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0.1 Confusion Matrix

In Figure 1, we present the tabular representation of the confusion matrix. In this context, we

have computed various classification metrics applicable to both binary and multi-class systems.
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Figure 1: The architecture of the confusion matrix. The various classification metrics such as
Accuracy, Precision, Recall, and F1-Score can be derived from this confusion matrix.
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Table 1: Confusion matrix for six class system

Various classification metrics are commonly defined as follows:
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For many class system, one can define the overall Accuracy, class wise Precision, Recall, and

F1-Scoreas as follows:
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Here P4...Pr, Rs...Rp, F1-Score4...F1-Scorer represent the Precision, Recall, and F1-Score for
different classes respectively.

SR1: Robustness of the Random Forest Regression: Within the context of Random
Forest regression, two key hyperparameters play a pivotal role: (i) the number of trees in the
forest, denoted as n_estimators in machine learning terminology, and (ii) the minimum number
of samples required in the leaf node of the trees, referred to as min_samples_leaf. In the preced-
ing section, all the discussed results were based on n_estimators = 500 and min_samples_leaf =
1. To comprehensively assess the impact of altering these hyperparameters, we systematically
varied their values. Figures Sl(a) and (b) illustrate the variation of the PCC as a function
of time for different n_estimators and min_samples_leaf, respectively. These figures reveal that
the PCC is not varied too much with different choices of hyperparameters, underscoring the
robustness of our model, particularly with the selected parameter set (n_estimators = 500 and

min_samples_leaf = 1).
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Figure S1: Robustness of Random Forest (RF) regression. The Pearson Correlation
Coefficient (PCC) is depicted as a function of time for varying values of (a) n_estimators and
(b) min_samples_leaf, respectively. Notably, our RF regression model has been configured with
(n_estimators = 500 and min_samples_leaf = 1). The PCC exhibits minimal variation across
different choices of these hyperparameters, suggesting the robustness of our model, especially
within the chosen parameter set. In all the plots, the time is expressed in terms of 75p.
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Figure S2: (a) Pearson Correlation Coefficient (PCC) between actual and predicted MSDs a
function of time. (b) Comparison of the MSD exponents between observed and predicted values
at large time.
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Figure S3: The bar plot of the percentage-wise contributions of common top features with respect
to different macrodomains. Notably, Ori MD exhibits a predominant share of top features, while
Right MD showcases a comparatively smaller proportion of these common top features.
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Figure S4: (a)The distribution of the absolute difference between the experimental and ML-
recreated contact probability matrices for AMatP30MM. (b) The distribution of the abso-
lute difference between the experimental and ML-recreated contact probability matrices for
AMukBEF22MM.
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Figure S5: Comparison of experimental and ML recreated Hi-C matrix for AMatP30MM. We

recreated the Hi-C matrix using the trained model on random matrix. The notably low value of
the Pearson Correlation Coefficient (PCC) implies a poor recreation.
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Figure S6: Pearson correlation coefficient (PCC) (p) between actual and predicted mean
squared displacements (MSDs) over time for both WT and mutants (AMatP30MM and
AMukBEF22MM) chromosomes.
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Figure S7: The bar plot of the percentage-wise contributions of top features with respect to dif-
ferent macrodomains for AMatP30MM (a) and AMukBEF22MM (b) respectively. (c¢) The com-
parison of percentage-wise contributions of top features with respect to different macrodomains

for wild-type and mutant bacteria.
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Figure S8: (a) The comparison between experimentally denoted and machine learning (ML)-
derived MDs for latent dimension Ly = 4. (b) respectively. (¢) The comparison of the bar plot
of the Fl-score with respect to different MDs for two latent dimension (Lg = 3,4).
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Figure S9: (a) Comparison of experimentally identified macrodomains (MDs) with those derived
from principal component analysis (PCA) and machine learning (ML). (b) The comparison of
the bar plot of the F1-scores for different MDs using the two techniques (PCA and Autoencoder).
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Figure S10: Comparison between the actual random matrix and ML-derived matrix. Here the
dimension of the latent space Ly = 40
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