Supplements to: Biosensor-based growth-coupling as an evolutionary strategy to improve heme export in *Corynebacterium glutamicum*

Aileen Krüger¹, Janik Göddecke¹, Michael Osthege¹, Luis Navratil¹, Ulrike Weber¹, Marco Oldiges¹, Julia Frunzke^{1*}

¹ Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany

* Correspondence: Corresponding Author j.frunzke@fz-juelich.de

Figures:

Figure S1: Growth of different *C. glutamicum* heme-coupled biosensor strains in iron-rich conditions, first round

Figure S2: Growth of different *C. glutamicum* heme-coupled biosensor strains in iron-rich conditions, second round

Figure S3: Screening of evolved :: PhrtB-pfkA clones for elevated hrtB expression

Figure S4: Screening of evolved :: PhrtB-aceE clones for elevated hrtB expression

Figure S5: Correlation of hrtB-expression at 4 h (peak specific fluorescence) and colony size

Figure S6: Screening of evolved :: P_{hrtB}-pfkA and :: P_{hrtB}-aceE strains for increased hrtB expression

Figure S7: qPCR analysis comparing expression levels of *hrtB* in a selection of clones from plate-based selections and fALE in comparison to the *C. glutamicum* WT

Figure S8: Influence on *cydD* single nucleotide polymorphisms on *hrtB* expression

Figure S9: Growth analysis of a cydD-deficient C. glutamicum strain in iron excess

Tables:

Table S1: Oligonucleotides used in this study

Table S2: Further (non-key) mutations established from ALE experiments with *C. glutamicum* $::P_{hrtB}_{pfkA}$ and $::P_{hrtB}_{aceE}$

Figure S1: Growth of different *C. glutamicum* heme-coupled biosensor strains in iron-rich conditions, first round. *C. glutamicum* ATCC 13032 (A) WT, (B) :::P_{hrtB}_pfkA, (C) :::P_{hrtB}_aceE and (D) :::P_{hrtB}_pgi were cultivated overnight in BHI, 30°C. Cultures were diluted by a factor of 10^{-5} in 0.9% NaCl and plated on CGXII agar with 2% glucose and an iron excess of 100 μ M FeSO₄. Photographs were taken after 1, 2, 3 and 4 days of incubation.

Figure S2: Growth of different *C. glutamicum* heme-coupled biosensor strains in iron-rich conditions, second round. *C. glutamicum* ATCC 13032 WT, ::P_{hrtB}_pfkA and ::P_{hrtB}_aceE were cultivated overnight in BHI, 30°C. Cultures were diluted by a factor of 10^{-4} in 0.9% NaCl and plated on CGXII agar with 2% glucose and an iron excess of 100 μ M FeSO₄. Photographs were taken after 1,2 and 3 days of incubation.

Figure S3: Screening of evolved ::PhrtB-pfkA clones for elevated hrtB expression. (A) For a screening after adaptive laboratory evolution (ALE) on plates, the *C. glutamicum* WT as well as 27 evolved ::P_{hrtB}-pfkA strains containing the plasmid pJC1-P_{hrtB}-eyfp were inoculated to an OD₆₀₀ of 1 in CGXII media containing 2% glucose and 100 μ M FeSO₄. Reporter assays visualizing *hrtB*-expression were performed in a microbioreactor cultivation system. Shown is the specific fluorescence (absolute fluorescence/backscatter) in arbitrary units after 4 h of cultivation. n = 1 biological replicates. Orange bars represent the fluorescent signal of clones that were chosen for further replicate analysis, labelled with their clone number above, as they are also listed within the main text. Light blue bars represent those for which also a microscopy picture is representatively available in (B), but were not chosen for further analysis. (B) Images of the plate evolution of several selected clones of varying sizes and fluorescence intensities were captured using using the stereomicroscope Nikon SMZ18 (λ_{Ex} : 500/20, λ_{Em} : 535/30). Arrows indicate the respective clone. (C) As in (A), four clones of the liquid f(luorescent)ALE are shown, with those chosen for further analysis depicted in orange.

Figure S4: Screening of evolved ::PhrtB-aceE clones for elevated hrtB expression. (A) For a screening after adaptive laboratory evolution on plates, the *C. glutamicum* WT as well as 27 evolved ::P_{hrtB}-aceE strains containing the plasmid pJC1-P_{hrtB}-eyfp were inoculated to an OD₆₀₀ of 1 in CGXII media containing 2% glucose and 100 μ M FeSO₄. Reporter assays visualizing hrtB-expression were performed in a microbioreactor cultivation system. Shown is the specific fluorescence (absolute fluorescence/backscatter) in arbitrary units after 4 h of cultivation. n = 1 biological replicates. Orange bars represent the fluorescent signal of clones that were chosen for further analysis, labelled with their clone number above, as they are also listed within the main text. Light blue bars represent those for which also a microscopy picture is representatively available in (B), but were not chosen for further analysis. (B) Images of the plate evolution of several selected clones of differing sizes and fluorescence intensities using stereomicroscope Nikon SMZ18 (λ_{Ex} : 500/20, λ_{Em} : 535/30). Arrows indicate the respective clone.

Figure S5: Correlation of *hrtB*-expression at 4 h (peak specific fluorescence) and colony size. The respective clones from the ALE of ::P_{*hrtB*-*pfkA* as shown in figure S3 are depicted, labeled each above the value point. Colony size in μ m was measured using the measuring tool with the NIS-elements AR 5.30.03 software (Nikon, Japan), while the specific fluorescence was deduced from the microtiter cultivation experiment after 4 h, where specific fluorescence represents the measured fluorescence per backscatter (a.u.).}

Figure S6: Screening of evolved :: P_{hrtB} -pfkA and :: P_{hrtB} -aceE strains for increased hrtB expression. Several evolved clones of *C. glutamicum* (A-B) :: P_{hrtB} _pfkA and (C-D) :: P_{hrtB} _aceE were selected and inoculated together with the WT in triplicates to an OD₆₀₀ of 1 in CGXII media containing 2% glucose and 100 μ M FeSO₄. Backscatter (a.u.) is depicted in (A) and (C), measured in a microbioreactor system. Specific fluorescence as shown in (B) and (D), respectively, is given by measured fluorescence (a.u.) divided by respective backscatter (a.u.). The dotted vertical line represents the timepoint 4 h, as it is summarized in Figure 4 (main text). Clones in grey were not chosen for further analysis. n = 3 biological replicates.

Strain	2-(\DCt_x-\DCt_WT)
pfkA1	32.92 ± 7.34
pfkA3	175.43 ± 53.36
pfkA6	186.81 ± 51.12
aceE4	199.10 ± 81.40
ChrS-Ala245fs	715.17 ± 38.67
pEKEx2- <i>lacI</i> -P _{tac} -hrtBA	1852.53 ± 436.26

Figure S7: qPCR analysis comparing expression levels of *hrtB* in a selection of clones from plate-based selections and fALE in comparison to the *C. glutamicum* WT. The *C. glutamicum* WT, selected clones *pfkA1*, *pfkA3*, *pfkA6* and *aceE4* as well as the pseudokinase variant ChrS-Ala245fs (Krüger and Frunzke, 2022) and a strain harboring the *hrtB*-overexpression plasmid pEKEx2-*lacl*-P_{tac}-*hrtBA* (Heyer et al., 2012) as positive controls were inoculated in 1 mL CGXII medium supplemented with 2% glucose and 100 μ M FeSO₄ in deep-well plates. After 4 h, the culture was harvested in ice-falcons for RNA isolation via the Monarch Total RNA Miniprep Kit (New England BioLabs, Frankfurt am Main). Using the Luna One-Step RT-qPCR Kit (New England BioLabs, Frankfurt am Main) according to manufacturer's instructions, qPCR was performed in a qTower device (Analytik Jena, Jena). Analysis followed using qPCRsoft 3.1 (Analytik Jena, Jena). The housekeeping gene *ddh* served as reference for normalization. Data represents three biological and two technical replicates. Fold-change was calculated according to the 2^{-ΔΔCt} method (Livak and Schmittgen, 2001).

Figure S8: Influence on *cydD* **single nucleotide polymorphisms on** *hrtB* **expression.** The mutations 1380G>T and 1406T>G as found in the ALE experiment were separately introduced into *C. glutamicum*. These strains, as well as the WT, were transformed with the reporter plasmid pJC1-P_{hrtB}-eyfp (Heyer et al., 2012)and inoculated in triplicates to an OD₆₀₀ of 1 in CGXII media containing 2% glucose and 36 μ M FeSO₄, or no FeSO₄ but 2 μ M or 4 μ M hemin. Specific fluorescence is given by fluorescence (a.u.) divided by respective backscatter (a.u.) measured in a microbioreactor system. n = 3 biological replicates.

Figure S9: Growth analysis of a *cydD*-deficient *C. glutamicum* strain in iron excess. (A) The *C. glutamicum* WT (black) as well as the *cydD* deletion strain $\Delta cydD$ (blue) were transformed with the plasmid pJC1-P_{hrtB}-eyfp. These were inoculated to an OD₆₀₀ of 1 in CGXII media containing 2 % glucose and 100 μ M FeSO₄. Growth was monitored as backscatter (a.u.) in a microbioreactor system. n = 3 biological replicates. Respective *hrtB*-reporter output is depicted in Figure 4.

Oligonucleotide	Sequence 5' \rightarrow 3'	Use
A416_term_fw	TTTTGGCGGATGAGAAGA	Terminator
A417_term_rv	CAAAAGAGTTTGTAGAAACGCA	
A418_IR_hrtB_fw	GTTTCTACAAACTCTTTTGGCCACCACGATAGATCAACT	Intergenic
A419_IR_hrtB_rv	ATGATATCTCCTTCTTAAAGTTCATGCGGTGAGTTCTTTTAGTC	region of <i>hrtB</i> and <i>chrS</i>
A414_pfkA_leftflank_fw	CCTGCAGGTCGACTCTAGAGAGAGTCGCCCCGATAAGTTT	Left flank for
A415_pfkA_leftflank_rv	TCTTCTCTCATCCGCCAAAATCTGACCATCTTATTTAATCGCCA	BS <i>pfkA</i>
A420_pfkA_rightflank_fw	TGAACTTTAAGAAGGAGATATCATATGCGAATTGCTACTCTCACG	Right flank for
A421_pfkA_rightflank_rv	TTGTAAAACGACGGCCAGTG ATACCTGCGTGCAGAGCAAT	BS <i>pfkA</i>
A422_hisD_leftflank_fw	CCTGCAGGTCGACTCTAGAG TCCGGTGTCGCTGAAGTTAA	Left flank for
A423_hisD_leftflank_rv	TCTTCTCTCATCCGCCAAAAACCTATTGTATTCCCCACGTAAC	BS hisD
A424_hisD_rightflank_fw	TGAACTTTAAGAAGGAGATATCATATGTTGAATGTCACTGACCTGC	Right flank for
A425_hisD_rightflank_rv	TTGTAAAACGACGGCCAGTG GACAGCCCACACCTCATCAA	BS hisD
A426_pgi_leftflank_fw	CCTGCAGGTCGACTCTAGAG CAGCGGAATCGGCTGGTTG	Left flank for
A427_pgi_leftflank_rv	TCTTCTCTCATCCGCCAAAAGGTGCGTTTATTGGGCTGCT	BS pgi
A428 pgi rightflank fw	TGAACTTTAAGAAGGAGATATCATATGGCGGACATTTCGACCAC	Right flank for
A429_pgi_rightflank_rv	TTGTAAAACGACGGCCAGTGGCTGAGATACCAGCGGTCGC	BS pgi
A434 aceE leftflank fw	CCTGCAGGTCGACTCTAGAG CATGGATTCAACATGAAACCGC	Left flank for
A435_aceE_leftflank_rv	TCTTCTCTCATCCGCCAAAACACGCCGAAGTGCACGAATG	BS aceE
A436_aceE_rightflank_fw	TGAACTTTAAGAAGGAGATATCATATGGCCGATCAAGCAAAACTTG	Right flank for
A437_aceE_rightflank_rv	TTGTAAAACGACGGCCAGTGCCTCCATGAATGCACGTGCG	BS aceE
M19	CGCCAGGGTTTTCCCAGTCAC	Sequencing
		around MCS
M20	AGCGGATAACAATTTCACACAGGA	of pK19
		plasmids
leftflank_cydD_del_fw	CAGGTCGACTCTAGAGGATC CTGGCATGGTCAACGTCTTC	Left flank for
leftflank_cydD_del_rv	GTCTGTAACCGAGCATCTCTCCTAGCGCAAAAGCCGCGGATCGAC	∆cydD
rightflank_cydD_del_fw	GAGAGATGCTCGGTTACAGACTCCTGTTGGATGAGCCGAC	Right flank for
rightflank_cydD_del_rv	GTAAAACGACGGCCAGTGAATTGGACATCGGCAACCGAATCGA	∆cydD
cydD-seq fw	TCTACCAAGGCTGGACCTAC	Sequencing
cydD-seq rv	CATCACTGGCGGCATTTCCC	cydD region
A156-ddh-qPCR-fw	CCGGAAAGCAAACCCACAAG	Housekeeping
		gene for
		normalization
A157-ddh-qPCR-rv	CTCGGAGTCGAAGGTTGCTT	in qPCR
		(Frunzke et al.,
		2008)
A269-hrtB-qPCR-fw	TCCGATTTAGCCTCACTCGC	Gene of
		interest for
A270 brtp appp py		qPCR (Krüger
AZ/U-IIILD-YPCK-IV	VATAVCATCIALICACCCIA	and Frunzke,
		2022)

Coloring scheme: overlap terminator, overlap terminator, Stop, RBS and linker, overlap backbone, overlap linker; BS = biosensor :: P_{hrtB}, MCS = multiple cloning site.

Clone	Mutation*	Gene	Annotation
pfkA1, pfkA2	Exchange	NCgl2410	putative sugar diacid utilization transcriptional
	A276V	-	regulator
pfkA3	R307H	NCgl2276	Xanthine permease / 2-oxo-4-hydroxy-4-carboxy-5-
		-	ureidoimidazoline (OHCU) decarboxylase (EC
			4.1.1.97)
pfkA3, pfkA4,	A276V	NCgl2410	hypothetical protein
pfkA5			
pfkA4	V358G	NCgl0322	5'-nucleotidase (EC 3.1.3.5)
pfkA5	G68S	NCgl0468	LSU ribosomal protein L10p (P0)
pfkA6, pfkA7,	Exchange S164P	miaB	tRNA-i(6)A37 methylthiotransferase (EC 2.8.4.3)
pfkA8		(NCgl1874)	
pfkA6, pfkA7,	Exchange C to T	Intergenic	
pfkA8			
pfkA6, pfkA7,	Deletion	Intergenic	
pfkA8	GCCCCCCGCG to		
	GCCCCCGCG		
pfkA6, pfkA7,	Exchange	benR	Putative transcription regulator
pfkA8	D385N	(NCgl2324)	
pfkA6, pfkA7,	Exchange	NCgl2410	putative sugar diacid utilization transcriptional
pfkA8	A276V		regulator
pfkA6, pfkA7,	Exchange E305D	WZZ	Tyrosine-protein kinase (EC 2.7.10.2)
pfkA8		(NCgl0337)	
pfkA6, pfkA7,	Deletion E189fs	NCgl0627	2-methylcitrate dehydratase (EC 4.2.1.79)
pfkA8			
pfkA7	Exchange Y91S	NCgl0919	hypothetical protein
pfkA7	Exchange L854R	NCgl1737	putative membrane protein CGP3 region
pfkA8	Exchange L184P	bioQ	Predicted biotin repressor from TetR family
/		(NCgl2025)	
aceE3, aceE 4	Exchange	Intergenic	hypothetical protein
	GIGIGGAA to		
	AIAICAI	NG-14042	weekstige Mariak elektrone welkumit Chill Jaconsenie ing
aceel	Exchange R350C	NCgI1012	putative Mg-chelatase subunit Chil, inorganic ion
acoE1	Evenance SZOE	ccuP	clansport, metabolism, and storage
ULEEI	Excilalige STOP	(NCal117E)	transporterprotein, assontial for untake of
		(NCBIT12)	
aceF1	Exchange E122K	ansA	NADPH-dependent glycerol-2-phosphate
UCCLI	Exchange LIZZK	(NCgl1266)	dehydrogenase
aceF1	Exchange \$362N	NCg 1687	puative MoxR-like ATPase CGP3 region Pronhage
			gene
aceE1	Exchange R80H	phoU	phosphate uptake regulator
		(NCg 2482)	
aceE1	Exchange V97A	ispD	2-C-methyl-D-erythritol 4-phosphate
	0	(NCgl2570)	cytidylyltransferase
aceE1	Exchange	NCgl0705	Putative helicase
	A1910T	-	

Table S2: Mutations established from ALE experiments with *C. glutamicum* :: P_{hrtB}_{pfkA} and :: P_{hrtB}_{aceE}

*= As identified by BV-BRC web resources (3.34.11)

References

Frunzke, J., Bramkamp, M., Schweitzer, J.E., and Bott, M. (2008). Population Heterogeneity in *Corynebacterium glutamicum* ATCC 13032 caused by prophage CGP3. J Bacteriol *190*, 5111-5119.

Heyer, A., Gätgens, C., Hentschel, E., Kalinowski, J., Bott, M., and Frunzke, J. (2012). The twocomponent system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in *Corynebacterium glutamicum*. Microbiology (Reading) *158*, 3020-3031.

Krüger, A., and Frunzke, J. (2022). A pseudokinase version of the histidine kinase ChrS promotes high heme tolerance of *Corynebacterium glutamicum*. Front Microbiol *13*, 997448.

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods *25*, 402-408.