Supplementary Information
SIMVI reveals intrinsic and spatial-induced states in
spatial omics data



Contents

I Supplementary notes

1 Theoretical support for the SIMVI model

3

IT

1.1 Problem setting . . .
1.2 Assumptions. . . . .
1.3 Main theoretical result

1.4 Connections between the theoretical support and SIMVIdesign. . . . . ... .. ... ...

Spatial effect estimation

2.1 Transforming spatial variation into archetypes . . . . . . . .. . ... .. ... .......
2.2 Estimating spatial effect via double machine learning . . . . . . ... ... ... ... ...
2.3 The underlying assumptions for spatial effect estimation and the positivity index . . . . . . .

Discussions on hyperparameter selection

Supplementary Figures

Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 3
Supplementary Figure 4
Supplementary Figure 5
Supplementary Figure 6
Supplementary Figure 7
Supplementary Figure 8
Supplementary Figure 9
Supplementary Figure 10
Supplementary Figure 11
Supplementary Figure 12
Supplementary Figure 13
Supplementary Figure 14
Supplementary Figure 15
Supplementary Figure 16
Supplementary Figure 17
Supplementary Figure 18
Supplementary Figure 19
Supplementary Figure 20
Supplementary Figure 21
Supplementary Figure 22

w

AN ON L W W

17
17
18
19

19



Supplementary notes

1 Theoretical support for the SIMVI model

In this part, we show that under suitable assumptions, it is possible to disentangle intrinsic and spatial-interaction
induced variations in spatial omics data. Specifically, there exists a (smooth and locally injective) function
mapping inferred intrinsic variations to ground truth intrinsic variations. Additionally, there exists an invertible
linear transformation between ground truth spatial variations and inferred spatial variations. This serves as a
theoretical basis for the SIMVI model. We state our problem setting as follows.

1.1 Problem setting

We consider the following probabilistic model. Let G = (V, E) be a graph, whose nodes: € V = {1,2,...,n}
are cells, and E contains an edge (i, j) if the two cells 7, j are neighbors. We denote the set of neighbors for
node i as N (z) C V. We assume that the graph G is k-regular (k > 1), meaning that each node has a constant
degree k > 1. We denote the adjacency matrix of G as W € R"*".

We assume that the gene expression vector * for the cell at node 7 is sampled from a distribution parametrized
by two sets of latent variables, defined as follows. The first set, denoted as z™(9) € R, represents the intrinsic
variability of cell <. Generation of 2™ involves two steps to account for possible spatial proximity across cells
with certain intrinsic properties. We first sample a "bag of cells" z = [z, 22,..., 2"] with {2} i.i.d., then we
generate a permutation 7 and assign cell ¢ in the bag to the node () on the spatial graph. The permutation 7
is generated conditioning on both z and the graph G. The second set of latent variables, denoted as s* € R%,
characterizes the contribution of spatial interaction. We assume that s* depends on the intrinsic variabilities
2™ N of the cells which are neighbors of cell 7. Formally, (2™, 8) are generated by the following procedure:

. . L i iid
« Generation of the unordered intrinsic variation z = [z1, 22, ..., 2"], where z* '~ N/(0, Iy, ).

* Generation of the spatial-intrinsic-aware permutation 7 : [n] — [n]. We assume the probability of a
specific spatial allocation T, is determined by a potential function Ug : R%*™ — R, . The probability

of the permutation 7 is of form:
1
plrl2) = ZUa(="), (1)

where Z is an appropriate normalization constant. After sampling of 7, 2™(*) indicates the intrinsic
variation for the cell at node :.

» Generation of the spatial variation s for cell 7. It depends on the neighborhood intrinsic variation
z™(N() "and follows a normal distribution parametrized by a matrix A € R%**d1 and a fixed full rank
covariance matrix X € S‘_iﬁ i

stz ~ N(Az™WN@) 3., 2)
* Generation of the gene expression vector * at cell i:
Vi,a' ~ NB(f(z"",s"),g). 3)

Here, N B stands for the negative binomial distribution, and f : R x R% — RP is a continuous smooth
function representing the mean of the negative binomial distribution. The vector g € RP characterizes
the dispersion of the distribution (consistent with the "gene" dispersion setting in scvi-tools [1]).

Additional properties and assumptions for the generative process are described below.

o The marginal density of 2™ at a point 2™ € R%*™ can be expressed as:

p(z" =2") = /P(Z" = 2"|2)p(2)dz o« Ug(2")p(z = 27). @



© We consider a specific case of Ug that corresponds to the Gaussian Markov random field. In this case,
Ug can be decomposed as follows:

1 , A
Us(z") = [] exp(—5("")T22"), o)
(i.J)EE
where Q € R4 %% s a coefficient matrix representing the colocalization tendency. Thus, 2™ follows a
Gaussian distribution:
1 ) . 1 ) ) 1
T __ T - w(i\T w(j) _ = w(O\T (i) _ ~(,m\T T
p(a" = 27) ox exp(— (_%w JT2m0) = 2 3 O) ) = exp(—5 (M) 2627, ()
1,9 [

where Qg = W ® Q + I, ® stands for Kronecker product, and W denotes the adjacency matrix of G.

o We additionally assume that the marginal distribution of (27", z™(N()) s identical across all nodes.
According to Eq. (6), this distribution is jointly (non-degenerate) Gaussian, which we denote as follows:

x(i) _m(N( . d x(k+1)
(Z(),Z( ()))NN(OaE)a EES-;-: ’

> = 12-1)11 g'{ , 21 c ]del Xdl,zo c del ><k:d1. (7)
E 1 0 ;

o Combining Egs. (2, 7), we may formulate an equivalent generative process for s’ that only involves 2™ (%),
Considering the cell at node ¢, applying Eqs. (2, 7) yields the following result based on the conditional
distribution formula for Gaussians:

sz ~ N(0,8,) + An; 0~ N (21270, 2 — 5, 87);

o . ®)
812" ~ N (0,3, + A(Zy — 2, 27)AT) + AD, 270,
Denote
A =A%, Y =3,+AZ,-5,xHAT. 9)
Then we have ‘ ‘ .
820 ~ N(0,2) + A’270, (10)

The fact that X4 has full rank implies that the matrix X’ is also full rank. Now the marginal covariance
of stis A’ XTAT + 3, + A(Zy — ,2T)AT = =, + AX;AT. We suppose the marginal
distribution of s to be standard normal, i.e., I = ¥, + AX( AT In this case, 3 can be expressed by
A

o We assume that f is injective and that its inverse is smooth, making f a diffeomorphism. In particular,
denote d = dj + do, then this implies p > d. We denote the first d; components of f~! as f; ', and the
last dy components of f~! as f; 1. To simplify the problem setting, we assume the constant vector g is
fixed and known.

o Finally, Eqs. (7,2,3) imply that the joint marginal distribution (z™(®), 27 (N(9)) s? 27) is stationary in
the generative process, meaning it is identical for any node ¢ on the graph. We drop the index ¢ and
denote the random variables for each cell as (27, 2™V s, ) in the following text.

For the sake of convenience, we also omit the superscript 7 in the notations (2™, etc). Henceforth, we use bold
symbols z, s, etc. to denote random variables, and use z, s, etc. to denote values of the corresponding random
variables.

We denote the range of f(z,s) as P = {f(z,s)|(z,s) € R¢}. We denote by § = (X, A, f) the parameters
of the true generative model described above. Further, we denote by py(x) the probability density of a gene
expression vector z € RP for any individual cell. Next, we define the set of all possible parameters that yield
the same distribution as pg(x):




Definition 1. (Parameter family) Let © be the set of all possible parameters that yield the same distribution for
the gene expression of a cell:

0 ={0:= (X, A, f)|ps(x) =po(z) and f : R? — P is smooth and invertible with a smooth inverse }

Clearly, the ground truth parameter § € ©. Each element 0 € © defines a distribution of latent variables (%2,38)
generated through Eqgs. (7,2) with parameters (3, A). We allow the dimension of Z, § to be misspecified
(.e. Jl £ dy, Cig # dy). Nevertheless, because f defines a bijective diffeomorphism from R41+42 (o the
gene expression space, the composition f -1 o f defines a bijective diffeomorphism from R+dz go R +dz,
Therefore, we have that 0 € © = d := dy + dy = d.

Our goal here is to prove that the parameters of the generative process can be uniquely identified from
the distribution p(x), i.e. model identifiability. Intuitively, we aim to prove that, if one model parameter
(2, A, f) € O gives rise to the same distribution p(z) as that generated by ground truth (X, A, f), then
(X, A, f) is "equivalent" to (3, A, f) with respect to an equivalence relationship ~. Formally, we define the
specific equivalence relationship of interest, and model identifiability as follows.

Given our primary objective of disentangling different sources of variation, we introduce a novel form of
equivalence tailored to our purpose, which we term "disentanglement equivalence":

Definition 2. (Disentanglement equivalence) Let = (fl, A f ) € © be a set of parameters yielding the same
distribution p(x) as the ground truth 6 = (X, A, f). We say that 6 satisfies the disentanglement equivalence
relationship w.r.t. 6, denoted as 6 ~ 6, if the following three conditions hold:

i di=dy,dy = dy; (11)
(ii): I function F: R — RN st.Vp e P, £, (p) = F(f7(p)); (12)
(iii):  Jinvertible L € R%2*%2 c c R% s.t. f71(p) = Lf71(p) +c. (13)

This means that, for any p, its corresponding ground truth intrinsic variation f_~ L(p) is a nonlinear mapping
of the inferred intrinsic variation f;!(p), whereas its ground truth spatial variation f;'(p) is a linear
transformation of the inferred spatial variation f;*(p).

We next define the model identifiability with respect to the disentanglement equivalence relationship ~. Our
definition of model identifiability mostly follows prior works on VAE identifiability [2].

Definition 3. (Model identifiability) The ground truth model parameter 6 = (X, A, f) is ~-identifiable on ©
if V6 € ©, 6 ~ 0 holds.

Remark 1. Our theoretical analysis considers the true distribution pg(x). In practice, we can only observe the
empirical distribution over a finite number of cells. Moreover, these cells exhibit dependencies within their
local neighborhood. Unlike in i.i.d. settings, the strong convergence of this empirical distribution to the true
distribution needs additional assumptions to hold, such as ergodicity or strong mixing. These assumptions
describe the diminishing influence of individual cells over space, which intuitively holds true for cells in spatial
omics datasets. Therefore, we expect the empirical distribution to closely approximate the true one when the
number of cells n > 1.

Remark 2. The SIMVI model provides two options for modeling p(z): the Zero-Inflated Negative Binomial
(ZINB) and the Negative Binomial (NB) distributions, with ZINB more commonly used. However, these two
options introduce only technical differences in the theoretical analysis. Consequently, we focus on the NB case
in the theory section.

We next state the assumptions. In the following text, (3, A, f) refers to the ground truth solution, a specific
instance in the parameter set ©. (X, A, f) refers to any parameters within the parameter set ©.

1.2 Assumptions

Assumption 1. (Non-exploding moments) We assume that the ground truth function f satisfies the element-wise
property: ¥j € {1,2,...,p}, Eff™(2,8) = O((2m)*™) for m € N.



Remark 3. This assumption leads to two direct consequences (via Holder inequality). First, Vj € {1,2,...,p},
E fjm(z,s) < oo for any m € Ny. Second, for a non-negative integer vector m € N, we denote

f™(z,8) :=TI}_, f]" (2, 5). Then we have that Vm, Ef™(z, s) < oo.

Assumption 2. (Sufficient variability) We assume that the dimensionality dy of the intrinsic latent variable z,
and the dimensionality ds of the spatial latent variable s satisfy dy > ds. Also we assume that the ground
truth matrix A’ = AX, € R%2*% js of full rank ds.

Remark 4. The matrix A’ indicates the underlying contribution of the intrinsic variation on the spatial variation.
The assumption on the rank of A’ plays a key role in establishing the linear identifiability of s (Eq. (13)).
Intuitively, this condition is met when the intrinsic variation of a cell 2z? is informative of its neighborhood
2V This property is typically satisfied in real spatial omics datasets. If not, a non-linear identifiability result
for s still holds, as shown by Lemma 3.

Assumption 3. (Spatial / intrinsic variation covers all possible states) For any (z,s) € R¢ denote p = f (z s).

We assume that for any (Z} A f) € O, the following two conditions hold. (1) The range off Yp)is R for
any fixed z and f;'(p); (ii). The range of z is R% for any fixed s and f7(p).

Remark 5. Assumption 3 implies the following two properties for any model parameter 0: 1. the "inferred
spatial variation" fs_ L(p) covers the full space for cells with any ground truth intrinsic property z and "inferred
intrinsic variation" fz_ L(p); 2. the intrinsic prope[ty of z covers the full space for cells with any ground truth
spatial property s and "inferred spatial variation" f;1(p). The assumption is automatically satisfied for ground
truth 6. This is enforced in the SIMVI design as we approximate [~ ! by the variational posterior of ¥ instead
of 2, and enforce the joint distribution of (.1 (p), f7*(p)) to be standard normal.

Assumption 4. (Minimal information in the intrinsic variation) We assume that the dimensionality dq for any
0 € O is not larger than the ground truth d; : Ve € o, di < dj.

Remark 6. Assumption 4 addresses the assymmetric independence regularization term in the SIMVI model in
our theoretical setting. The assymmetric independence regularization term constrains the "total information"
encoded by z. In the theoretical context, the objective aligns with minimizing the dimensionality of z.

1.3 Main theoretical result

Prior to the statement and proof of the main theorems, we first provide a number of lemmas that will be used in
the proof.

Lemma 1. Suppose 0, 0eco are two parameters that result in the same distribution of x. We denote the
latent variables generated with 0, 0 using Eqs. (7,2) as (z, s) and (Z, 8) respectively. Then under assumption
1, f(z,s), f(2, 8) have the same distribution:

po(a) = pgz) = f(2,8) < f(%,3). (14)

Proof. For a non-negative integer vector m € N}, we denote ™ := H§:1 x;"J . Since pg () = ps(x), we
have Vm, Eg(x™) = E;(x™). Applying the law of total probability gives

Vm,/E(mm|f(z,s))p9(z, s)dzds = /E(mm|f(2,§))pé(2,§)d2d§. (15)

Here py (2, s) and p;(Z, 5) denote the density of (z, s) and (2, §) respectively. Now we use Eq. (15) to prove
the following result regarding the multivariate moments by induction:

Vm € N /fmz s)po(z sdzds-/fm $)ps(2,8)dzds (16)

In the following proof, we use the parameterization of the NB distribution using the success probability vector
a € R? and number of successes r € N,. There is a simple correspondence between the o-r parametrization
and the mean-dispersion parametrization. Namely for the expectation term, f(z,s) = r(1 — a)/«; for the
dispersion term, g = 1/7.



To start with, we derive the m-th raw moment of a univariate NB distribution with parameters (7, o). Recall
that the moment generating function (MGF) of the NB(r, «) distribution is given by v (t) = (1_Tet +et) .
Thus, the m-th moment can be expressed as follows by Faa di Bruno’s formula (section 3.4, Theorem A of [3]):

dam dm 1-—¢et i
i Oleo =gl (5 ) .
. 1—¢f 1—¢f —
:Z(‘T )(k)|x=%+et “ Bk <( o JF@t)(l)w-a(T +eh) kH)) |t=0.
k=0
Here B,, i stands for the Bell polynomial (also introduced in section 3.4, Theorem A of [3]):
Bk (21,22, -+ T k1) =
Z m! (xl)jl (@)jz < Tm—k+1 )JmHl ' (18)
jl!j2 ]m k+1 1' 2' (m—k—i—l)'

Jitjet+ - tim—kt1=k,
J1+2j2+-+(m—k+1)jm_rr1=m

We next simplify Eq. (17) by the following three equalities. The final equality follows from the definition of
the Bell polynomial (18).

1—¢t 1ot )
: +eli=0 = 1; Ym > 1, ( © +et)(m)|t:0:177;
e

(

B g(z,z,...,x) = c,mkxk, where ¢, 1 is a positive constant determined by m, k.

—r

Leveraging these equalities and that (z~")*)|,_; = I, we have that

l=—r—k+1
dm 1—et - 1 1
Y®)|—y - B 1—=,....1—-=
dim [( o ‘t 0 — ; ‘1,71 'm,k( Ck, ) o
m . (19)
1, 1—-a,
ST e bt
k=0 \i=—r—Fk+1

In summary, the m-th moment can be expressed by a polynomial with respect to 7‘1’—0‘. The polynomial is of
degree m, as its leading term (of order /) has a non-zero coefficient given by (H I —r—mal l) Cmym(—=1/T)™

We denote the coefficients g, (1) = ( o kgl l) Cm,k(— )" and rewrite the polynomial as:

1 —
The m-th moment of NB r a Z Qm, k a)k7 Qm,m(r) # 0.

Insertingm = my,r =r; =1/g; and r(1 — )/ = f;(z, s) in the above equation leads to

m, 1
E(x]"|f () quw ) fF (2, 8), Gmm; () 70, (20)

J

with IEE(:v;"7 |f(Z,5)) admitting a similar expansion. Now we prove that Eq. (16) holds by induction, leveraging

Egs. (15,20). We first note that the expectation terms E(z™|f(z, s)), E(z™|f(Z,5)) can be factorized due to
the conditional independence of their p components:

E(z™|f(z,5)) HE x7f(z,5), E@™|f(z HE x|f(2,3)). 1)



Therefore plugging m € {0, 1}” in Eq. (15) directly gives that for all m with >, m; < 1,

[ st s)dzds = [ 7G5yl 5)dzds: 22)

Next we prove the induction step, that if Eq. (16) holds for all m with > ;m; < n, then it also holds for m
with > ;m; = n+ 1. Plugging the factorization (21) and the expression (20) in Eq. (15) yields

/H (Z G fk (2 5)> po(z, s)dzds = /H <Z Grmy o 5)) ps(2,5)dzd5  (23)

Note that all coefficients of form gy, k( ) are identical on both sides. Expanding Eq. (23) on both sides, we
have

;/ﬁl <me’m3(glj)f;"; (Z,S)> po(z,s)dzds = ;/ﬁl (qm_j,m/j_(glj)ﬁn3 (2,5)) ps(%,3)dzds.

Here m/ € N} are all vectors that satisfy m; <mforall j € {1,2,...,p}. Apart from the sole m' = m,
all other m/ satisfy > j m; < n. By induction, we can cancel these terms, leaving only the term with the
highest degree m, simplifying the equation to

P
1, ,m, ™25 SR
/ quj,mj(;)fj (2,8) | po(2,s dzdS—/ qu] m; (—)f; 7 (2,8) | ps(2,5)dzds
j=1 /

(24)
p
:>/ jl:[lqmj,mj(glj) F™(z, 8)polz, sdzds—/ qu],mj gl f™(2,8)p;(2, 5)dzds.

J

Finally, by Eq. (20), (Hp 1 Gmjm; (g1 )) is not zero and can be canceled on both sides. Thus the induction
is complete. That is, Eq. (16) holds for all m € N{.

Eq. (16) indicates that f(z, s) and f(Z, §) have identical multivariate moments for any non-negative order:

Vm e NP Ef™(z,s) =Ef™(z,35). (25)

Now we show that the distributions f™(z, s), f™(Z, §) are determined by their non-negative moments (M-det),
i.e. Eq. (25) implies f(z, s) 4 f(%,8). This is a well-known problem in probability theory called "the
moment problem" [4, 5, 6], and we leverage established results for the problem to show the desired results.
The theorem 3 and 4 in [5] (formulated as Theorem 2 in [6]) states that, f, f are M-det if all of their marginals
fi fj are M-det. [4] provides a list of assumptions for each marginal to be M-det, including our Assumption
1 for f;. We further note that, by Eq. (25), Assumption 1 also holds for f] Together, we have that both
f™(z,s), fm(i, §) are M-det. Therefore by Eq. (25), the desired relation Eq. (14) holds. O

Lemma 2. (Functional dependence on inferred and ground truth intrinsic variation) Under assumptions
3,4,Y(X, A, f) € O, there exists a function F : R4 — R such that

o) =F(f7 (p), YpeP. (26)

This means that for any p, its correspondzng ground truth intrinsic variation f;(p ) equals a nonlinear
mapping of the inferred intrinsic variation f;1(p). Furthermore, we have dy = dy and dy = ds. Together, (i)
and (ii) in Definition 2 holds for any 6co.



Proof. Let (2, 5) € (R%,R%) be two arbitrary vectors. We denote p = f(z, s). Due to the injectivity of f,
we have

(F=1 ), f M) = F 1 (p) = F 1 o f(2,9). 27)

Before proceeding to the proof, we provide formal characterizations of the Assumption 3 as follows. We define
the compatible pair of ground truth and inferred intrinsic variation as Z. We further denote Z; as the first
part of Z (inferred intrinsic variation). We also define the feasible set S(Z, z) of f:!(p), where (Z, z) is any
element of Z. The sets Z, Z1,S(Z, z) are defined as follows:

Z=A(z,2)3(z,s) € (Rdl,Rd2), 7= ftof(z,9)};

Zy = {#3(z,s) € (R, R®), s.t. 2 = f of(z,s>}; (28)
S(z2) ={fi o f(z,9)Fs €R®, st 2= Lo f(2,5)}.

(i) in Assumption 3 is equivalent to that, S(Z, z) = R for any (2,2)in Z.

We next note that, as f(z, s) covers the full set P, and f ~! defines a bijective map from P to RE x Rz , wWe
have that Z; = R%..

Now we proceed to prove the lemma. By the injectivity of the function f, we can define F : R? — R as
the composition of f; ! and f, as follows, F; := f, ! o f. Then due to the injectivity of f, f we have that

2= f71p) = Fi(f () = Fu(f (), £ (). (29)

Here (f;l(pz7 z) is an arbitrary element in Z. Now we fix it as any element (%, z) € Z. In this case, we have
S(2, z) = R%, which implies that

Fi(3,3) =2 ViecR®andV(32) € 2. (30)
Next, we define a function F' : R% — R% as follows:
F(q) = F1(q,0), YgeR™ (31)

Let p € P. Then there exists a unique (Z, 5), as well as a unique (2, s) such that f(2,8) = f(z,s) = p. Then,
forg = f'(p) = Z, by Eq. (29), X
2= f1(0) = Fa(a. 7 (0)). (32)
However, by Eq. (30), the term on the right hand side is also equal to F (g, 0). Hence, we obtain that for any
p€EP,
2= 11 p) = F(£7(n) (33)

as required.

We next show that d; < afl as a classical implication of Sard’s theorem [7]. Note that F' is continuous and
smooth following its definition. By Sard’s theorem, the image of the critical set of F' is of zero-measure. Here,
the image of the critical set refers to set C = {F(z)|z € R%, rank(Jp(z)) < d1}. If d; > di, then every
x € R% satisfies that rank(.Jp (x)) < d; < dy. Further note because z = f;!(p) is arbitrarily selected in
R?, the range of F is R%. Taken together, C = R% , contradicting with that C must be of zero-measure in
R, Therefore, d; < d1 Thus by Assumption 4, we have d; = d; thus also dg = dy. Together with Eq. (33),
(i) and (ii) in Definition 2 are satisfied. O]

Lemma 3. (Functional dependence on inferred and ground truth spatial variation) Under assumption 3,
Y(X, A, f) € O, there exists a function H : R% — R, such that

o p) = H(f7'(p), VpeP. (34)

This means that for any p, its corresponding inferred spatial variation fs_ Y(p) equals a nonlinear mapping of
the ground truth spatial variation f;1(p).



Proof. The proof of the lemma uses an analogous procedure as Lemma 2.

Let (Z,3) € (Rdl , RJ2) be two arbitrary vectors. We denote p = f(Z, 5). Analogous to Lemma 2, we define
the sets S, S1, Z(s, §) as follows:

S={(53)|3(2,3) € R, R%), st.s= 1o f(2,3)}
Sy = {s|3(3,5) € RN, R®), st.s= fo f(33)} (35)
Z(s,8) = (/' 0 f(2,3)32 € RY, st s = f7 o f(2,9)).

(ii) in Assumption 3 is equivalent to that, Z(s, §) = R% for any (s,3) in S.

As f(Z, 5) covers the full set P, and f~! defines a bijective map from P to R% x R | we have that S; = R,
By the injectivity of the function f, we can define H; : R? — R? as the composition of ;! and f:
H;y := f;7! o f. Then due to the injectivity of f, f we have that

§=fp) = Hi(f'(p)) = Hi(f- (p). £ (p))- (36)

Here (f;'(p), §) is an arbitrary element in S. Now we fix it as any element (s, 5) € S. In this case, we have
Z(s,3) = R%, which implies that

Hi(z,5) =35, VzecR%™andV(s,3)cS. (37)
Next, we define a function H : R% — R% as follows:
H(q) := Hi(0,q), VYq e R®%, (38)

Let p € P. Then there exists a unique (Z, 5), as well as a unique (z, s) such that f(Z,3) = f(z,s) = p. Then,
for g = f7'(p) = s, by Eq. (36), )
5=f71p) = Hi(f 1 (p)q) (39)
However, by Eq. (37), the term on the right hand side is also equal to H; (0, ¢). Hence, we obtain that for any
peP,
s= 1) = H(f7H () (40)

as required. O
Lemma 4. (Extending equivalence on neighborhood) Let s € R be an arbitrary vector. For each such s,

we define V, as an arbitrary open neighborhood of s in R, that includes s itself. Let ~ be an equivalence

relation on R% satisfying the following property: for any s, s’ € R and their respective open neighborhoods
‘/S; VS/ g Rdg,
ViNVy A0 =s~5". (41)

ThenVs,s' € R% s~ .
Proof. The lemma is employed in the proof of the main theorem to extend the local linear identifiability result
to R%. The proof of the lemma comprises two steps. First, we show that once two open set neighborhoods

Vs, Vi can be "connected" by a finite sequence of {Vj, }, then s ~ s’ holds. Next, we construct this finite
sequence for any Vs, Vi, thus concluding the proof.

Step L. Formally, we first prove that, Vs, s’ € R if there exists a finite sequence of {V, }f\i 1> such that
L. VIg {1727>M}7é®7 (UZEIVSJH(UlEIF‘/&) 759 (42)

2. Vin (UM V) #0,Ve N (UM, VL) # 0. (43)

Then s ~ s'.

10



To prove the claim, we construct an ordering of {1,2,..., M} as follows. By Eq. (43), we can find a
set Vi, € {V,,}1, that intersects with V. We denote it as Vs~ Next, we iterate over the rest elements
from {V;, }i»; to find an element that intersects with Vsm, and denote it as VS[Z]. We find the i+1-th
(i>1) element V;, , from the yet unselected elements that satisfies V, ,; N (U§:1Vs[,-]) # 0. By Eq.
(42), such a selection is always possible when ¢ < M. Otherwise, we have found a non-empty set
I={[1],2],...,[s]} € {1,2,..., M} such that (U;e;Vs,) N (UiereVs,) = 0, thus contradicting with Eq.
(42).

Now by the construction, we have s|;) = s|3) holds by the non-empty intersection of Vy,, and V. If for i < M,
Vi1, J2 € {1,..., i}, 8[j,] = S[j,]- then because V., N (u;izlvs[j]) # (0, it must intersect with at least one
element in {VSU] }§'=1- Denote the element as Vs, , then we have that sj; 1) > spj. Thus by transitivity of =,
V91,52 € {1, et 1}, S[j1] = S[ja]- It follows by induction that Vj1, jo € {1, ey M}, S[j1] X S[ja]- This
implies that Vi, j € {1,..., M}, s; ~ s;.

Note that s ~ s1) due to the non-empty intersection. Because Vi N (UM, V) # 0, 3m € {1,2,..., M}
such that Vy N V;, 2 (). Then we have s ~ S[1] = Sm = s’ holds. Thus we conclude the first step.

Step IL. Now we construct such finite sequence { V5, } for any s, s’ € R%. We consider the line segment set
Ses = {ts' + (1 —t)s|t € [0,1]} C R%. Then Uses, ., Vs form an open cover of S; 5. Note S; - is closed
and bounded on R, V7 is open for any 5 € R%, and Uses, .. Vs covers S ... By Heine-Borel theorem, we
can select a finite sequence of {sz}f\él C S o such that SS,S; C U;Vs,. Thus we have s, s’ € Uf;lvsl, which
implies that Eq. (43) is satisfied.

It remains to verify that Eq. (42) for the constructed UY_, V.. If not, then there exists a non-empty index set
IC{1,2,...,N}suchthat (UjesVs,) N (UjereVs,) = 0. Thus (U;erVs,) N Sy, and (U;er Vs, ) NS o are
non-intersecting non-empty open sets on S, o+ with union S, .. This means that S  is a disconnected set.
However, S; , is obviously path-connected thus connected, leading to a contradiction.

As both conditions (42,43) are satisfied for the finite sequence UlN:lVSi, by step I we have that s ~ &', thus the
proof is completed.

O

Theorem 1. (Model parameter identifiability) Under assumptions 1, 2, 3, 4, the model parameter (2, A, f)
is ~-identifiable on ©.

Proof. We denote the ground truth parameters of the model by § = (X, A, f) and let § = (2, A, f) € © be
an alternative set of parameters that yield the same gene expression distribution for a single cell.

To establish ~-identifiability, we need to verify that (i), (ii), (iii) in Definition 2 hold for 6 and 0. (1) and (i)
hold by Lemma 2. Thereby the main body of the proof is to verify (iii), i.e., Eq. (13). We present an outline of
the proof, which consists of five steps. Steps I-III are preparatory, while steps IV-V cover the main proof. In
step I, we show that the function F’ defined in Lemma 2 is locally injective. In step II, we leverage the local
injectivity result from step I to demonstrate that the Jacobian volume vol.J F-lof (z, s) can be locally factorized.
That is, the volume term can be expressed as a product of separate functions of z and s. In step III, we describe
a construction of local quadruplets {z;, s, %, 5}72,. In step IV, we evaluate the probability density of (z, s)
and f~1o f (2, 8) at these local quadruplets, which shows that Eq. (13) is satisfied locally. In step V, we
extend the local result to full space, thus verifying Eq. (13).

Step I. Consider the function & : R — R¢, defined as follows,
h=f"of=[f"of f7 o fl. (44)

Its Jacobian has the following form:

f)/0F | 0(f71 0 f)/05) . (45)
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Since both f and f are diffeomorphisms, f~! o f : R?Y — R is a diffeomorphism as well. Hence,
det J,—.,7 # 0 for all (%2,5) € R% Moreover, by Eq. (30) of Lemma 2, with I}, = f7lo f, we
have 0F1 /05 = 9(f.! o f)/d5 = 0. In addition, by Lemma 2, d; = di. Thus d(f; o f)/d% €
RA*d g(f-1o £)/05 € R42*d92_ Since the upper right block in Eq. (45) is zero, then

aftof) oftof
93 x det EF £ 0. (46)

det J, ., 5 = det

Hence, det(9f; ' o f(%,5)/0%) # 0 for all . By Eqs. (30) and (31) of Lemma 2, f;! o f(,5) =
f- 1o f(2,0) = F(2). Therefore, the Jacobian J of the function F satisfies that det Jp # 0 for all Z € R%.
That is, the function F' is locally injective.

Step II. Next, we consider the inverse of i, namely h 1 = f~1o f. Its Jacobian is given by

i (O(f 0 f)/0= | O(f" o f)/0s)
i1 = Q(7~To f)/0z o To f))os) (47)

By Eq. (37), the lower left block of the matrix is 0. Moreover, by Egs. (37, 38) of Lemma 3, fs_l o f(z,8) =
flo f(0,s) = H(s). Hence, the bottom right block above is equal to dH (s)/0s.

Now we consider the upper-left block d(f; ! o f)/8z. Because the function F(2) = 7 o f(Z,0) is locally
injective, the inverse function theorem can be applied to F'. That is, for any 2z, € Rdl, there exists a
neighborhood of Z, (open set V3, € RJQ) such that F'is invertible for all zZ € V;,. We denote its local inverse
in V3, as szol. By Eq. (26) of Lemma 2, with p = f(z, s) it follows that F(f; ! o f(z,s)) = 2. Hence, we
have that for all (z, s) € R? such that f; ! o f(z,s) € Vz,,

F ' (2) = fo 1o f(z,9). (48)

Thus the upper-left block of the Jacobian d(f; ! o f(z,s))/0z = dFs, 1(2)/dz. Combining the above results
for the different blocks in the Jacobian, we have

dF; )/dz Lo f)/0s
Tirop(z28) = ( ()dz | O ()fdé> (49)

Now we consider the volume of this Jacobian, defined as the absolute value of the determinant det .J F-tof
For all (z, s) such that £ o f(z,s) € Vs,

dF: ' (z) dH (s
volJr 1o ,(2,8) := |det Jr1 4(2,8)| = |det(#)\ x | det #| (50)
Denote h2°(2) = |det(dF;, ' (2)/dz)|, hs(s) = | det(dH (s)/ds)|, then
volJr1o4(2,8) = hZ0(2)hsy(s). (51)

We will use this decomposition in the proof below.

Step III. For any py € P, let (2, 50) and (2o, o) be the unique vectors such that f (20, 80) = f(20,50) = po.
As in step II, we denote the local inverse of the function £’ constructed in Lemma 2 (Eq. (31)) at Z by 1

and its domain as Vz,. In this step, we construct local quadruplets {(z;, s, %, §) }92, with desirable properties,

as a preparation for step IV. We start by showing that we can select dy vectors { z; f 1> that together with zg,
they satisfy the following properties:

1. There exists an open set V;, (po) that includes sg, such that

Vie {0,1,2,...,ds}, Vs € Vi (po), fitof(zis)€ Vay; (52)
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2. There exists a constant €,, > 0 that does not depend on 4, such that
Vi € {1,2,...,d2}, A/(Zz 720) = €po€i; (53)
where A’ € R%*%1 ig defined in (9), and e; € R?2 is the i-th standard unit vector.

We first show that there exists neighborhoods of z and of s, V., (po) and Vi, (po), that include zy and sg
respectively and satisfy that: Vz € V., (po), Vs € Vs, (po), f- 1 (f(2,8)) € Vz,. Thus (2, s) satisfies the first
property if z; € V,, (po) for all 4.

To construct Vs, (po) and Vi, (po), we consider the preimage of Vz, with respect to the function f; o f. By
the property of continuous functions, the preimage of an open set is an open set. Thus by the continuity of
f- %o f, the preimage Vizo,s0) = 1(2, s)|f 1 o f(z,s) € V3, } is an open set. Further note that we have
(20,50) € V{2,,5,)- Hence there exists d,, > 0, such that the [, neighborhood of (29, so) with radius d,, is
inside V., s0):

Boo (20, 50), 0p0) = {(2,8)[[1(2,8) = (20, 50) lloo < po} € Viz.50)-

Now we define

Vi (P0) = Boo (20, 0py) = {2lllz — 20llo0 <6po};  Vio(p0) = Boc(0,0p,) = {5[lls — solloc < Jpo}-
Then we immediately have that,

Vz € BOO(ZO’(SPo)v Vs € BO@(SO’(SPU)? (Z,S) € Boo((ZO,So),(SpO) - V(ZO,SO) = f;l o f(Z,S) € Vio' (54)

We next show that we can select d vectors z; within B (20, 0, ) that also satisfy the second property. Because
A’ € R%*4 with dy < d; and is of full rank dy by Assumption 2, it has a right inverse A’T € R% %92 Now
we select z; = zo + €,,A’Te; fori € {1,2,...,da}. Then there exists a small enough constant €,,, > 0 such
that max; ||z; — 20/l = max; |l€,0 A’ e€;llco < 3,,. This implies that Vi € {1,2,...,da}, 2; € Boo(20,0,,)-
Moreover, A'(z; — z9) = ¢,,A’ A’fe; = ¢,,e;. Thus both properties (52,53) hold for selected {2;}52 .

With the described {z;}%2, along with zo, we construct quadruplets {(z;, s, f " o f(zi, s), fi ' o f(2i,5))}92,.
Here s is any vector in Bo (0, d,, ) and does not depend on 4. By property (52), ' o f(z;, s) € Vz,, thus
by Eq. (48) it is equal to F; !(2;), which we denote as Z;. By Lemma 3, denote p; = f(2;, s), then we have
fito f(zi,8) = f'(ps) = H(f(p;)) = H(s) independent of i, which we denote as 3. Together, the

S

quadruplets can be rewritten as {(z;, s, Z;, §)}fio. Note that by definition, for any ¢ € {0,1,2,...,ds2},

flziys) = o f~ o fzi,8) = f(F o flziy9), [ o i, 8) = [ (5, 9). (55)

Step IV. By Eq. (14) of Lemma 1, f(z,s) 4 f(%,8). By the injectivity of £, this is equivalent to
(z,8) £ h(2,3) := f~ o f(%,§). This means that for any p € P,
p((z,8) = fH(p)) = p(W(2,8) = f~(p)) (56)

For simplicity, here we omit 6, 0 in Do, pg- Analogous to the treatment in [2], we first apply a change of variables

formula to the RHS of Eq. (56), by the injectivity of h. Taking into account that h=! o f=1(p) = f~1(p), this
yields the following formula,

p(h(2,8) = f~(p)) = voldy-1 (f " (p))p((2,8) = [~ (p))-
Taking logarithms in Eq. (56) thus gives

logp((z,8) = [~ (p)) =logvolJ z1,; (f () +1ogp((2,8) = f ().

Next, we decompose the joint distribution p(z, s) into product of marginal and conditional distributions,
Namely, we write the left hand side as

logp((z,8) = f~(p)) =logp(z = £, ' (p)) +1ogp(s = f ' (p)|z = £ ' (p))
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with the right hand side admitting a similar decomposition. Hence Eq. (56) can be written as follows:

logp(z = f:'(p)) +logp(s = f: ' (p)] ~1(p))

~logvolJj .., (/1 (p)) + logp(z = 74 (p >> flogpa = FE= . O
The probability densities p(2), p(s|z) and p(2), p(5|2) are multivariate Gaussians characterized by Eqgs. (7,10)
with parameters (X, A) and (3, A) r espectlvely Together we have: Vp € P,
~Slogam — L I - IS - S0 () — AT )T ()~ AN 0)
= logvolz1.(F ' (p)) — log2m — £ |7 ()P — 8V (58)

S o) = AT ) E N () - AT ()

For any quadruplets (z, s, %, 5) € (R4, R% R R%) that satisfy f(z,s) = f(Z,3) = p, Eq. (58) simplifies

to
lezHQ — 1\E'| — 1(s —A)TE s — A'z)
2 2 2
(59)

1 1 & 1 - ~
=logvolJj_.,;(z,s) — §||§||2 _ 5|§)/| _ 5(5 ~AHTE (5 A'%)

For any py € P, we denote the unique (2o, Sp) and the unique (2o, o) such that f(éo, 50) = f(20,50) = po.

Based on pg and its corresponding (2o, So, 2o, so),~we consider the quadruplets constructed in step III:
{(zi, s, 2, § ) o- By Eq. (55), we have f(z;,s) = f(Z,§) forany i € {0,1,2,...,d>}. Thus we can plug

them in Eq. (59), yielding d2 + 1 equations that must be satisfied for any parameter 0 € O. By Eq. (52),
all Z; € Vz,. Thus by Eq. (51) instep IL, Vi € {0, ..., da},logvolJ . (2, s) = log hZ°(z;) + log hs(s).

Hence the form of the ds + 1 equations are as follows: Vi € {0,...,d2},Vs € B (S0,0p, ),

B T P U 0 S Ty U
2 2 2

~ 1 1 (60)

= loghi(21) +log hu(s) — 315 — 55| — (5~ A'%)TE (5 - A'z)

To obtain linear equations for s of form Eq. (13), we subtract the first equation for (2o, s, 29, §) from the
remaining do equations, yielding de new equations. After this substraction, constant terms, quadratic terms

of s, , and the log Jacobian volume term log h4(s) all cancel out. Furthermore, recall that by Eq. (53),

A'zi—A'zg =€y e; foralli € {1,2,...,ds}. Hence, the dy equations can be simplified as: Vi € {1,...,da},

2log h2(2;) — 2log h2° (20) + ||2i]|* — [|20]|* — 2€ppef ' 's + (A'2) TS "1 (A'z) — (A'20)TE 1A
= [|Z117 = [1Z0]l* — 2(A'(2 — 20)) "= 715 4 (A'2) TR TN (A'E) — (A'%) TR (A%)

(61)
Now we rewrite these ds equations in matrix form. We define matrices
B,, € R®2*% yithi-throw B,,; = —2¢,,el X'}
B,, € R withithrow B, ; = —2(A'(%; — %))'%' L.
Finally we denote the constant term ¢, € R?% with c,,; = —2log h20(2;) +2log hZ° (29) — ||2i||> + [|20]|* —

(A'2)TS 1 (Al2i) + (A'2) TS 1A Z) + 1217 — ||Z0° + (A'Z) TS H(A'Z) — (A'Z0) TS (A ).

Then Eq. (61) can be simplified as
B, s= Bpos + Cpy -

By the construction of the quadruplets, this equation holds for any s € B, (0, d,,) and the corresponding
§ = H(s). Furthermore, the definition of B, implies that B,,, = —2¢,,%'~! , therefore it is invertible. We
denote L,,, = B, ' B,, and ¢,, = B, 'c,,. Together, we have:

14

Zo)



Vs € Boo(50,0p0), 8= Lpgs+ Cpy- (62)

We next show the matrix L,, € R?2%4z ig invertible. Because B, (s0, ) 1S @ non-empty open set, there
exists a neighborhood of s in B (50, d,, ) that includes all vectors {sg +€seq, ..., so +€seq, }, where 5 > 0
is a small enough constant. Hence, L,, must be invertible, otherwise the range of L5 + ¢,, would be in a
subspace of dimension lower than ds, leading to a contradiction.

Step V. In this step, we demonstrate that the local linear relation expressed in Eq. (62) extends globally.
Specifically, we prove the existence of universal parameters L and ¢ such that L,) = L, c,, = cforall pg € P.
Combining this with Eq. (62) leads directly to the formulation presented in Eq. (13).

We first show that, for any pair of points pg, pj, € P that result in non-empty intersection: Bo (S0, 0,,) N
Boo (50, 0p;) # 0, wehave L,, = L, and ¢,, = c,; . Denote the intersection as V. Then V is the intersection
of two open sets thus is also a open set. This means that for a point s € V;, there exists a neighborhood of s
that includes all vectors {si}fil ={s+eseq,...,s+€s€q, }, where €5 > 0 is a small enough constant. Thus
following Eq. (62) and the invertibility of L,,, L, , we have the following two equations hold:

PO

~ -1 —1 -1 -1 .

§=L,'s—L, ¢cp, :Lp(,)s—Lp(,) Cops (63)
Vi€ {1,2,....do}, 5= L, ) (s +eser) = Lplep, = L) (s + eses) — L ey, (64)

Taking differences of the two equations yield: Vi € {1,2,...,ds>},

esL,'e; = esL;E)lei = Ly, =Ly (65)

Subtituting L, with L, in Eq. (63) leads to

L;()lcpO = L;(chﬂé = Cpo = Cpl- (66)
Together, ¥py, p € P,
Boo (50, 0py) N Bw(sg,é%) #0=1L, = Ly Cpy = Cpp- (67)

Now we demonstrate that Eq. (67) can be extended to the entire space R2, thereby proving (iii) in Definition 2.
We first define an equivalence relationship with respect to s based on Eq. (67), then prove that this equivalence
relationship holds for any s, s, € R by applying Lemma 4. Finally, we show that (iii) in Definition 2 holds.

For any 5o € R?%, we consider py = f(0, so). Plugging po in Eq. (62) leads to

Vs € Boo(50,05,), 8= Lpy5+ cpy- (68)

Because pg is uniquely determined by sg, we can denote Ly, := Lz, Csy = Cpy,0so = 05y, Viy =
Boo (S0, s, ) Then the above equation can be rewritten as

Vs € Boo(80,0s,) = Vig, 8= Ls, 8+ Csp- (69)

Similarly we can define pf,, Ly , csr , 05, Vg for s{, € R? . Then we define the equivalence relationship ~ as
0 0 0 0
follows:
80 = 80 < Ls, = Ly and ¢5, = ¢y - (70)

Plugging po, p in Eq. (67) leads to that, Vs, sf, € R%2,

Vio NV # 0 = 50 = 5. (71)
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We next apply Lemma 4 based on the equivalence relation (70) and the condition (71). This yields

’ d /. _ —
Vs, 80 € R, so = sp;  Ls, = Ly, ¢55 = Cgp.- (72)

S0

Now we consider arbitrary py = f(20,50) and pj, = f(z}, sh) where 2, 2{, are arbitrarily selected in R%.
Because Boo (S0, 9, ) and B (so, d5,) must intersect (at s¢), by Eq. (67) we have that L,, = Lz, = L, and
Cpy = Cpy = Cs,. Similarly for p’, we have Ly, = Ly = Ly and ¢,y = ¢z = ¢y . Thus by Eq. (72) we have

LPO = le) = L56 = Lp{,; CPU = Csy = 056 = Cpg. (73)
Thatis, L,, = L,; and ¢, = c,; hold for all p, p € P. Hence, L,,, ¢y, in Eq. (62) can be substituted with
universal parameters, which we denote as L, c respectively. Note that so = f; ' (po) € Boo(s0,d,,) for any po.
Hence we can plug s = f. 1(pg) and § = H(sg) = f; ' (po) (Lemma 3) in Eq. (62) for any pg, which leads to

£ (po) = Lf; Hpo) + c. (74)

Therefore, Vp € P, f(p) = Lf:'(p) + ¢ holds; that is, Eq. (13) is satisfied. The other two conditions (i),
(i) have been verified in Lemma 2. Together, we have 6 ~ 6. Therefore, the ground truth model parameter
(3, A, f) is ~-identifiable on the parameter set ©. O

Remark 7. Our theoretical result has the following implications:

1. There exists a (smooth and locally injective) function F' from inferred to ground truth intrinsic variations.
This means that the inferred intrinsic variations preserve the (non-parametric) neighborhood in the
ground truth intrinsic variation space, i.e., cells adjacent in the inferred intrinsic variation space would
also be adjacent in the ground truth intrinsic variation space. Therefore, the inferred intrinsic variations
can be used for various downstream analysis, such as clustering and visualization.

2. There exists an invertible linear transformation between ground truth and inferred spatial variations.
This is owing to the "implicit supervision" of intrinsic variation to the spatial variation, which is uniquely
addressed in our work. This means that in addition to preserving the neighborhood, the spatial variation
preserves the (Euclidean) geometry of the ground truth spatial variation. This serves as a basis for our
spatial effect estimation method that uses linear archetypal analysis.

1.4 Connections between the theoretical support and SIMVI design

SIMVT uses the variational autoencoder (VAE) architecture to estimate intrinsic and spatial-induced latent
variables from data. Here we describe how key designs of the SIMVI model align with the established
theoretical support enforcing identifiability. In the following text, (z, s) refers to ground truth intrinsic / spatial
variations, and (Z, §) refers to inferred intrinsic / spatial variations by the SIMVI model.

* SIMVI models the intrinsic variation 2 as a variational posterior of a cell’s gene expression, and the
spatial variation § as a variational posterior of cell neighborhood. The variational posteriors include
encoders ¢1 : RP — R%_ ¢y : RP — R qpy : ROXF 5 R qpy : R XF 5 R2 The encoder ¢, is
used for both z and s:

zZlx ~ N(p1(x), p2(x)); (75)
sl ~ N (1 (o1 (x™)), va(pr(x™))) = N (11 (ZV), a2 (2V)). (76)

Notably, the parameters (A, ;) in the generative process Eq. (2) correspond to the terms 1)1, ¢ in Eq.
(76), by the design of shared encoder ¢;. In practice, 11, 12 are modeled by graph attention networks,
which are essentially weighted linear average of its inputs with adaptative weights, whereas ¢, ¢ are
general non-linear functions implemented by multilayer perceptrons (MLP). Together, SIMVI variational
posteriors effectively model the latent variables in the considered generative process.
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* The variational posterior design of § ensures that the range of 5|z spans R?%. This is because 3
can be viewed as a function of 2V, and fixing z does not alter the range of =V in the generative
process. Furthermore, SIMVI imposes additional regularizations on the marginals (Z, §) to enforce
their independence. Consequently, conditioning on z does not affect the range of s. Overall, the design
choices of SIMVI collectively enforce condition (i) in Assumption 3.

* By definition, conditioning on s does not alter the range of z. Analogously, the variational posterior
design of & enforces that supp(z|3) spans R4 for any fixed 3. Consequently, the SIMVI model also
enforces condition (ii) in Assumption 3.

* Our theoretical analysis considers the latent variables (2, §) with the smallest dimensionality of 2
(Assumption 4). While this cannot be perfectly implemented by VAEs, SIMVI employs an asymmetric
independence regularization term to minimize the encoded information in z, which can be seen as
minimizing the "effective dimensionality" of 2.

» The SIMVI spatial variational posterior design enforces meaningful outputs even under model misspeci-
fication, such as when components of s completely overlap with z in certain cells. This scenario often
manifests as identical cell types within a specific spatial niche. In such case, SIMVI would appropriately
attribute the variation to both intrinsic and spatial-induced factors. This is because, after training the
model, this overlapped information is preserved either in z itself or in 8, and in the latter case, also in
zNV. Here, the intrinsic property of the spatial neighborhood is equivalent to 2, ensuring the overlapping
information to be encoded in the intrinsic variation 2, thus also in 2V and §. Nevertheless, this represents
a scenario where the spatial effect cannot be effectively estimated for these cells / spatial niches. This is
further elaborated in the subsequent section on spatial effect estimation.

2 Spatial effect estimation

In this section, we no longer distinguish inferred and ground truth variations, and denote the SIMVI intrinsic
/ spatial variations as z, s respectively. To estimate the spatial effect for cell 7 within its spatial context, we
consider the spatial variation s as a continuous treatment on each cell. This naturally leads to the formulation
of the following conditional average treatment effect objective for cell i:

SE; = E[Y (s = s')|z = 2'] —E[Y (s = )|z = 2] (17)

Here Y represents the normalized expression of the gene of interest, and s?, z* denote the spatial and intrinsic
representation of cell 7 respectively. s” indicates the control spatial state. Before proceeding, we introduce the
archetype transformation employed to substitute the original spatial variation.

2.1 Transforming spatial variation into archetypes

After training the SIMVI model, we obtain the spatial variation for each cell s*. Ideally, we aim to investigate
how individual "mechanisms" within this spatial variation affect gene expression. However, due to the linear
identifiability result, the values of each component s; represent a linear mixture of these mechanisms rather
than independent factors. Consequently, we require a linear-transformation-agnostic approach to estimate the
effect of spatial microenvironments.

Our key insight is that while spatial variation comprises multi-dimensional mechanisms, spatial microenvi-
ronments are typically mutually exclusive. For instance, in data with a layered structure, each cell’s spatial
environment can be viewed as a weighted average of microenvironments from adjacent layers. Thus, we
can consider pure individual spatial mechanisms as "archetypes" within the spatial variation space. Such
archetypes can be derived via linear archetypal analysis:

Definition 4. (Archetypal analysis [8]) Suppose S € R™*? to be the SIMVI spatial variation (or any data
of interest), and C' € R**42 ig a (factor) matrix, with each row within Conv(.S) and linear independent.
Q € R™"*% is a (loading) matrix, with each row q° satisfying q* > 0, ||q*||; = 1. Then archetypal analysis
finds the optimal @, C satisfying the described properties and minimize

IS - QCl%.
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Applying archetypal analysis on SIMVI spatial variation, we now have a new archetype weight matrix Q.
Replacing the spatial variation with archetype weights in spatial effect analysis has the following advantages:

1. The archetype weight matrix is able to account for the mutually exclusive nature of the spatial
microenvironment. It also leads to a natural definition of the control state g° = 0.

2. The archetype weight matrix is agnostic to the linear transformation. In this case, we can estimate the
treatment effect of each component g; using the continuous treatment effect estimation framework.

Now, we are able to estimate the treatment effect of each entry (archetype) j in the matrix g;, conditioning
on the covariate of individual cells. We next introduce the double machine learning framework that we have
adopted for estimating the spatial effect. To make the connection between S and @) clearer, in the following
text, we use S’ and s’ to denote Q, q respectively.

2.2 Estimating spatial effect via double machine learning

The first step of double machine learning (DML) framework [9] involves fitting two linear regression models
Y (z), §'(z) and computing residuals Y, 5":

Y =Y -Y(2);
o (78)
§=5-5§(=
After computing the residuals, the DML framework further considers the following linear model:
Y ~6(z)5. (79)
Note that §’ is multidimensional, therefore when 6;(z) = z3; + ¢;, the model can be further written as:
Y ~ ) 828+ ¢;8] (80)
J

Solving this regression model is equivalent to solving an ordinary linear regression problem with the covariate

matrix as [8}z,...,8,2,81,...,8.].

After fitting the model, the spatial effect is obtained as
Zg;zﬂj +¢;8). (81)

The DML approach can also be used to derive the variance decomposition for the intrinsic and spatial variation.
The R? for the intrinsic variation is defined as R*(Y,Y (z)), whereas the R? for the spatial variation is defined
as R*(Y, ", 8,20; + ¢;8)).

We note that the spatial effect of individual archetype may also be of interest. However, the described
multivariate regression model may have a high level of colinearity by the definition of archetype vectors.
Consider the example where we only have two archetypes. In this case, the two components s}, 8, satisfies
8} + 8, =1 for all cells. This indicates a perfect colinearity, in which case the model will arbitrarily attribute
the spatial effect to archetype 1 or archetype 2.

Therefore, we propose another variant of the model. Specifically, we consider fitting a independent models,
one for each archetype j, with (3;, c;) as the parameters to fit:

Model j : Y ~ 8,20; + ¢;5. (82)
After fitting each individual model, the total spatial effect can be obtained via summing the spatial effect for
each archetype, while a global R? metric can be obtained by taking the maximum intrinsic / spatial variation

R? over archetypes. In practice, we observed that the two variants generate highly similar spatial effects
(Supplementary Fig. 11c).
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2.3 The underlying assumptions for spatial effect estimation and the positivity
index

Estimation of the spatial effect is not always possible for all cells. In this section, we discuss the assumptions
of the potential outcome framework [10, 11], under which estimation of this term is feasible.

For a comprehensive introduction to the potential outcome framework, refer to [11]. In our context, the treatment
variable corresponds to the multidimensional spatial archetype s’ for cell i. We restate the framework’s
assumptions in our specific context as follows.

Assumption 5. (SUTVA, Stable Unit Treatment Value Assumption, [10, 11, 12]) The treatment assignment of
one cell does not affect the spatial effect of another cell (no interference), and there is no hidden variability in
treatment levels.

Assumption 6. (Ignorability) [10, 11, 12]) The potential outcome is independent of the spatial variation
conditioning on the intrinsic variation Y (z,s') L s'|z (s’ is fixed).

Assumption 7. (Positivity) [10, 11, 12]) 0 < P(s}; = 1|z) < 1 for any z of interest and any index j. That is,
the treatment should not be deterministic on the intrinsic variation.

Given the data generation process and the identifiability results outlined in the initial section, all assumptions
are automatically satisfied. However, in practical applications, while SUTVA and ignorability still likely hold,
the positivity assumption may be violated. For instance, distinct cell types might inhabit non-overlapping
microenvironments. In such scenarios, spatial archetypes could be determined by intrinsic variation, thus
invalidating the positivity assumption.

To assess the validity of the positivity assumption in real data, we propose positivity indices as proxies for
potential assumption violations. We begin by defining a label-based positivity index P; for each archetype
j. Our calculation requires a pre-specified label denoted as ¢ € {1,2,...,1}, which can be either cell type
annotations or SIMVI intrinsic variation clustering labels. We first select the "pure archetype" cells represented
by the set {¢ | max; s}l > 0.5}, and binarize the archetype weights for the subset, yielding a one-hot matrix.
Next, we group the cells in this one-hot matrix by their label ¢ and compute label frequencies for each archetype,
forming a matrix S, € R"*®. We then take the maximum of each column in this matrix, yielding a vector of
shape R“. The j-th component of this vector is defined as P;.

A positivity index P? thus can be defined for each cell i in either binarized or continuous fashions:

P = ]lEIj, s.t. Pj>thresl, s’ >thres2 (Binarized) (83)
T 17 .
P = Z sj. (Continuous) (84)
j:Pj>thresl

The cell positivity index is a per-cell measure that allows evaluation of the spatial effect feasibility for each cell.
A high value indicates potential violation of the positivity assumption.

3 Discussions on hyperparameter selection

We performed a comprehensive study on the effects of different parameter settings on SIMVI performance
(Supplementary Figs. 1,2,3,4). Specifically, we started from a base model with the following settings (Here
n_layers denotes the decoder layer number, the encoder layer number was set to 2, the hidden dim (encoder
intermediate layer) was set to 128):

model = SimVI(adata, kl_weight=1, kl_gatweight=1, lam_mi=5, permutation_rate=0,
reg_to_use=‘mi’, dis_to_use= ‘zinb’, n_layers = 1,n_intrinsic=20,n_spatial=10)

model.train(edge_index,batch_size=1000,mae_epoches=0)

We altered one parameter in each experiment, leading to 48 parameter configurations. For each configuration,
we performed 5 runs with different random seeds. To ensure the robustness of our findings and avoid dataset-
specific parameter tuning, we performed the evaluation on both the MTG and STG datasets, identifying shared
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parameter settings that enhanced the performance. The same set of random seeds was applied across different
configurations. However, we note that settings with non-zero permutation rates and MMD regularizations
(which sample from Gaussian distributions) may introduce additional randomness.

We list the meaning of shown parameters and their effects as follows. Important parameters are labeled in bold.

* Latent dimension size dim(z),dim(s). The performances of intrinsic variations remain consistent across
models with varying dimensionalities. However, the layer preservation performances improve as the
dimensionality of spatial variation increases.

* The batch size Batch size. Larger batch sizes correlate with improved performances of layer preservation.
Other metrics remain relatively stable across different batch sizes.

* The KL divergence weights kI. Notably, reducing the KL weight for spatial variation positively impacts
the layer preservation performance.

e MI/ MMD regularization strength /(MI),[(MMD). Interestingly, increasing I(MI) and I(MMD) leads
to performance differences in some cases but does not yield a clear performance improvement. This
is because the regularizations are designed to regress out spatial information from intrinsic variation.
However, since cell type dominates the variation in the data, improved disentanglement may not translate
into a measurable performance gain for intrinsic variations. This observation is consistent with our main
benchmarking results, where several methods that do not explicitly disentangle variations still perform
well in cell type preservation and batch removal. The essence of I(MI) and I(MMD) lies primarily in
spatial effect estimation, where removing spatial information from intrinsic variation is essential.

* The number of neighbors n. Increasing the number of neighbors enhances global layer preservation but
diminishes local niche (MYH11+) preservation performance.

* The number of decoder layers nl. No consistent performance differences are observed across experiments.

¢ The number of pretraining epochs p_epochs and the permutation rate pr. Both MTG and STG
datasets show slight improvements in layer and cell type preservation performances as p_epochs increase.
However, no consistent trend is observed regarding different permutation rates, likely due to inherent
randomness.

* The loss likelihood setting NB / ZINB. The two settings result in similar performance in all cases.

Accounting for the results from the hyperparameter analysis and the default in scVI-based models, we set the
default parameter configuration of the SIMVI model as follows:

model = SimVI(adata, kl_weight=1, kl_gatweight=0.01, lam_mi=1000, permutation_rate=0.5,
reg_to_use=‘mmd’, dis_to_use= ‘zinb’, n_layers = 1, n_intrinsic=20,n_spatial=20)

The MAE epoch number was set to be 25 and the batch size was set as 500. We observed an increased
performance of the default setting combining all SIMVI designs, compared with models with alternative
configurations (Supplementary Figs. 1,2,3,4). Our comparison may also be seen as an ablation study showing
the contribution of each component in the model. We end the section with two remarks.

Remark 8. The selection of optimal parameters may vary with the dataset itself, especially the parameters
associated with model training. For example, the batch size may not be set as an default value.

Remark 9. Overall, we observed consistent performances of SIMVI across independent runs with the same
configuration (Supplementary Figs. 1,2). This supports our theoretical identifiability results and is further
validated across different datasets.
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Supplementary Figure 1: Boxplot showing metric scores for different SIMVI parameter configurations on the
MERFISH MTG dataset. The bar heights represent the average performance across 5 different random seeds
(n = 10 for Default). Error bars indicate standard deviations.
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Supplementary Figure 2: Boxplot showing metric scores for different SIMVI parameter configurations on the
MERFISH STG dataset. The bar heights represent the average performance across 5 different random seeds

(n = 10 for Default). Error bars indicate standard deviations.
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Supplementary Figure 3: Boxplot showing scaled metric scores (min_max_scale = True in scib-metrics)
for different SIMVI parameter configurations on the MERFISH MTG dataset. The bar heights represent
the average performance across 5 different random seeds (n = 10 for Default). Error bars indicate standard
deviation.
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Supplementary Figure 4: Boxplot showing scaled metric scores (min_max_scale = True in scib-metrics) for
various SIMVI parameter configurations on the MERFISH STG dataset. The bar heights represent the average
performance across 5 different random seeds (n = 10 for Default). Error bars indicate standard deviation.
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Supplementary Figure 5: Additional visualizations on MERFISH MTG / STG datasets. a. Overview of the
MERFISH STG data, showing spatial organizations of cell type, layer annotation, and log normalized MYH11
expression for STG replicates 1-3. b. UMAP visualization of the MERFISH MTG dataset using the principal
components derived from log normalized gene expression, colored by cell type, layer annotation, and batch
label. ¢. UMAP visualization of the MERFISH STG dataset using the principal components derived from log
normalized gene expression, colored by cell type, layer annotation, and batch label. d. UMAP visualization
of the SIM VT intrinsic variation on MERFISH STG dataset, colored by cell type and batch label. e. UMAP
visualization of the SIMVI spatial variation on MERFISH MTG dataset, colored by cell type. f. UMAP
visualization of the SIMVI spatial variation on MERFISH STG dataset, colored by layer annotation, log
normalized MYH1 1 expression, cell type, and batch label.
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Supplementary Figure 8: Additional analysis results on Slide-seqv2 mouse hippocampus data. a. UMAP
visualization using the principal components derived from log normalized highly variable gene expression,
colored by dominant cell type label. b. UMAP visualization for the full data (left) and the cells with
deconvolution purity > 0.5 (right) using the SIM VT intrinsic variation, colored by dominant cell type label.
c. Spatial visualization of the niche annotation, and deconvolution ratio of CA1-3 and DG cells from prior
annotation. d. Spatial visualization overlaying CA1-3 (left) and DG (right) deconvolution ratio and niche
annotation. e. Spatial visualization overlaying niche annotation (left), and UMAP visualization colored by
Leiden clusters for SIMVI, CellCharter and GraphST. f. Benchmarking results of different methods in terms of

relative distances between CA, DG, and their neighborhoods. Relative distances are calculated using Silhouette
width.
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Supplementary Figure 9: Spatial visualization of archetype components in MERFISH MTG replicate 1 (a), 2

(b). 3 (0.
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Supplementary Figure 10: R? scatter plot of each individual archetype for the MERFISH MTG dataset. Genes

with scaled Huber regression residual larger than 10 were annotated as spatial-induced. Other genes with
intrinsic-specific R? larger than 0.6 were annotated as intrinsic-specific.
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Supplementary Figure 11: Additional visualizations of the SIMVI spatial effect applied in MERFISH MTG
data. a. Violin plot of SIMVI spatial effect (individual archetype), SIMVI spatial effect (full archetype), and
normalized counts for example genes. b. R? decomposition scatter plot using the SIMVI SE full archetype
mode. Genes with scaled Huber regression residual larger than 10 were annotated as spatial-induced. Other
genes with intrinsic-specific R? larger than 0.6 were annotated as intrinsic-specific. ¢. Boxplot of Pearson and
Spearman correlations across SIMVI SE (individual archetype mode) and SIMVI SE (full archetype mode).
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Supplementary Figure 12: Comparison of alternative methods in revealing gene expression spatial patterns in
MERFISH MTG data replicate 1. a. Log normalized and scaled counts. b. Binned normalized expression
returned by graph only + cell type (NCEM) model. c¢. Linear regression predictions using SIMVI spatial
variation. d. Linear regression predictions using SIMVI spatial archetypes. e. Binned linear regression

predictions using SIMVI spatial archetypes. Data from all panels were binned as described in the Methods
section.
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Supplementary Figure 13: Boxplot showing Spearman R on each individual gene of astrocytes from MTG
replicate 1 and the spatial vertical coordinate (left) and horizontal coordinate (right). *: scVI ablation refers to
the DML approach that fixes SIMVI spatial variation and replaces SIM VI intrinsic variation with the scVI
embedding. The gene number (n) is 1002, 265, 176, 40, 31, 23, 16, 8 for each cluster. The top/lower hinge
represents the upper/lower quartile and whiskers extend to the largest/smallest value within 1.5x interquartile
range from the hinge. The median is shown as the center.
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Supplementary Figure 14: Additional visualizations of SIMVI spatial effect for Slide-seqv2 data. a. Scatter
plot showing the intrinsic variation R? and spatial effect R? for each individual gene in Slide-seqV2 mouse
hippocampus. Genes with scaled Huber regression residual larger than 100 were annotated as spatial-induced.
Other genes with intrinsic-specific R? larger than 0.2 were annotated as intrinsic-specific. b. Spatial
visualization of pixels satisfying the positivity condition in Slide-seqV2 mouse hippocampus. c. Table showing
the effect of Leiden clustering resolution on the archetype positivity index. Higher values indicate potential
violation of the positivity condition. d. Spatial visualizations of representative genes’ spatial effects. e. Spatial
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Supplementary Figure 15: Additional analysis results for the Slide-tags human tonsil data. a. UMAP
visualization of the original data (log normalized highly variable gene expression), colored by annotated phase,
niche, CXCL4 and BCL2A1 expression. b. Visualization of the first two principal components of the original
data (log normalized highly variable gene expression), colored by annotated phase, niche, log normalized
CXCL4 and BCL2A1 expression. ¢. Dotplot showing the marker gene expression across phases. d. Spatial
visualization of GC B cells colored by dark zone likelihood. e. Bar plots showing metric scores for the
Slide-tags human tonsil dataset. The bar heights represent the average performance across 10 different random
seeds, with the error bars showing standard errors. *: The score is obtained by first averaging the individual
score values for each experiment, then rescaling the average score across all experiments to the range [0,1].
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Supplementary Figure 16: Additional visualization of SIMVI analysis on spatial multiome melanoma data.
a. Spatial visualization colored by cell type, annotated tumor niche, and the annotated local hypoxia
microenvironment. b. UMAP visualization of the SIMVI spatial variation, colored by cell type and annotated
SIMVI niche. ¢. Violin plot showing gene expression in the "hypoxia" microenvironment versus other cells of
tumor 1. d. UMAP visualization of the scVI representation, colored by cell type and annotated SIMVI niche.
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Supplementary Figure 17: Additional results of spatial effect analysis for the spatial multiome melanoma
data. a. R? scatter plot of SIMVI spatial effect. Genes with scaled Huber regression residual larger than
10 were annotated as spatial-induced. Other genes with intrinsic-specific R? larger than 0.6 were annotated
as intrinsic-specific. b. Spatial visualization of the SIMVI spatial effect of example genes, colored by log
normalized expression. ¢. Spatial visualization of the log normalized expression of example genes. d. Dotplot
of the tumor 2 state representative genes from ATAC (left) and RNA (right) modalities. e. Violin plot of
representative differential ATAC peaks across tumor 2 states. f. UMAP visualization of the LSI embedding of
the ATAC modality, colored by cell type and leiden clustering label from SIMVI spatial effect. g. UMAP
visualization of the SIMVI ATAC spatial effect, colored by cell type label, leiden clustering, and SIMVI niche
label. h. UMAP visualization of the SIMVI full variation / spatial effect of the tumor 2 state 1 / 2, colored by
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Supplementary Figure 18: Gene set enrichment analyses for ATAC peaks across tumor states. a. Dotplot
showing selected EnrichR Wikipathway corresponding to genes overlapping with differential ATAC peaks
across the two states of tumor 2. b. Dotplot showing selected EnrichR Wikipathway corresponding to TSS +/ -
2kb overlapping with differential ATAC peaks across the two states of tumor 2. ¢. Comparison of the enriched
gene / TSS ratio across significantly enriched Wikipathways for state 1/ 2.
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Supplementary Figure 19: Additional results for CosMx melanoma data. a. UMAP visualization of log
normalized counts for all cells (upper) and non-tumor cells (lower), colored by patient ID and cell type
respectively. b. Stacked bar plot showing total cell type fractions (left) and non-tumor cell type fractions (right)
across patient phenotypes. ¢-h. UMAP visualization of embeddings generated by different methods, colored
by patient ID, cell type, tumor stage and patient outcome. i. Violin plot showing the summary positivity index
across different cell types. j. R? scatter plot for non-tumor cell spatial effect in the CosMx melanoma dataset.
Genes with scaled Huber regression residual larger than 20 were annotated as spatial-induced. Other genes
with intrinsic-specific R? larger than 0.4 were annotated as intrinsic-specific.
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Supplementary Figure 20: Additional results on SIMVI spatial effect for macrophages. a. UMAP visualization
of macrophages by log normalized gene expression, colored by patient outcome and signature gene expression.
b. Boxplot showing log normalized expression of signature genes across patient outcomes. Mann-Whitney
tests were performed. **#*: p-value < 1 x 107, ¢. Spatial visualization of an patient example (31788)
colored by cell types. Immune cell niches were circled in gray. d. Spatial visualization of log normalized
signature gene expression in macrophages. Immune cell niches were circled in gray. e. Spatial visualization of
SIMVI spatial effect for signature genes in macrophages. Immune cell niches were circled in gray.
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Supplementary Figure 21: Spearman correlation map between ligand-receptor expression level and normalized
counts (a), scVI normalized expression (b), Graph only normalized expression (c), Graph only + cell type
(NCEM) normalized expression (d), SIMVI spatial effect (e). The row and column orders of the correlation
maps are fixed to match the result of hierarchical clustering on the SIMVI spatial effect cluster map. f. Boxplot
comparing entries of the SIMVI Spearman correlation map in upper right and lower left locations of region 1
and 2. g. Violin plot of example ligand-receptor expression levels across cell types.
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Supplementary Figure 22: Hierarchical clustered Spearman correlation maps between ligand-receptor
expression level and normalized original counts (a), scVI normalized expression (b), Graph only normalized
expression (c), Graph only + cell type (NCEM) normalized expression (d). The rows and columns with max
absolute values larger than 0.4 are shown.
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