMod’s prediction is “the
likelihood of a variant being in the genome given it is in the query” or P(G|Q). Since
precision = TP / (TP + FP), StratoMod’s output represents predicted precision.

Including FN and FP in the negative class is less intuitive but still has a useful interpretation. In
this case, StratoMod is predicting “the likelihood of a variant being in both the benchmark and
query given it is in either.” Probabilistically this is P(Q and G|Q or G) and equivalently TP /
(TP + FP + FN), which is the Jaccard index (the “overlap” between sets).

It should be noted that the probabilities above are conditional and not the same as the
probability of seeing a given variant calling result. For example, the “probability of a true
positive” (in both benchmark and query) is P(Q and G), which StratoMod cannot produce.
However, it is easy to derive this from StratoMod’s predicted recall if one has a prior likelihood of
the variant existing in the genome, P(G). In that case, P(Q and G) = P(Q|G) * P(G) by
the chain rule where P(Q|G) is StratoMod’s output. One could similarly derive the probability of
a false negative by P(!Q and G) = P(!Q|G) * P(G) = (1 - P(Q|G)) * P(G).



Supplemental figures:



Supplemental Figure 1: Global importance plots (a) and performance curves (b) for
Hifi vs Illumina Clinvar experiment. TPR = true positive rate. Train was done on 80% of
“HG002_Q100” and test was done on 20% of “HG002_Q100” and the whole of the other
genomes, which were all in terms of the v4.2.1 Genome in a bottle benchmark. Note:
“VAR_seqtech” is a different name for “VCF_input” as described in Supplemental Table
1. Note that “precision” and “recall” (aka true positive rate, TPR) here are classification
performance metrics and are not the same as predicted precision or recall represented
by StratoMod’s output.



Supplemental Figure 2: Performance metrics for Hifi vs Illumina recall model. A)
calibration curves where the dotted black line is perfect calibration and blue dotted line
is the 90% threshold used in the analysis. B-C) Counts for each bin shown in (A) for test
data set (B) and clinvar variants (C) D) AUC under precision-recall (PR) and
receiver-operator (ROC) curves for all models. D) Raw ROC and PR curves for each
genome and platform. Note that “precision” and “recall” (aka true positive rate, TPR)
here are classification performance metrics and are not the same as predicted precision
or recall represented by StratoMod’s output.



Supplemental Figure 3: Performance metrics for Element VG vs BWA recall model a)
ROC and PR curves b) feature importance plots c) calibration curves (dotted line is
perfect calibration). Note: “VAR_mapper” is a different name for “VCF_input” as
described in Supplemental Table 1.



Supplemental Figure 4: StratoMod utilized to compare different versions of emerging
technologies (Ultima versions 2022 vs 2024) in terms of their predicted recall. a)
homopolymer profiles for INDELs and SNVs b/t old and new. Error bars and ribbons
around step plots are model error. b) global feature plots for models and c) performance
curves for each model. Note: “VAR_seqtech” is a different name for “VCF_input” as
described in Supplemental Table 1. Note that “precision” and “recall” (aka true positive
rate, TPR) here are classification performance metrics and are not the same as
predicted precision or recall represented by StratoMod’s output.



Supplemental Figure 5: StratoMod utilized to compare different versions of ONT
base/variant callers (guppy4+clair1 and guppy5+clair3) in terms of their predicted recall
for SNVs and INDELs using HG003 as the benchmark, specifically for a) homopolymer
length profiles and b) homopolymer imperfect fraction profiles. Error bars and ribbons
around step plots are model error



Supplemental Figure 6: StratoMod revealed context-specific regions where incorrectly
called variants are likely to occur and show relative performance of PCR-free and
PCR-plus technologies. a) Overview of experimental setup. Two VCFs from PCR-free
and PCR-plus were compared to the GIAB benchmark, concatenated, and annotated
before fitting SNVs and INDELs in the EBM framework. HG005 was annotated and
used to test the EBM model. b) IGV session depicting an incorrect variant call identified
by this model c) performance characteristics of HG004 (train) and HG007 (test). d) EBM
plots showing A and G homopolymer profiles. The x axis in all plots was truncated to
only show homopolymers <50bp and <15bp for A and G respectively. The bar plots on
the left of each plot show the value for non-homopolymers (“missing”). The y axis in the
top row is the log odds of a predicted correct variant call. Each colored dotted line in the
top row is the “baseline” error rate for the corresponding sequencing technology. Error
bars and ribbons around step plots are model error



Supplemental Figure 7: Performance of PCR-free/plus models. a) global feature plots
and b) ROC and PR curves. Note that “precision” and “recall” (aka true positive rate,
TPR) here are classification performance metrics and are not the same as predicted
precision or recall represented by StratoMod’s output.



Supplemental Figure 8: VAF and DP feature plots for both SNV and INDEL precision
models.



Supplemental Figure 9: Complementary homopolymers for the precision model for
both SNVs and INDELs.



Supplemental Figure 10: Decomposition of homopolymer features for INDELs to better
understand the EBM scores. A) total bases covered for each base homopolymer
stratified by length B) number of variants normalized to total bases covered (from A) for
each base stratified by length



Supplemental Figure 11: Explainable segdup features facilitated identification of
mapping errors in known hard regions. A) The INDEL feature profiles for the precision
model for segdup identity and length (note the peak at ~20k). B) IGV screenshot
showing incorrectly called variants due to mapping errors from a duplicated region in
HG004/HG007 due to an error in GRCh38 missing a copy of genes in this T cell
receptor beta locus.



Supplemental Figure 12: Comparison of Stratomod calibration and accuracy relative to
deep learning-based method DeepVariant. a) Predicted genotype quality score (GQ)
from DeepVariant plotted against an empirically derived GQ measure,
-10*log10(FP/(FP+TP)), using the GIAB v4.2.1 small variant benchmark. b)
PHRED-scaled plots depicting calibration for how well StratoMod confidently predicts
correct variant calls (or values near 1 for its predictions) similar to a typical genotype
quality score c) Comparison of StratoMod and DeepVariant performance against the
benchmark values for the candidate sites from DeepVariant used in our model.



Supplemental Figure 13: a) Histograms of Clinvar variants and their predicted error
rate that either corresponded to a PASS gnomAD variant (“PASS”), filtered gnomAD
variant (“FILTERED”) or no gnomAD variant (“MISSING”). b) Variants binned by
predicted error rate and stratified by region type and allele count. Y axis is the fraction of
variants per bin that are within the denoted region type.



(a)

(b)

(c)



(d)

Supplemental Figure 14: Examples of gnomAD variants on GRCh38 chr1 that were
filtered despite having a low error rate predicted by Stratomod (score>0.99). Upon
curation, these generally fell in two categories: (a-b) variants in a very small number of
samples, typically one or two, that appear likely to be true and were likely incorrectly
filtered by gnomAD. (c-d) variants with evidence of systematic errors indicated by strand
bias in homopolymers, and were generally called in more samples than the first
category but still generally <100.



Supplemental Figure 15: Percent of variants which have no coverage by our
engineered feature set in the a) Illumina PCR-free/plus precision model and b) the
HiFi/Illumina recall model. Note that DP and VAF were excluded from this analysis, as
they are expected to cover all variants in the callset but not variants in the benchmark
which were missed.



Supplemental Tables

Supplemental Table 1: Overview of features used in each model. Feature names
containing a string bracketed like <X> (in red) denote shorthand to describe features
that are the same in all but one way.
Feature Name Description Domain Models

VCF_input * The VCF file corresponding to the origin
of the variant; used to represent the
different technologies/pipelines,
mappers, library preps, etc (eg
PCR-free vs PCR-plus or Hifi vs
Illumina)

categorica
l

all

VCF_VAF The VAF (Variant Allele Fraction) value
as recorded in the VCF file by the
variant caller

[0-1] PCR-free
/plus only

VCF_DP The DP (Depth of Coverage) value as
recorded in the VCF file by the variant
caller

[1-inf];
integer

PCR-free
/plus only

VCF_indel_length The length of an INDEL (0 in the case
of SNVs)

[-inf-inf];
integer

all

HOMOPOL_<base>_length (where
<base> is either A, T, G, or C)

The length of a homopolymer region [1-inf];
integer

all

HOMOPOL_<base>_imperfect_frac
(where <base> is either A, T, G, or C)

The fraction of bases in a homopolymer
that are not <base>

[0-1] all

TR_length The length of a tandem repeat region [1-inf];
integer

all

TR_unit_size_max The size of a single repeat unit that is
repeated TR_unit_copies times in a
tandem repeat region. For overlapping
regions the maximum was used.

[1-inf];
integer

all

TR_identity_min The similarity of each unit across the
tandem repeat (corresponds to
‘perMatch’ in the TRF-based UCSC
simple repeats database). For
overlapping regions the minimum was
used.

[1-inf]; all

TR_percent_AT_median The percentage of the tandem repeat
region which is an A or T base

[0-100];
integer

all

REPMASK_SINE TRUE is the variant intersects with a
SINE

boolean all

REPMASK_LTR TRUE if the variant intersects with an
LTR

boolean all



REPMASK_LINE_length The length of the LINE in which this
variant is found

[1-inf];
integer

all

MAP_difficult_<X>bp (where X is
either 100 or 250)

TRUE if the variant intersects with a
hard-to-map region for read pairs of
length X.

boolean all

SEGDUP_size_max The length of the segmental duplication
region. For overlapping regions, the
maximum was used.

[1000-inf];
integer

all

SEGDUP_identity_mean The similarity of this segmental
duplication to others (corresponds to
“fracMatchIndel” from the genomic
super dups database). For overlapping
regions the mean was used.

[0-1] all

SEGDUP_count The number of segmental duplications
overlapping this region.

[1-inf];
integer

all

* The feature “VCF_input” was renamed in later versions of StratoMod to make it less
abstract. In some models this feature is named “VAR_seqtech” or “VAR_mapper.” Each
of these has the same meaning; they denote that the VCF files used for training differ in
the process used to generate them, and this variable is meant to capture this difference.
For the sake of brevity we are only referring to these by the name “VCF_input” in this
table and the main text. The few figures where this name change applies are also
footnoted for clarification.



Supplemental Table 2: Model training summary
N Rows Percent

Positive
Class

Variant Type Subsets Prediction

2939508 94.4 INDEL Hifi = 1452626; Illumina = 1486882 recall

11412592 98.83 SNV Hifi = 5718674; Illumina = 5693918 recall

2406562 97.62 INDEL VG = 1202820; BWA = 1203742 recall

11407256 99.24 SNV VG = 5704070; BWA = 5703186 recall

2640324 70.16 INDEL R2024 = 1366776; R2022 = 1273548 recall

11388272 97.11 SNV R2024 = 5689340; R2022 = 5698932 recall

2375368 * 63.69 INDEL PCR-free = 929278; PCR-plus = 1446090 precision

12311190
*

85.95 SNV PCR-free = 6177338; PCR-plus = 6133852 precision

383191 92.45 INDEL NA Jaccard
index

1429350 98.06 SNV NA Jaccard
index

* All used the GIAB assembly based small variant benchmark from the
T2T-HG002-Q100v0.9 assembly aligned to GRCh38 under
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/
NIST_HG002_DraftBenchmark_defrabbV0.011-20230725/ except for these, which used
the GIAB v4.2.1 small variant benchmark from
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG00
2_NA24385_son/NISTv4.2.1/GRCh38/

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/


Supplemental Table 3: Homopolymer TP likelihood increase for length 7-10bp
Homopolymer length Number of 1 bp INDELs Number of bp covered by

homopolymer + 5 bp
slop on each side

4 to 6 bp 66134 747,661,356

7 to 11 bp 80261 47,824,121

>11 bp 31624 17,659,926

All benchmark regions 204853 2,765,733,593



Supplemental Table 4: Comparison of EBM performance to those of other popular
machine-learning methods. OOM: out of memory

Variant Metric StratoMod DT LR RF XGB

INDEL ROC 99.5% 99.2% 99.2% 99.8% 99.8%

INDEL PR 99.7% 99.4% 99.5% 99.9% 99.9%

SNV ROC 99.8% 99.4% 99.5% OOM 99.9%

SNV PR 99.9% 99.8% 99.9% OOM 100.0%



Supplemental Table 5: Software packages and versions
Tool/package name Version

rtg-tools (vcfeval) 3.12.1

bedtools 2.30.0

Interpretml (the EBM python package) 0.2.7

samtools 1.14

bcftools 1.19



Supplemental Table 6: VCF files used throughout analysis (all with GRCh38* as
reference)
Description Sample Coverage (X) Source

Illumina PCR-Free HG002 40 https://storage.goog
leapis.com/brain-ge
nomics-public/rese
arch/sequencing/gr
ch38/vcf/hiseqx/wg
s_pcr_free/40x/HG
002.hiseqx.pcr-free.
40x.deepvariant-v1.
0.grch38.vcf.gz

Illumina PCR-Free HG004 40 https://storage.goog
leapis.com/brain-ge
nomics-public/rese
arch/sequencing/gr
ch38/vcf/hiseqx/wg
s_pcr_free/40x/HG
004.hiseqx.pcr-free.
40x.deepvariant-v1.
0.grch38.vcf.gz

Illumina PCR-Plus HG004 40 https://storage.goog
leapis.com/brain-ge
nomics-public/rese
arch/sequencing/gr
ch38/vcf/hiseqx/wg
s_pcr_plus/40x/HG
004.hiseqx.pcr-plus
.40x.deepvariant-v1
.0.grch38.vcf.gz

Illumina PCR-Free HG005 40 https://storage.goog
leapis.com/brain-ge
nomics-public/rese
arch/sequencing/gr
ch38/vcf/hiseqx/wg
s_pcr_free/40x/HG
005.hiseqx.pcr-free.
40x.deepvariant-v1.
0.grch38.vcf.gz

Illumina PCR-Free HG007 40 https://storage.goog
leapis.com/brain-ge
nomics-public/rese



arch/sequencing/gr
ch38/vcf/hiseqx/wg
s_pcr_free/40x/HG
007.hiseqx.pcr-free.
40x.deepvariant-v1.
0.grch38.vcf.gz

Illumina PCR-Plus HG007 40 https://storage.goog
leapis.com/brain-ge
nomics-public/rese
arch/sequencing/gr
ch38/vcf/hiseqx/wg
s_pcr_plus/40x/HG
007.hiseqx.pcr-plus
.40x.deepvariant-v1
.0.grch38.vcf.gz

PacBio HiFi HG002 37 https://ftp-trace.ncbi
.nlm.nih.gov/giab/ft
p/data/Ashkenazim
Trio/analysis/PacBi
o_CCS_15kb_20kb
_chemistry2_10312
019/GRCh38/deepv
ariant_HG002_GR
Ch38_15kb_37X_S
equelII.vcf.gz

PacBio HiFi HG005 47 https://ftp-trace.ncbi
.nlm.nih.gov/Refere
nceSamples/giab/re
lease/ChineseTrio/
HG005_NA24631_
son/NISTv4.2.1/GR
Ch38/Supplementa
ryFiles/inputvcfsand
beds/HG005_GRC
h38_1_22_PacBio_
HiFi_DeepVariant.v
cf.gz

PacBio HiFi HG007 21 https://storage.goog
leapis.com/brain-ge
nomics-public/rese
arch/sequencing/gr
ch38/vcf/pacbio_hifi



/HG007.pacbio-hifi.
21x.deepvariant-v1.
0.grch38.vcf.gz

ClinVar n/a n/a https://ftp.ncbi.nlm.
nih.gov/pub/clinvar/
vcf_GRCh38/archiv
e_2.0/2022/clinvar_
20220812.vcf.gz

Ultima R2024 HG002 40 https://giab-data.s3.
amazonaws.com/ult
ima-GIAB-Feb-202
4/DeepVariant_vcfs
/NA24385-Z0027.a
nnotated.AF.vcf.gz

Ultima R2022 HG002 40 https://s3.amazona
ws.com/ultima-sele
cted-1k-genomes-v
cf-only/DeepVariant
_vcfs/HG002_0054
01-UGAv3-1-CACA
TCCTGCATGTGAT
.vcf.gz

Ultima R2022 HG007 40 https://s3.amazona
ws.com/ultima-sele
cted-1k-genomes-v
cf-only/DeepVariant
_vcfs/HG007_0047
31-UGAv3-33-CAT
GCAGCGCTAATG
A.vcf.gz

ONT guppy4+clair1 ** HG003 40 http://www.bio8.cs.
hku.hk/clair3/analys
is_result/ont_guppy
4/2_coverage_subs
ampling/clair/hg003
_40x_clair_filter_q7
48.vcf.gz

ONT guppy5+clair3 ** HG003 40 http://www.bio8.cs.
hku.hk/clair3/analys
is_result/ont_guppy
5/2_coverage_subs



ampling/clair3/hg00
3_40x_clair3.vcf.gz

* GRCh38 from here except where noted:
https://s3.amazonaws.com/rtg-datasets/references/GRCh38.sdf.zip

** GRCh38 from here which has ambiguous bases to work with these specific VCFs:
http://www.bio8.cs.hku.hk/clair3/analysis_result/ont_guppy5/2_coverage_subsampling/c
lair3/hg003_40x_clair3.vcf.gz

https://s3.amazonaws.com/rtg-datasets/references/GRCh38.sdf.zip
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