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Supplementary Materials and Methods 

Dataset descriptions 

 

As different types of analyses require SNP sets curated and filtered based on their specific needs, 

we provide four versions of SNP sets as vcf files available at https://doi.org/10.57745/DV2X0M. 

Note that since several species were observed to have experienced various levels and extents of 

hybridization, some admixed populations were included/excluded based on the purpose of a 

particular analysis. For example, in the analyses of population structure, we aimed to identify the 

potential admixed individuals and populations. In contrast, admixed individuals and populations 

can have a disproportionate effect on the measures of diversity and on the site frequency spectrum 

and were thus excluded from the corresponding analyses.  

 

v.5.3 Known other species and clear hybrids removed, samples and SNPs with poor coverage or 

other low quality removed, organelle contigs removed (described in SNP filtering), P. nigra clones 

and cultivars removed, vcf format. 

v.5.3.1 Master dataset derived from v.5.3, without samples with incorrect taxon assignment as 

indicated by genetic analysis for F. sylvatica and Q. petraea, identical to v.5.3 for the other five 

species, vcf format. 

v.5.3.2 Derived from v.5.3.1, excludes P. abies populations RU_PA_19 and RU_PA_20, vcf 

format. 

v.6.3.1 Only includes four-fold degenerate sites, intron and intergenic sites, SNPs in high LD (1 

kb windows, r > 0.5, PLINK v.1.90b4.91,2, were excluded, derived from v.5.3.1 

v.6.3.2 Derived from v.6.3.1, excludes singletons, ped- and map- format. 

 

Clone and incorrect taxon identification and filtering 

We identified Populus x canadensis genotypes among P. nigra samples based on an excess of 

heterozygous positions (> 5% of calls). We confirmed these by comparing their genotype at SSR 

markers with the INRAE database of common Populus x canadensis cultivars 

(https://urgi.versailles.inrae.fr/faidare/studies/dXJuOlVSR0kvc3R1ZHkvNjU%3D). We detected 

introgression from the ornamental P. nigra ‘Italica’ cultivar by using this cultivar as a control in 

the targeted capture experiment and performing ancestry analysis using ADMIXTURE software3 

on the whole SNP dataset. We discarded samples with a percentage of co-ancestry with ‘Italica’ 

> 85%, except for one Spanish genotype (ES_PO_01_02) that is identical to ‘Italica’ and 

represents the genotype. We identified clones through an identity by state (IBS) calculation on 

the whole SNP dataset using plink software (v.1.9). 

 

For Q. petraea, we removed samples with an incorrect taxon identification by comparing cluster  

membership in a preliminary admixture analysis (see below) with the leaf hair density and type 

of herbarium proofs4. We identified as Q. robur 38 individuals forming their own cluster at K=2 

and removed them for further analysis. These included seven individuals from population 

DE_QP_17, two from GB_QP_12, two from PL_QP_19, five from SE_QP_16, and the complete 

population SE_QP_15 (22 individuals). 

 

We removed F. sylvatica population GR_FS_10 from the dataset because preliminary analyses of 

genotypic data by PCA showed it to be entirely different from the remaining populations. This 

stand is possibly composed of hybrids between F. sylvatica and F. orientalis. 

https://doi.org/10.57745/DV2X0M
https://urgi.versailles.inrae.fr/faidare/studies/dXJuOlVSR0kvc3R1ZHkvNjU%3D


 

 

 

For P. abies, Picea obovata served as an outgroup for interpreting admixture results. We excluded 

these samples from subsequent analyses, as well as samples from populations RU_PA_19 and 

RU_PA_20, which showed excessive admixture with P. obovata, and two P. omorika samples. 

 

 



 

 

 

 

Figure S1. Sampling design. Species range5 and sampling locations (black dots) for the seven 

species analyzed in this study. 



 

 

 
Figure S2. Variation in population-specific FST across space. Population-specific FST (average FST 

divided by average log distance) were regressed over latitude, longitude or elevation. The value of the 

slope of the linear regressions (b) and the t- and P-values are presented above the plot. Where P < 0.05 

the regression line is shown in red. 
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Figure S3. Admixture analysis among populations of Betula pendula based on the targeted capture 

SNP dataset. Geographic distribution5 of the level of admixture for each population, with colors 

in pie charts reflecting average assignment probabilities to the respective genetic group (K = 2–8). 

Population codes are explained in Supplementary Data 1. The variation in cross-validation error 

across K values is represented in the bottom right panel, with the lowest value being the optimal 

number of genetic groups. Source data are provided as a Source Data file-1.



 

 

 

Figure S4. Admixture analysis among populations of Fagus sylvatica based on the targeted 

capture SNP dataset. Geographic distribution5 of the level of admixture for each population, with 

colors in pie charts reflecting average assignment probabilities to the respective genetic group (K 

= 2–8). Population codes are explained in Supplementary Data 1. The variation in cross-validation 

error across K values is represented in the bottom right panel, with the lowest value being the 

optimal number of genetic groups. Source data are provided as a Source Data file-1. 



 

 

 

Figure S5. Admixture analysis among populations of Picea abies based on the targeted capture 

SNP dataset. Geographic distribution5 of the level of admixture for each population, with colors 

in pie charts reflecting average assignment probabilities to the respective genetic group (K = 2–8). 

Population codes are explained in Supplementary Data 1. The variation in cross-validation error 

across K values is represented in the bottom right panel, with the lowest value being the optimal 

number of genetic groups. Source data are provided as a Source Data file-1. 



 

 

 

Figure S6. Admixture analysis among populations of Populus nigra based on the targeted capture 

SNP dataset. Geographic distribution5 of the level of admixture for each population, with colors 

in pie charts reflecting average assignment probabilities to the respective genetic group (K = 2–8). 

Population codes are explained in Supplementary Data 1. The variation in cross-validation error 

across K values is represented in the bottom right panel, with the lowest value being the optimal 

number of genetic groups. Source data are provided as a Source Data file-1. 



 

 

 

Figure S7. Admixture analysis among populations of Pinus pinaster based on the targeted capture 

SNP dataset. Geographic distribution5 of the level of admixture for each population, with colors 

in pie charts reflecting average assignment probabilities to the respective genetic group (K = 2–8). 

Population codes are explained in Supplementary Data 1. The variation in cross-validation error 

across K values is represented in the bottom right panel, with the lowest value being the optimal 

number of genetic groups. Source data are provided as a Source Data file-1. 



 

 

 

Figure S8. Admixture analysis among populations of Pinus sylvestris based on the targeted 

capture SNP dataset. Geographic distribution5 of the level of admixture for each population, with 

colors in pie charts reflecting average assignment probabilities to the respective genetic group (K 

= 2–8). Population codes are explained in Supplementary Data 1. The variation in cross-validation 

error across K values is represented in the bottom right panel, with the lowest value being the 

optimal number of genetic groups. Source data are provided as a Source Data file-1. 



 

 

 

Figure S9. Admixture analysis among populations of Quercus petraea based on the targeted 

capture SNP dataset. Geographic distribution5 of the level of admixture for each population, with 

colors in pie charts reflecting average assignment probabilities to the respective genetic group (K 

= 2–8). Population codes are explained in Supplementary Data 1. The variation in cross-validation 

error across K values is represented in the bottom right panel, with the lowest value being the 

optimal number of genetic groups. Source data are provided as a Source Data file-1. 



 

 

Figure S10. Level of admixture within and among individuals of Betula pendula based on the 

targeted capture SNP dataset. Colors reflect assignment probabilities (i.e. Q scores) to respective 

genetic group (K = 2–8). Population codes are explained in Supplementary Data 1. Singletons were 

excluded in the admixture analysis. Source data are provided as a Source Data file-1. 



 

 

Figure S11. Level of admixture within and among individuals of Fagus sylvatica based on the 

targeted capture SNP dataset. Colors reflect assignment probabilities (i.e. Q scores) to respective 

genetic group (K = 2–8). Population codes are explained in Supplementary Data 1. Singletons were 

excluded in the admixture analysis. Source data are provided as a Source Data file-1. 



 

 

Figure S12. Level of admixture within and among individuals of Picea abies based on the targeted 

capture SNP dataset. Colors reflect assignment probabilities (i.e. Q scores) to respective genetic 

group (K = 2–8). Population codes are explained in Supplementary Data 1. Source data are 

provided as a Source Data file-1. 



 

 

 

Figure S13. Level of admixture within and among individuals of Populus nigra based on the 

targeted capture SNP dataset. Colors reflect assignment probabilities (i.e. Q scores) to respective 

genetic group (K = 2–8). Population codes are explained in Supplementary Data 1. Source data are 

provided as a Source Data file-1. 



 

 

Figure S14. Level of admixture within and among individuals of Pinus pinaster based on the 

targeted capture SNP dataset. Colors reflect assignment probabilities (i.e. Q scores) to respective 

genetic group (K = 2–8). Population codes are explained in Supplementary Data 1. Source data are 

provided as a Source Data file-1. 



 

 

Figure S15. Level of admixture within and among individuals of Pinus sylvestris based on the 

targeted capture SNP dataset. Colors reflect assignment probabilities (i.e. Q scores) to respective 

genetic group (K = 2–8). Population codes are explained in Supplementary Data 1. Source data are 

provided as a Source Data file-1. 



 

 

Figure S16. Level of admixture within and among individuals of Quercus petraea based on the 

targeted capture SNP dataset. Colors reflect assignment probabilities (i.e. Q scores) to respective 

genetic group (K = 2–8). Population codes are explained in Supplementary Data 1. Source data are 

provided as a Source Data file-1. 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S17. Principal component analysis of population structure of Betula pendula. Top panel is 

for all populations included in SNP set v.5.3. Middle and bottom panels show PC1 and 2 and PC3 

and 4 of a PCA excluding outlier populations and individuals from top panel and focusing on 

Western Europe populations (SNP set v.6.3.1). Completely excluded populations are boxed. 

Leftmost most legend is for top panel, rightmost is for middle and bottom panels. Source data are 

provided as a Source Data file-1.

Betula pendula 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S18. Principal component analysis of population structure of Fagus sylvatica. Top panel 

is for all populations included in SNP set v.5.3. Middle and bottom panels show PC1 and 2 and 

PC3 and 4 of a PCA excluding outlier populations and individuals from top panel and focusing on 

Western Europe populations (SNP set v.6.3.1). Completely excluded populations are boxed. 

Leftmost most legend is for top panel, rightmost is for middle and bottom panels. Source data are 

provided as a Source Data file-1.

Fagus sylvatica 



 

 

   

 
Figure S19. Principal component analysis of population structure of Picea abies. Top panel is for 

all populations included in SNP set v.5.3. Middle and bottom panels show PC1 and 2 and PC3 and 

4 of a PCA excluding outlier populations and individuals from top panel and focusing on Western 

Europe populations (SNP set v.6.3.1). Completely excluded populations are boxed. Leftmost most 

legend is for top panel, rightmost is for middle and bottom panels. Source data are provided as a 

Source Data file-1.

Picea abies 



 

 

 

 
Figure S20. Principal component analysis of population structure of Populus nigra. Top panel is 

for all populations included in SNP set v.5.3. Middle and bottom panels show PC1 and 2 and PC3 

and 4 of a PCA excluding outlier populations and individuals from top panel and focusing on 

Western Europe populations (SNP set v.6.3.1). Completely excluded populations are boxed. 

Leftmost most legend is for top panel, rightmost is for middle and bottom panels. Source data are 

provided as a Source Data file-1.

Populus nigra 



 

 

 

 

 
Figure S21. Principal component analysis of population structure of Pinus pinaster. Top panel is 

for all populations included in SNP set v.5.3. Middle and bottom panels show PC1 and 2 and PC3 

and 4 of a PCA excluding outlier populations and individuals from top panel and focusing on 

Western Europe populations (SNP set v.6.3.1). Completely excluded populations are boxed. 

Leftmost most legend is for top panel, rightmost is for middle and bottom panels. Source data are 

provided as a Source Data file-1.

Pinus pinaster 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S22. Principal component analysis of population structure of Pinus sylvestris. Top panel is 

for all populations included in SNP set v.5.3. Middle and bottom panels show PC1 and 2 and PC3 

and 4 of a PCA excluding outlier populations and individuals from top panel and focusing on 

Western Europe populations (SNP set v.6.3.1). Completely excluded populations are boxed. 

Leftmost most legend is for top panel, rightmost is for middle and bottom panels. Source data are 

provided as a Source Data file-1.

Pinus sylvestris 



 

 

 

 
Figure SX: Principal component analysis of population  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S23. Principal component analysis of population structure of Quercus petraea. Top panel 

is for all populations included in SNP set v.5.3. Middle and bottom panels show PC1 and 2 and 

PC3 and 4 of a PCA excluding outlier populations and individuals from top panel and focusing on 

Western Europe populations (SNP set v.6.3.1). Completely excluded populations are boxed. 

Leftmost most legend is for top panel, rightmost is for middle and bottom panels. Source data are 

provided as a Source Data file-1.

Quercus petraea 



 

 

 

 
Figure S24. Schematics of the Fastsimcoal 2 models used in this study and their parameters. The 

blocks represent the evolution of populations with their lengths along the horizontal axis reflecting 

the population size and the time on the vertical axis from past (top) to present (bottom). Model 

abbreviations: SNM = Standard Neutral Model, E2 = 2 epoch model, E3 = 3 epoch model, Div-

e1-Iso and Div-e2-Iso = Divergence model of two isolated populations both deriving from the 

same ancestral population that didn't or did experience a single demographic event in the past 

respectively, Div-e1-Mig and Div-e2-Mig = Divergence model of two populations with migration 

between both deriving from the same ancestral population that didn't or did experience a single 

demographic event in the past respectively. Parameter abbreviations: NANC, NCUR, NBOT, Np1, Np2: 

effective population size of respectively the ancestral, current, bottleneck, diverged population 1 

or diverged population 2. TLATE TEARLY: time of the latest or earliest (backward in time) 

demographic event. Tevt and Tdiv: time of the demographic or divergence event. m12 m21: migration 

rate from population 1 to 2 and 2 to 1 respectively (backward in time).



 

 

 
Figure S25. Comparisons of the results obtained with Stairway Plot 2 and the divergence models 

(div-e1-mig) implemented with fastsimcoal2. Source data are provided as a Source Data file-2.
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Figure S26. Comparison of the results obtained for the demographic dynamics of the seven forest 

tree species using two different sampling sets and three approaches. More specifically, results are 

presented for the Stairway Plot 2 model (in yellow) and for two demographic models tested using 

fastsimcoal2, i.e. 2-epoch (in red) and 3-epoch (in green), which allow one and two demographic 

events in the population, respectively. The analyses were performed using the site frequency 

spectrum computed either over all samples left panel) or over a random subset of one haplotype 

per location (OneperPop, right panel). Source data are provided as a Source Data file-2.
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Figure S27. Stairway Plot 2 results for each species and across different sampling designs. For 

each species, results at the global and population levels are presented. At the global level (left plot 

in each panel), all-sample results (in blue) and one-per-population results (in yellow) are 

represented, with a line for the median level and a band for the 95% confidence interval. At the 

population level (right plot in each panel), each colored line represents the median result of the 

Stairway Plot 2 analysis run on a single population. Lighter to darker line colors represent areas 

with larger to smaller confidence intervals. Source data are provided as a Source Data file-3.



 

 

 
Figure S28. Stairway plot 2 inference of the change of effective population size (Ne) over time (in 

years, from present to past) of an oscillating population. The black lines represent the median 

estimates (over 200 simulations), dark and light shades are respectively the 95% and 99% 

confidence intervals. The blue and dashed line represent the theoretical model simulated with 

Fastsimcoal2. Each panel corresponds to a different starting Ne and generation time (Gt). Across 

simulations, 20 haploid genomes were simulated with a sample size of the genome of 1.5 Mbp 

(15K contigs of length 100 bp) and a mutation rate of 7.7 × 10−9 per site per generation. Source 

data are provided as a Source Data file-4.
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Figure S29. Same as in Fig. S28, but simulations with sample size (Ss) of 20 haploid genomes, 

with genome size (Gs) of 6 Mbp (60K contigs of length 100 bp) and a mutation rate of 7.7 × 10−9 

per site per generation. Source data are provided as a Source Data file-4.
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Figure S30. Same as in Fig. S28 but simulations with sample size (Ss) of 20 haploid genomes, 

with genome size (Gs) of 1.5 Mbp (15K contigs of length 100 bp) and a mutation rate of 2.7 × 10−8 

per site per generation. Source data are provided as a Source Data file-4.
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Figure S31. Same as in Fig. S28 but simulations with sample size (Ss) of 20 haploid genomes, 

with genome size (Gs) of 6 Mbp (60K contigs of length 100 bp) and a mutation rate of 2.7 × 10−8 

per site per generation. Source data are provided as a Source Data file-4
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Figure S32. Synchronicity in decreasing phase in Ne between the four species showing the highest 

correlations in Ne dynamics (Betula pendula, Picea abies, Pinus sylvestris and Populus nigra). The 

solid line represents the number of species experiencing a decrease in Ne at a given time point. The 

direction of change is given by the average change in Ne across 250 time points using sliding 

windows see methods section synchronicity analysis. Periods where the synchronicity in 

decreasing Ne is larger than expected considering the actual change in Ne over time, are highlighted 

in red. Blue areas along the x axis delineate glacial periods over the last 0.8 Mya. No significant 

synchronicity in decrease in Ne was observed for Q. petraea and F. sylvatica. Source data can be 

found in Tab. S2. 
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Figure S33. Stairway plot inferences of change in effective population size (Ne) over years (from 

present to past) and conducted, for each species, on two populations mixed together (leftmost 

panels), or on each population separately (middle and rightmost panels). From top to bottom, we 

show the results for Picea abies, Betula pendula, Fagus sylvatica, Populus nigra, Pinus pinaster, 

Pinus sylvestris and Quercus petraea. The populations presented are the same as those used in the 

manuscript to represent the northern and southern genetic pools (divergence analysis). Source data 

are provided as a Source Data file-4. 
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Table S1. Number of populations and individuals per species. The complete list of sampled 

populations is given in Supplementary Data 1. Populations not included in Opgenoorth et al. 

(2021)6 are listed as ‘additional populations’. 

Species Populations Individuals Additional populations 

Betula pendula (BP) 23 497 Belarus (BY_BP_24), Russia (RU_BP_25), 

Ukraine (UA_BP_23) 

Fagus sylvatica (FS) 26 602 Austria (AT_FS_13, AT_FS_14), Slovenia 

(SI_FS_25, SI_FS_26, SI_FS_27, SI_FS_28) 

Populus nigra (PO) 22 467 Great Britain (GB_PO_19), France (FR_PO_21), 

Morocco (MA_PO_23), Bosnia and Herzegovina 

(BA_PO_24)  

Picea abies (PA) 26 555 Italy (IT_PA_03, IT_PA_04), Norway 

(NO_PA_22), Poland (PL_PA_25), Romania 

(RO_PA_24), Russia (RU_OB_01, RU_PA_19, 

RU_PA_20, RU_PA_26) 

Pinus pinaster (PP) 25 472 France (FR_PP_21), Morocco (MA_PP_23, 

MA_PP_24), Portugal (PT_PP_22), Tunisia 

(TN_PP_25) 

Pinus sylvestris (PS) 23 411 Russia (RU_PS_22, RU_PS_23) 

Quercus petraea (QP) 19 403 - 



 

 

Table S2 Synchronicity in decreasing phase in Ne between the four species showing the highest correlations in Ne dynamics (Betula 

pendula, Picea abies, Pinus sylvestris and Populus nigra). Span (number of consecutive ∆Ne) of synchronous decrease in Ne for a given 

number of species are compared to the 95th percentiles of the distribution of the maximum spans obtained over 10,000 simulations 

where observed ∆Ne were directly randomized. Values are bolded and italicized when the duration of a given span is longer than that 

obtained through simulations, the signal for synchronicity in decreasing Ne is hence considered as being significant. No significant 

synchronicity in decrease in Ne was observed for Q. petraea and F. sylvatica. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Two species  Three species 

Years (Kya)  
Duration 

 Years (Kya)  
Duration 

Start  End   Start  End  

49.8  138.3  661  49.8  126.7  512 

262.4  292.9  265  278.9  281.4  23 

294.4  301.8  79  -  -  - 

307  334.6  211  -  -  - 

485.3  520  177  -  -  - 

1674  1738.9  131  -  -  - 

95th percentile simulated span 103  95th percentile simulated span - 



 

 

Table S3. DNA extraction details for each species. 

Species DNA extraction 

method 

Laboratory 

Betula pendula E.Z.N.A.® SP Plant 

DNA Kit (Omega Bio-

tek) 

University of Oulu, Finland 

Fagus sylvatica CTAB Bavarian Office for Forest Seeding and Planting, ASP, 

Teisendorf, Germany 

Populus nigra Nucleospin Plant II Mini 

kit (Macherey-Nagel) 

INRAE, BioForA, Orléans, France (except Greek 

samples extracted by Aristotle University of 

Tessaloniki, Greece) 

Picea abies DNeasy Plant Mini Kit 

(QIAGEN) 

Uppsala University, Sweden 

Pinus pinaster DNeasy Plant Mini Kit 

(QIAGEN) 

INRAE Biogeco, Bordeaux, France 

Pinus sylvestris DNeasy 96 Plant kit 

(QIAGEN) 

UK Centre for Ecology and Hydrology, UK 

Quercus petraea sbeadex maxi plant kit 

(LGC Genomics, Berlin, 

Germany)  

Swiss Federal Research Institute WSL, Switzerland 

 



 

 

Table S4. Probe design information and statistics. 

Species Reference for probe 

design 

Best 

orthologs 

(% bp) 

Other 

orthologs 

(% bp) 

Candidates 

(% bp) 

Random 

(% bp) 

Criteria for additional targets 

Betula 

pendula 

Betula pendula subsp. 

pendula v.1.2 

scaffolds, id35079 

60.975 - 39.025 - 

Genes identified as putative targets of selective 

sweeps7 

Fagus 

sylvatica 

Fagus sylvatica 

transcriptome 

assemblies8; F. 

sylvatica candidate 

gene set9 

21.644 1.063 7.091 70.202 

Genes identified as differentially expressed in 

drought experiment8  and during budburst10; genes 

showing adaptive divergence on an elevation 

gradient9 

Populus 

nigra 

Populus trichocarpa 

v.3.0 for CDS 

Populus nigra v.1.0 

for full genes  

65.793 17.659 12.809 3.739 

Candidate genes based on annotation and 

differential expression across populations11 

Picea 

abies 
Picea abies v.1.0 58.365 0.378 4.336 36.921 

Orthologous genes between the three conifers; 

genes identified as putative targets for positive 

selection12 

Pinus 

pinaster 

Reference 

transcriptome at 

Gymno PLAZA v.1.0 

42.276 6.802 10.063 40.859 

Orthologous genes between the three conifers; 

genes with potential roles in adaptation13–18; and 

expressional candidate genes19 

Pinus 

sylvestris 

Reference 

transcriptome at 

Gymno PLAZA v.1.0  

48.420 8.846 6.744 35.990 

Orthologous genes between the three conifers; 

genes with potential roles in adaptation20,21 

Quercus 

petraea 

Quercus robur oak 

haplome v.2.322 
41.508 - 28.797 

29.695 

(14.219 

intergenic 

sequence) 

Candidate genes involved in local adaptation for 

response to water stress22, and to temperature, 

precipitation and date of budburst23; intergenic 

sequences corresponding either to SNPs associated 



 

 

with local adaptation to temperature, precipitation 

and date of budburst or to random sequences. 



 

 

 

 

Table S5. Probe design information and statistics. 

Species CDS UTR Unclassified Intergenic 

Betula pendula 1 0 0 0 

Fagus sylvatica 1 0 0 0 

Populus nigra 1 0 0 0 

Picea abies 0.76 0.24 0 0 

Pinus pinaster 0.99 0 0.01 0 

Pinus sylvestris 0.96 0 0.04 0 

Quercus petraea 0.63 0 0 0.37 

  



 

 

 

 

 

Table S6. Reference genome used for mapping each species. mt; mitochondrial; cp: chloroplast 

Species Reference genome Reference 

Betula pendula Betula pendula subsp. pendula v.1.2 scaffolds, id35079 (mt: 

LT855379.1, cp: LT855378.1) 

7 

Fagus sylvatica Fagus sylvatica v.1.3 (cp: NCBI MK598696: mt (Prunus avium) 

NCBI NC_044768.1) 

24 

Populus nigra Populus trichocarpa v.3.1 25 

Picea abies Picea abies v.1.0 26 

Pinus pinaster Pinus taeda v.2.01 (mt: NC_039746.1, cp: NC_0214401.1) 27,28 

Pinus sylvestris Pinus taeda v.2.01 (mt: NC_039746.1, cp: NC_0214401.1) 27,28 

Quercus petraea Quercus robur v.2.3 22 

  



 

 

 

 

Table S7. Sequencing and mapping statistics. For each species we report the total number of bp 

sequenced, the number of Illumina reads mapping uniquely in the genome, and the number of bp 

in the available genome in which at least 50% of the samples of the given species have a minimum 

coverage of 8x and a minimum genotype quality value of 20. 

Species Gbp sequenced  Uniquely mapping reads Available genome (bp) 

Betula pendula 395.41 2,802,450,105 6,041,548 

Fagus sylvatica 644.50 2,673,500,437 6,569,688 

Populus nigra 507.92 2,435,020,528 6,106,889 

Picea abies 706.78 1,517,348,029a 4,974,709 

Pinus pinaster 1146.77 2,156,038,221 3,068,914 

Pinus sylvestris 538.90 1,401,611,778 1,407,443 

Quercus petraea 531.30 2,558,016,107 6,323,296 

a Computed after duplicated reads were removed.



 

 

 

 

 

 

Table S8: Proportion of SNPs in the various categories (SNP set v.5.3.1). 

Species Best-orthologs Other-orthologs Candidates Random Intergenic 

Betula pendula 0.66 0.00 0.26 - 0.08 

Fagus sylvatica 0.16 0.01 0.04 0.39 0.40 

Picea abies 0.53 0.00 0.05 0.36 0.06 

Populus nigra 0.70 0.11 0.08 0.02 0.09 

Pinus pinaster 0.17 0.03 0.04 0.17 0.58 

Pinus sylvestris 0.13 0.02 0.03 0.11 0.71 

Quercus petraea 0.38 0.00 0.12 0.14 0.36 

 

 

  



 

 

 

 

Table S9: Proportion of SNPs in different structural classes (SNP set v.5.3.1). 

Species 0-fold 2-3 -fold 4-fold intergenic intron top up down 

Betula pendula 0.15 0.08 0.10 0.17 0.50 0.00 0.00 0.00 

Fagus sylvatica 0.16 0.08 0.10 0.21 0.44 0.00 0.00 0.00 

Populus nigra 0.17 0.10 0.11 0.08 0.43 0.00 0.04 0.07 

Picea abies 0.20 0.10 0.09 0.41 0.19 0.00 0.00 0.00 

Pinus pinaster 0.16 0.08 0.09 0.52 0.16 0.00 0.00 0.00 

Pinus sylvestris 0.14 0.06 0.05 0.70 0.05 0.00 0.00 0.00 

Quercus petraea 0.10 0.06 0.06 0.39 0.35 0.00 0.02 0.02 



 

 

 

 

Table S10: Number of SNPs is each SNP set and species. 

Species v5.3 v5.3.1 v5.3.2 v6.3.1 v6.3.2 

Betula pendula 213250 213250 213250 88741 64697 

Fagus sylvatica 223185 166939 166939 54039 40506 

Populus nigra 197204 197204 197204 41841 33857 

Picea abies 290166 290166 290166 135562 98624 

Pinus pinaster 111937 111937 111937 50108 33418 

Pinus sylvestris 89903 89903 89903 65205 40650 

Quercus petraea 507026 479619 479619 174110 134010 
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