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0.1 Confusion Matrix

In Figure 1, we present the tabular representation of the confusion matrix. In this context, we

have computed various classification metrics applicable to both binary and multi-class systems.
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Figure 1: The architecture of the confusion matrix. The various classification metrics such as
Accuracy, Precision, Recall, and F1-Score can be derived from this confusion matrix.
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A TPA EAB EAC EAD EAE EAF

B EBA TPB EBC EBD EBE EBF

C ECA ECB TPC ECD ECE ECF

D EDA EDB EDC TPD EDE EDF

E EEA EEB EEC EED TPE EEF

F EFA EFB EFC EFD EFE TPF

Table 1: Confusion matrix for six class system

Various classification metrics are commonly defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2 × Precision × Recall

Precision + Recall
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For many class system, one can define the overall Accuracy, class wise Precision, Recall, and

F1-Scoreas as follows:

Accuracy =
Total correct classification

All classification
=

TPA + TPB + TPC + TPD + TPE + TPF

TPA + TPB + TPC + TPD + TPE + TPF + EAB + ...+ EFE

PA =
TPA

TPA + EBA + ECA + EDA + EEA + EFA

...

PF =
TPF

TPF + EAF + EBF + ECF + EDF + EEF

RA =
TPA

TPA + EAB + EAC + EAD + EAE + EAF

...

RF =
TPF

TPF + EFA + EFB + EFC + EFD + EFE

F1-ScoreA = 2 × PA ×RA

PA +RA

...

F1-ScoreF = 2 × PF ×RF

PF +RF

Here PA...PF , RA...RF , F1-ScoreA...F1-ScoreF represent the Precision, Recall, and F1-Score for

different classes respectively.

SR1: Robustness of the Random Forest Regression: Within the context of Random

Forest regression, two key hyperparameters play a pivotal role: (i) the number of trees in the

forest, denoted as n estimators in machine learning terminology, and (ii) the minimum number

of samples required in the leaf node of the trees, referred to as min samples leaf. In the preced-

ing section, all the discussed results were based on n estimators = 500 and min samples leaf =

1. To comprehensively assess the impact of altering these hyperparameters, we systematically

varied their values. Figures S1(a) and (b) illustrate the variation of the PCC as a function

of time for different n estimators and min samples leaf, respectively. These figures reveal that

the PCC is not varied too much with different choices of hyperparameters, underscoring the

robustness of our model, particularly with the selected parameter set (n estimators = 500 and

min samples leaf = 1).
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Figure S1: Robustness of Random Forest (RF) regression. The Pearson Correlation
Coefficient (PCC) is depicted as a function of time for varying values of (a) n estimators and
(b) min samples leaf, respectively. Notably, our RF regression model has been configured with
(n estimators = 500 and min samples leaf = 1). The PCC exhibits minimal variation across
different choices of these hyperparameters, suggesting the robustness of our model, especially
within the chosen parameter set. In all the plots, the time is expressed in terms of τBD.
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Figure S2: (a) Pearson Correlation Coefficient (PCC) between actual and predicted MSDs a
function of time. (b) Comparison of the MSD exponents between observed and predicted values
at large time.
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Figure S3: The bar plot of the percentage-wise contributions of common top features with respect
to different macrodomains. Notably, Ori MD exhibits a predominant share of top features, while
Right MD showcases a comparatively smaller proportion of these common top features.
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Figure S4: (a)The distribution of the absolute difference between the experimental and ML-
recreated contact probability matrices for ∆MatP30MM. (b) The distribution of the abso-
lute difference between the experimental and ML-recreated contact probability matrices for
∆MukBEF22MM.
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Figure S5: Comparison of experimental and ML recreated Hi-C matrix for ∆MatP30MM. We
recreated the Hi-C matrix using the trained model on random matrix. The notably low value of
the Pearson Correlation Coefficient (PCC) implies a poor recreation.
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Figure S6: Pearson correlation coefficient (PCC) (ρ) between actual and predicted mean
squared displacements (MSDs) over time for both WT and mutants (∆MatP30MM and
∆MukBEF22MM) chromosomes.
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Figure S7: The bar plot of the percentage-wise contributions of top features with respect to dif-
ferent macrodomains for ∆MatP30MM (a) and ∆MukBEF22MM (b) respectively. (c) The com-
parison of percentage-wise contributions of top features with respect to different macrodomains
for wild-type and mutant bacteria.
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Figure S8: (a) The comparison between experimentally denoted and machine learning (ML)-
derived MDs for latent dimension Ld = 4. (b) respectively. (c) The comparison of the bar plot
of the F1-score with respect to different MDs for two latent dimension (Ld = 3, 4).
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Figure S9: (a) Comparison of experimentally identified macrodomains (MDs) with those derived
from principal component analysis (PCA) and machine learning (ML). (b) The comparison of
the bar plot of the F1-scores for different MDs using the two techniques (PCA and Autoencoder).
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Figure S10: Comparison between the actual random matrix and ML-derived matrix. Here the
dimension of the latent space Ld = 40
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