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1 Symmetry and Exchange Interactions

In this Supplemental section, we discuss the symmetries and show that the symmetry-allowed exchange
interactions on the nearest-neighbor in-plane and inter-layer bonds have the form given in the main text.
In NaYbO2, the magnetic Yb atoms live on the sites of 2d triangular lattices with “ABC” stacking in the
vertical direction. This is a rhombohedral lattice. Specifically, the system has space group 166, R3̄m.
We assume that the there is an effective spin-1/2 operator transforming like a pseudo-vector on each Yb
site. The exchange interactions on a bond are constrained by the subgroup of the full space group which
preserves that bond, i.e. which leaves the center of the bond unchanged. We discuss the intra-layer and
inter-layer bonds in turn below.

In this and the following Supplemental section, it will be useful to establish notation. In conventional
rhombohedral coordinates, we specify positions using dimensionless coordinates so that

rmnl = ma1 +na2 + l c , (1)

with vectors

a1 = a(1,0,0), (2)

a2 = a(−1

2
,

p
3

2
,0), (3)

c = c(0,0,1). (4)

Note that c is not the primitive translation but a conventional one. The primitive translation is (2a1+a2+
c)/3. This connects a layer at l = 0 to l = 1/3.

1.1 NN in-plane bonds

All the in-plane bonds are equivalent by rotations and translations. So we can deduce the exchange on all
of them by considering one. Specifically, we consider one whose center is at coordinates (1/2,0,0). This
is the middle of a bond along the x axis in cartesian coordinates. This point is the 9e Wyckoff position,
with site symmetry group 2/m. The point group is generated by 2 Z2 operations, which we can take as:
(1) inversion through the bond center and (2) a C2 rotation about the axis along the bond. Composing
these two gives a third (not independent) element, a mirror reflection through the plane normal to the
bond. Using these operations, we learn from inversion that there is no DM coupling. Then applying the
C2 operation, for a bond along x, the sites are not interchanged but S y

i →−S y
i and Sz

i →−Sz
i . This means

the general exchange matrix for a bond connecting the two sites along this direction is

JN N ,x =
J1 0 0

0 J2 J4

0 J4 J3

 . (5)
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Now we obtain the exchange for an arbitrary pair of in-plane NN spins by rotation. The general form is

H2d = ∑
〈i j 〉

{
Jx y

(
Sx

i Sx
j +S y

i S y
j

)
+ Jz Sz

i Sz
j + Jc

(
êi j ·Si

)(
êi j ·S j

)+ Jcz

[(
ẑ · êi j ×Si

)
Sz

j +
(
ẑ · êi j ×S j

)
Sz

i

]}
. (6)

Here êi j is the unit vector along the bond direction, and lies in the xy plane. The Jx y and Jz terms comprise
an XXZ model, Jc is a “compass” interaction, and Jcz combines in-plane and out-of-plane components
with some compass-like anisotropy. Specifically it couples the component of spin normal to the bond but
within the plane to the out of plane component.

This form is equivalent to that written down in Ref.[3]. The relation between the form used here and
the one in Ref.[3] can be found in Ref.[1].

1.2 Out of plane bonds

The out of plane bonds are not vertical, but connect each spin in a layer to three spins above and three
spins below. As above, we consider the point symmetry group of a mid-point of such a bond. An example
is the point (1/3,1/6,1/6) in lattice coordinates. This is the mid-point of a bond whose projection into
the xy plane is at a 30 degree angle to the x axis, i.e which bisects a triangle of the triangular plane. This
is the 9d Wyckoff position, which also has site symmetry 2/m. The group is the same as for the in-plane
bond, but the symmetries are slightly different. The two generators in this case can be considered as:
(1) inversion and (2) a C2 rotation which is about an axis which bisects the bond and is parallel to the
xy plane. The two composed together give the third non-trivial operation in the point group which is a
mirror plane which contains the bond and is normal to the xy plane. The difference from the previous
case is the orientation of the C2 axis or the plane of the mirror. The result is that the effective exchange
interaction has a very slightly different form from Eq. (6)

H ′ = ∑
〈〈i j 〉〉

{
J ′x y

(
Sx

i Sx
j +S y

i S y
j

)
+ J ′z Sz

i Sz
j + J ′c

(
f̂i j ·Si

)(
f̂i j ·S j

)
+ J ′cz

[(
f̂i j ·Si

)
Sz

j +
(

f̂i j ·S j

)
Sz

i

]}
, (7)

where i and j are closest sites in neighboring layers, and f̂i j is a unit vector along the projection of the
bond direction into the xy plane, and so also lies in this plane. The vectors êi j appearing in Eq. (6) are

oriented along the triangular axes, while the f̂i j vectors bisect these directions. The other difference from
Eq. (6) is that in Eq. (7), the final term has no cross product. That is a result of the different orientation of
rotation axis/mirror plane in this second situation.

This completes the symmetry analysis of interactions. Eq. (6) and Eq. (7) are reproduced in the main
text.

2 Classical Phases and Frustration

In this Supplemental section, we discuss aspects of the classical ground states of the model Hamiltonian
given in Eqs. (68), and to what extent frustration arises therein.

2.1 Two dimensional case

Since we expect that the interlayer interactions are small compared to the intralayer ones in practice,
we begin by discussing what is known for the two dimensional model, with all interlayer interactions
turned off. This Hamiltonian has already been extensively studied. It is a simple extension of the “com-
pass” model on the triangular lattice, which had been considered long ago. Collecting results from many
papers[1, 9, 4, 2], there are three types of classical ground states which emerge for nearly all parameters in
the antiferromagnetic regime: a three-sublattice 120◦ planar state, and two collinear stripe states, which
differ from one another only in the direction of their spin polarization.
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2.1.1 Classical three-sublattice states

First we consider the three-sublattice 120◦ states. It is helpful to rewrite the Hamiltonian a bit more ex-
plicitly. For a single layer, we can write

H2d =∑
i

∑
µ=1,2,3

{
Jx y

(
Sx

i Sx
i+µ+S y

i S y
i+µ

)
+ Jz Sz

i Sz
i+µ+ Jc

(
aµ ·Si

)(
aµ ·Si+µ

)
+ Jcz

[(
ẑ ·aµ×Si

)
Sz

i+µ+
(
ẑ ·aµ×Si+µ

)
Sz

i

]}
. (8)

Here we took a3 =−a1 −a2.
Now consider a general three-sublattice state, in which for site i = (m,n) in lattice coordinates

Sm,n = SnMod[−m−n,3], (9)

with three classical fixed length vectors ns with s = 0,1,2 labeling the three sublattices. For such a state,
the energy becomes

3E2d /(N S2) = ∑
s=0,1,2

{
3Jx y

(
nx

s nx
s−1 +ny

s ny
s−1

)+3Jz nz
s nz

s−1 + Jc
∑
µ

(
aµ ·ns

)(
aµ ·ns−1

)
+ Jcz

∑
µ

[(
ẑ ·aµ×ns

)
nz

s−1 +nz
s

(
ẑ ·aµ×ns−1

)]}
(10)

Here we have written sublattice s modulo 3. The sum over µ can be carried out explicitly. The last term
vanishes because

∑
µ aµ = 0. In the second last term, we use

∑
µ aµaT

µ = (3/2)diag(1,1,0). We obtain

3E2d /(N S2) = ∑
s=0,1,2

[
3

(
Jx y + Jc

2

)(
nx

s nx
s−1 +ny

s ny
s−1

)+3Jz nz
s nz

s−1

]
. (11)

We observe the remarkable emergence of U(1) symmetry of the classical energy, despite the anisotropy of
the Hamiltonian. This is a well-known accidental degeneracy which occurs for many compass models.[5]
Note that vanishing effect of in-plane anisotropy and the complete absence of any effect from Jcz is gen-
eral for any three-sublattice state with this unit cell, whether the spins be collinear, coplanar, or otherwise.
It would also hold within any Curie-Weiss mean field treatment which would allow for variable magnitude
of the local spin expectation values. The three-sublattice ordered state occurs when the first term above
dominates, and the spins consequently orient in the plane with three different sublattice orientations at
120◦ angles to one another. Frustration is evident in this ordered pattern by the fact that the classical
energy is independent of the overall angle of the spins within the XY plane, which is not related to any
symmetry of the model.

Note that when Jz is sufficiently large, the lowest energy configurations of the three sublattice state
become Ising like, with spins oriented normal to the plane. However, in this regime the global ground
states are actually not of the three-sublattice form, but rather the stripe states we consider next.

2.1.2 Classical stripe phases

If the compass interaction Jc dominates, it is natural to select spins to be aligned or anti-aligned along
appropriate neighbors. For example, if we take Jc < 0, the compass coupling for an a1 = x̂ bond would
favor spins oriented along the x direction forming ferromagnetic chains along this axis. Let us just assume
to start a two-sublattice structure, so that

Sm,n = SnMod[n,2], (12)

i.e. with ferromagnetic chains along x. Inserting this into Eq. (8), we obtain an energy

2E

N S2 = J (2+4n0 ·n1)+ Jz
(
4nz

0nz
1 + (nz

0)2 + (nz
1)2)+ Jc

(
(nx

0 )2 + (nx
1 )2 +nx

0 nx
1 +3ny

0 ny
1

)+ Jcz X X , (13)
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where we did not write the expression for the Jcz term, because we are going to focus on in-plane order
(favored for negative Jz ). Assuming in-plane order, i.e. nz

a = 0, the energy is minimized for spins aligned
along the y direction:

n0 =−n1 =±ŷ ,
2E

N S2 =−2Jx y −3Jc . (14)

The above equations describe two solutions for stripe states, which are translations and time-reversals
of one another. There are another four such states, obtain by C3 rotations of these two, where the ferro-
magnetic stripes lie along other axes. Note this 6-fold degeneracy of the stripe states is not accidental, but
symmetry mandated. There is no accidental degeneracy within the stripe ground states, and hence we
may regard them as less frustrated than the 120◦ three sublattice states.

One can compare the energy for these states to that for the 120◦ states, by examining Eq. (11). For the
3 sublattice states, one has ns ·ns−1 =−1/2. One obtains the energy per spin in the two cases as

E120/(N S2) =−3

2
Jx y − 3

4
Jc , Estr i pe /(N S2) =−Jx y − 3

2
Jc . (15)

Clearly the 120 degree state is better for small Jc and the stripe state is better for larger Jc . One finds the
stripe is favorable once Jc > 2/3Jx y .

2.1.3 Adding magnetic field

Now we study the classical ground state of the two dimensional model (6) in presence of a magnetic field.
The field dependence enters the Hamiltonian through the Zeeman term

H2d ,B = H2d −µB
∑

i

[
gx y (B x Sx

i +B y S y
i )+ gz B z Sz

i

]
. (16)

We will assume a general three-sublattice state as in Eq. (9). Under this assumption the classical energy
becomes

3E2d ,B /(N S2) = 3E2d /(N S2)− (µB /S)
∑

s=0,1,2

[
gx y (B x nx

s +B y ny
s )+ gz B z nz

s

]
. (17)

For simplicity, we define dimensionless parameters

r ≡ Jx y + Jc /2

Jz
, mx ≡ µB gx y B x

3S(Jx y + Jc /2)
, my ≡

µB gx y B y

3S(Jx y + Jc /2)
, and mz ≡ µB gz B z

3S Jz
. (18)

The classical phase diagram for a perpendicular field (i.e. mx = my = 0) is easily found (see e.g. Ref. [8]).
As the field develops an in-plane component, the classical spin vectors rotates continuously. In the easy-
plane anisotropy region (r > 1) of the (r,mx ,my ,mz ) phase space, the phase diagram can be analytically
obtained:  r > 1 and

m2
x

9 + m2
y

9 + m2
z

(r+2)2 ≥ 1: “paramagnetic” phase;

r > 1 and
m2

x
9 + m2

y

9 + m2
z

(r+2)2 < 1: “canted” phase.
(19)

The “paramagnetic” phase has unique classical ground state in which spins are maximally aligned to min-
imize the classical energy E2d ,B . Note that this is not a real paramagnet in the sense that the aligned spin
orientation is not necessarily the same as the field orientation (hence the quote). In the “canted” phase,
the classical ground states are accidentally degenerate and form a one-dimensional manifold, subject to
the following constraints

nz
0 = nz

1 = nz
2 = 3mz

r +2
, nx

0 +nx
1 +nx

2 = mx , and ny
0 +ny

1 +ny
2 = my . (20)

In the easy-axis anisotropy region (0 < r < 1) the complete phase diagram is complicated. Nevertheless
we are able to separate the “paramagnetic” phase from the others: 0 < r < 1 and

m2
x

(1/r+2)2 +
m2

y

(1/r+2)2 + m2
z

(r+2)2 ≥ 1: “paramagnetic” phase;

0 < r < 1 and
m2

x
(1/r+2)2 +

m2
y

(1/r+2)2 + m2
z

(r+2)2 < 1: coplanar phases.
(21)
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2.2 Inter-layer effects

Next we consider the effect of couplings between the layers. We regard the inter-layer couplings always as
small compared to the intra-layer ones. Thus to a first approximation, we ask how the interlayer Hamil-
tonian, H ′, behaves when projected into the space of states whose order or correlations is set by the 2d
interactions.

2.2.1 Three-sublattice regime

If the 2d system is in the regime with three-sublattice correlations, we should consider the energy of an
arbitrary state with the three-sublattice structure in each layer, and find the energy due to interlayer cou-
plings. We further assume that the system is periodic under translation by three layers. There will then be
9 sublattices, labeled by a sublattice index s = 0, . . . ,9. We can define this by the condition

Si = Sns , ri = ma1 +na2 + l

3
(2a1 +a2 +c), s = 3Mod[l ,3]+Mod[−m −n,3]. (22)

Now we can express the inter-layer energy in terms of the 9 sublattice magnetizations ns :

9Ei l /(N S2) =
2∑

l=0

2∑
p=0

2∑
q=0

{
J ′x y

(
nx

s(l ,p)n
x
s′(l ,p,q) +ny

s(l ,p)n
y
s′(l ,p,q)

)
+ J ′z nz

s nz
s′ + J ′c

(
fq ·ns

)(
fq ·ns′

)
+ J ′cz

[(
fq ·ns

)
nz

s′ +nz
s

(
fq ·ns′

)]}
, (23)

where
s(l , p) = 3l +p, s′(l , p, q) = 3Mod[l +1,3]+Mod[p +q,3], (24)

and

fq =


cos

(
π
6 + 2πq

3

)
sin

(
π
6 + 2πq

3

)
0

 . (25)

The first two terms can be readily rewritten to simplify the energy to

9Ei l /(N S2) =
2∑

l=0

{
J ′x y

(
mx

l mx
l+1 +my

l my
l+1

)+ J ′z mz
l mz

l+1 +
∑
pq

(
J ′c

(
fq ·ns

)(
fq ·ns′

)
+ J ′cz

[(
fq ·ns

)
nz

s′ +nz
s

(
fq ·ns′

)])}
, (26)

where

ml =
2∑

p=0
n3l+p (27)

is the total magnetization per unit cell of layer l . Note that in this case the last two terms do not drop out
or simplify as they do for the intralayer couplings, because the sublattice indices s and s′ are a function of
q , which means the q sum is not trivial.

Examining Eq. (26), we see that the XXZ type inter-layer couplings J ′x y and J ′z depend on the spin con-
figurations only through the layer magnetizations ml . This vanishes in the three-sublattice states favored
by the 2d interactions. Thus, at this level, the interlayer XXZ exchanges are completely ineffective at cou-
pling the layers and creating 3d order. This is simply because each spin is symmetrically coupled to three
spins on a triangle in the layers above and below it, whose sum is zero. Thus the J ′x y and J ′z interactions
are fully frustrated by the 2d three-sublattice order.

This conclusion is perturbative in J ′x y and J ′z . But in fact the frustration is even stronger. For the XXZ
model with Jc = J ′c = Jcz = J ′cz = 0, Rastelli and Tassi[7] have found the exact classical ground states for
arbitrary Jx y , Jz , J ′x y , J ′z . In a wide regime, the ground states form a line of degenerate spirals which are close
to the three-sublattice 120◦ state but have in general an incommensurate wavevector with an arbitrary
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component kz normal to the plane. The continuous family of spiral wavevectors echoes the full frustration
in the perturbative limit, and shows that frustration remains in the XXZ model non-perturbatively.

We now return to the perturbative analysis, and consider the effects of the anisotropy terms J ′c and J ′cz .
We suppose each layer has a 120◦ three-sublattice configuration, and ask how they are coupled. A general
form for such a configuration is

n̂l p =

cos( 2πσl p
3 +φl )

sin( 2πσl p
3 +φl )
0

 , (28)

where σl =±1 is the vector spin chirality of the triad of three spins in layer l , and s = 3l +p as usual. For
this ansatz, ml = 0. The inter-layer energy becomes

9Ei l /(N S2) = J ′c
∑

l ,p,q
cos

(
2πσl p

3
+φl −

π

6
− 2πq

3

)
cos

(
2πσl+1(p +q)

3
+φl+1 −

π

6
− 2πq

3

)

= J ′c
2

∑
l ,p,q

[
cos

(
2π(σl p +σl+1(p +q))

3
+φl +φl+1 −

π

3
− 4πq

3

)

+cos

(
2π(σl p −σl+1(p +q))

3
+φl −φl+1

)]
= J ′c

2

∑
l ,p,q

cos

(
2π(σl p +σl+1(p +q))

3
+φl +φl+1 −

π

3
− 4πq

3

)
. (29)

One immediately sees that, because we took an in-plane configuration, J ′cz drops out trivially. In passing
to the last line we noticed that the sum over q always gives zero in the final term of the previous line, and
so dropped it. The final form may also vanish under summation. The sum over q will vanish here unless
σl+1 =−1, in which case the q dependence drops inside the cosine. Then we see that the sum over p will
vanish unless σl =−σl+1 =+1. So finally we have

9Ei l /(N S2) = 9

2
J ′c

∑
l

cos
(
φl +φl+1 −

π

3

)
δσl ,1δσl+1,−1. (30)

Actually in this analysis we do not need to assume three-fold periodicity in the c direction, and can take l
to just sum over all the layers in the crystal.

Based on Eq. (30), we can address how frustrated the remaining J ′c inter-layer coupling is. First, if the
chiralities are the same in all layers then the energy due to J ′c vanishes. This is entirely independent of the
overall angle φl within each layer. Second, a pair of adjacent layers can lower its energy by choosing the
“lower” one (smaller z) to have “positive” chirality σl = 1 and the upper one negative, and then choosing
φl +φl+1 =−2π/3 (for J ′c > 0). However, the J ′c interaction between the upper layer and the next layer then
is guaranteed to vanish, as is the interaction between the lower layer and the next lower one. So the best
configuration is one in which layers alternate chirality and gain energy from every other pair. There are
two possible staggered orders of chirality. For example, we can take σl = (−1)l . In this case the energy
lowering comes from the interaction between spins with even l and those with odd l +1. Moreover, spins
in those pairs of layers are correlated, while between these pairs there is no correlation. For 2N layers
there are N free angles φ2n remaining. So there is still quite a bit of degeneracy. However, it is also clear
that, in this pattern of spins, translational symmetry by 3 in the vertical direction is necessarily broken.

In summary: the presence of a high degree of degeneracy even once the J ′c interactions have been in-
cluded indicates that the interlayer coupling of the three-sublattice order is frustrated even with the most
general exchange interactions. This suggests a strong suppression of ordering when the 2d exchanges are
in this regime, in zero magnetic field (which we have assumed).

2.2.2 Stripe regime

Now we suppose the individual layers are in the stripe regime of the classical phase diagram. We consider
the effect of interlayer interactions on these stripes to see how they couple together to form 3d order.
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Suppose, as in Eq. (14), the spins in the layer z = l = 0 order into ferromagnetic stripes along the x axis,
with spins oriented along y. Now consider the next exchange field on the spins in the layer at z = 1/3. Each
spin in that layer receives contributions from three spins from a triangle in the z = 0 layer. Consequently,
even for simple Heisenberg or XY coupling J ′ between the layers, there is a net exchange field on each site
in the z = 1/3 layer, which aligns those spins into a unique preferred pattern in the next layer. This pattern
also consists of ferromagnetic chains along x and moments along y . If one assumes antiferromagnetic J ′,
each spin on the z = 1/3 layer is antiparallel to two spins on the triangle below it. Repeating this process
leads to a globally determined ordering pattern. The interlayer coupling in the stripe state is therefore
unfrustrated and the ground state degeneracy of the stripe is just that of a single layer, i.e. 6.

The 3d ordering pattern that results in the way just described has symmetry under a three-dimensional
translation by the vector t = (−a1 −2a2 +c)/3. So due to the in-plane doubled unit cell, in total it has just
a doubled unit cell.

The lack of frustration of the interlayer coupling in the stripe state suggests that a system whose 2d
interactions favor the stripe order will likely stabilize 3d ordering through the inter-layer interactions.
Since this does not occur in NaYbO2, we argue by contradiction that this material is likely to be in the
parameter regime in which the 2d exchanges favor three-sublattice 120◦ order and not the stripe state.
This corresponds to the XXZ regime with not too strong Jc interactions.

3 Simulation for the Dynamic Spin Structure Factor

In this Supplemental section, we study the excitations of the 2d triangular XXZ model using linear spin
wave theory and present simulation results for the dynamic spin structure factors.

3.1 Linear spin wave theory

Define an orthogonal basis (ps , qs ,ns ) for each classical spin ns , s = 0,1,2. The standard Holstein-Primakoff
transformation is

Si ·ps =
p

2S
ai +a†

i

2
, Si ·qs =

p
2S

ai −a†
i

2i
, Si ·ns = S −a†

i ai , (31)

or

Si =
p

2SMs K

(
ai

a†
i

)
+ns (S −a†

i ai ), (32)

where a†
i and ai are the boson creation and annihilation operators for spin excitations, and we defined

Ms =
(

ps qs
)

and K = 1

2

(
1 1
−i i

)
. (33)

Plugging Eq. (32) into the Hamiltonian (16), keeping terms only of the order S and doing a Fourier trans-
form, we arrive at a quadratic Hamiltonian for the bosons:

H2d ,B [a, a†] = ∑
k∈BZ+

Φ†
kH (k)Φk , (34)

where BZ+ is half of the Brillouin zone which is mapped to the other half by momentum inversion, and

we definedΦk =
(
ak ,0, ak ,1, ak ,2, a†

−k ,0, a†
−k ,1, a†

−k ,2

)T
,

H (k) =



J0 [J0,1]11 [J2,0]∗11 0 [J0,1]12 [J2,0]∗21
[J0,1]∗11 J1 [J1,2]11 [J0,1]∗21 0 [J1,2]12

[J2,0]11 [J1,2]∗11 J2 [J2,0]12 [J1,2]∗21 0
0 [J0,1]21 [J2,0]∗12 J0 [J0,1]22 [J2,0]∗22

[J0,1]∗12 0 [J1,2]21 [J0,1]∗22 J1 [J1,2]22

[J2,0]21 [J1,2]∗12 0 [J2,0]22 [J1,2]∗22 J2

 , (35)
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and

Js,s+1 = 2S

( ∑
µ=1,2,3

e i k ·aµ
)

K †M †
s J Ms+1K , (36)

Js = −3SnT
s J (ns+1 +ns−1)+µB B T g ns , (37)

where J ≡ diag(Jx y , Jx y , Jz ), g = diag(gx y , gx y , gz ). Combined with our knowledge of the classical ground
state spin configuration in Sec. 2.1, the following can be deduced:

• The diagonal entries (37) are the classical energy cost of a spin flip S → −S. The flip changes the
exchange energy −3SnT

s J (ns+1 +ns−1) and the Zeeman energy µB B T g ns . The off-diagonal entries
(36) describe quantum fluctuations due to boson hopping.

• In the easy-plane limit r > 1, since all three classical spins have the same z component nz
s = mz

r+2 , we
have

Js = 3S Jx y , s = 0,1,2. (38)

At Γ= (0,0) the spectrum is gapless, due to the Goldstone mode of the broken U(1) symmetry. Fur-
thermore, at K = (0,± 4π

3
p

3a
), the Hamiltonian is purely diagonal, and the energy is just the value of

Js in (38), which is three fold degenerate.

• In the extreme easy-axis limit r ¿ 1 with a perpendicular field B = (0,0,1)B , the system is classical
and again we are left with only diagonal elements in the Hamiltonian. The ground state in a large
magnetic field range is the up-up-down state with excitation energy

J0 = J1 =µB gz B , J2 = 6Jz S −µB gz B. (39)

Finally, let us comment on the criterion of selecting the classical ground state n0,1,2 which serves as
the input to linear spin wave theory. The issue arises when the classical ground state is degenerate (as in
the “canted” phase), and different states in the degeneracy manifold may lead to different dynamic spin
structure factor patterns. Whenever degeneracy happens, it can be shown that a classical ground state is
fully determined by the choice of in-plane components of the spin vector, ms = (nx

s ,ny
s ,0). Without loss

of generality we define |m0| ≤ |m1| ≤ |m2|. Our criterion is always to pick n0,1,2 such that m0 and m1 have
the smallest angle between them. This criterion is chosen to mimic the fact that, in real triangular sys-
tems, quantum fluctuation tends to favor states in the degenerate manifold in which spins are maximally
collinear.

3.2 Dynamic spin structure factor

The dynamic spin structure factor, by definition, is

S (k ,ω) =∑
µ,ν

(δµν− (k̂)µ(k̂)ν)
∑
s,s′

〈mµ
s (−k ,−ω)mν

s′ (k ,ω)〉, (40)

where mµ
s (k ,ω) =µB

∑
κ gµκSκs (k ,ω), and k̂ is the unit vector with orientation of k . After some derivation,

we can write S(k ,ω) concisely as

S (k ,ω) = ∑
e=1,2,3

2Sµ2
Bδ(ω−λe

k )
[

V †(k)Q̃†M̃ †g † (
13×3 − k̂ k̂T )

g M̃Q̃V (k)
]

e,e
, (41)

where we defined M̃ = (
p0 p1 p2 q0 q1 q2

)
, and Q̃ = K ⊗13×3. V is the matrix that diagonalizes

H : V †H V =Λ with energies stored in the diagonal matrix Λ = diag(λ1,λ2,λ3,λ1,λ2,λ3). Commutation
relation of the bosons in the old and the new bases requires V (σ3 ⊗13×3)V † =σ3 ⊗13×3.

To connect to the experiment, we define the momentum-orientation-averaged spin structure factor

S B (k,ω) = 1

4π

∫ 0

π
sinθdθ

∫ 2π

0
dφ SB (k sinθcosφ,k sinθ sinφ,ω), (42)
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where we have used subscript B to remind us of the field dependence. Furthermore, we define the
magnetic-orientation-averaged spin structure factor

S (k,ω) = 1

4π

∫ 0

π
sinθB dθB

∫ 2π

0
dφB S B(sinθB cosφB ,sinθB ,sinφB ,cosθB )(k,ω). (43)

Admittedly, such a spin structure factor (43) in which the momentum and magnetic field orientations
are independently averaged does not fully correspond to the experimental measurement: the neutron
scattering measurement averages over the grain orientations of the powder sample, which is equivalent
to averaging over momentum and magnetic field orientations that are locked with a definite relation.
Nevertheless our choice of averaging is justified by the robust spectral features (e.g. the isolated high
energy flat intensity) observed in a large region with easy-plane near-Heisenberg exchange and in the
extreme easy-axis region.

Now we describe the results for the dynamic spin structure factors. We present two representative
parameter points near the Heisenberg limit: the first one has weak easy-axis anisotropy with (Jz , Jx y ) =
(0.5,0.45)meV, and the second one has weak easy-plane anisotropy with (Jz , Jx y ) = (0.45,0.51)meV. The
magnetic field is set to be 5T in both cases but its orientation is varied. The simulated structure factor
plots are shown in Fig. 5.

(Jz , Jx y ) = (0.5,0.45) meV. When the magnetic field is along z direction, the classical ground state has
a coplanar three-sublattice order [see Fig. 5(a)]. The lowest energy band becomes gapless at Γ (Goldstone
mode), corresponding to the zero energy structure factor intensity at |Q| ≈ 1.25Å−1. The highest energy
band is almost flat on the boundary of the magnetic Brilloun zone, which accounts for the structure factor
intensity plateau at 0.8meV. In addition, the highest band has an energy minimum at Γ, which is reflected
in the downturn of the high energy intensity plateau at small reciprocal lattice |Q| → 0 . As the magnetic
field develops an in-plane component [see Fig. 5(b) for θB = 75◦], the highest band becomes less flat and
the highest band energy at Γ increases; at θB ≈ 70◦ Γ becomes the energy maximum, making the structure
factor intensity as |Q| → 0 also at the highest energy. The destruction of the high energy flat bands and
the appearance of structure factor intensity at the energy maximum as |Q|→ 0, both due to large in-plane
field component, are generic features of the easy-axis phase region in the parameter range we considered,

and consequently one observes an upturn of the high energy intensity as |Q|→ 0 in the S (k,ω) plot, with
no well-defined isolated high energy intensity plateau.

(Jz , Jx y ) = (0.45,0.51) meV. When the magnetic field is along z direction, the classical ground states
form a degenerate manifold of the “canted” type. Since the z spin component is small in the parameter
range we considered [see Fig. 5(c)], the spin order is almost coplanar, and consequently the spin structure
factor resembles the previous case (Jz , Jx y ) = (0.5,0.45) meV. In addition to the gapless energy band at Γ
(Goldstone mode), three-fold energy degeneracy appears at K and its equivalent points [whose energies
are given in Eq. (38)]. There is no global flat energy bands at high energy, and indeed when the magnetic
field is along z, there is no well-defined high energy flat intensity in the structure factor plots. Neverthe-
less, as the magnetic field develops an in-plane component, an isolated structure factor intensity plateau
emerges as the magnetic field angle θB exceeds 30◦ [see Fig. 5(d)) for θB = 75◦]. The emergence of such an
isolated intensity plateau due to the in-plane field component is a generic feature of the Heisenberg limit
with weak easy-plane anisotropy, and persists through 1 < r < 1.6 in the parameter range we considered.
The highest energy band has a local minimum at Γ for all magnetic field orientations (unlike the easy-axis
case), which accounts for the downturn of the isolated high energy intensity plateau at small reciprocal

lattice |Q|→ 0 in the S (k,ω) plot.
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4 Supplemental Figures and Tables

Supplemental Figure 1: Neutron diffraction data collected on NaYbO2. (a) Elastic neutron diffraction
pattern collected at 300 K on NaYbO2 powder with λ = 1.5399 Å. (b) Data at 1.6 K were collected with
λ = 2.0774 Å and show no new peaks corresponding to a phase transition or magnetic ordering. The
weight fraction of Na2CO3 refines to 4.1(1)%. Error bars and values in parenthesis represent one standard
deviation.
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T 300 K 1.6 K
λ 1.5399 Å 2.0774 Å

a = b 3.35185(3) Å 3.34556(3) Å
c 16.5319(3) Å 16.4559(3) Å

Atom Wyckoff x y z Ui so (Å2) Occupancy x y z Ui so (Å2) Occupancy
Yb 3a 0 0 0 0.54(2) 1.000(2) 0 0 0 0.53(1) 1.000(2)
Na 3b 0 0 0.5 1.59(7) 0.996(6) 0 0 0.5 0.85(5) 1.000(6)
O 6c 0 0 0.26355(6) 0.83(3) 0.999(3) 0 0 0.26423(6) 0.53(2) 1.000(2)

Supplemental Table 1: Rietveld refinement structural parameters at 300 K and 1.6 K from elastic neutron
scattering measurements. Within error, all ions refined to full occupation and did not indicate any mixing
between the Na- and Yb-ion sites. Values in parenthesis represent one standard deviation.

YbMgGaO4 [6] NaYbO2

Temperature
300 K

a = b = 3.4037(1) Å
c = 25.135(1) Å

300 K 1.6 K

Yb-O (Å) 2.2517(1) 2.5301(1) 2.2414(1)
{1} O-Yb-O (deg.) 81.807(1) 83.877(1) 83.459(1)
{2} O-Yb-O (deg.) 98.193(1) 96.123(1) 96.541(1)

Supplemental Table 2: Structural differences in YbO6 octahedra of YbMgGaO4 (see Paddison et al.[6])
and NaYbO2 at 300 K and 1.6 K from Rietveld refinements of neutron powder diffraction. Both materials
share the same R3̄m space group, “ABC” stacking sequence of YbO6 triangular planes, and local trigonally-
compressed D3d YbO6 octahedra. However, where YbMgGaO4 contains two intermixed Mg/Ga layers be-
tween YbO6 sheets, NaYbO2 contains only one fully-occuped Na layer. Additionally, Yb-Yb ion distances
in-plane, equivalent to the a-axis lattice parameter, is shortened in NaYbO2 (Supplemental Table 1). In
both materials, there is only one Yb-O distance in the octahedra, but two unique O-Yb-O bond angles.
Bond angle {1} refers to the compressed O-Yb-O angle between oxygen layers stacked along the c-axis,
while bond angle {2} refers to expanded bond angles within the oxygen layers. At 300 K, YbMgGaO4 dis-
plays slightly elongated Yb-O distances with more compressed octahedra than NaYbO2. Also, the trigonal
compression of YbO6 octahedra in NaYbO2 is slightly relieved at 1.6 K. Values in parenthesis represent one
standard deviation.
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Supplemental Figure 2: Supporting analysis of magnetization, magnetic susceptibility, and heat capacity
data. (a) High-temperature susceptibility of NaYbO2 was fit with a Curie-Weiss model between 200K and
300K and produces a linear fit with an average moment close to the free ion value for trivalent Yb (4.54µB ).
However, this temperature regime is influenced by Van Vleck terms from nearby crystal field doublets,
meaning that extracted Curie-Weiss temperatures would not accurately represent mean-field interactions
between Yb ions. As described in the main text, the low-temperature Curie-Weiss model more accurately
captures the interaction strength of Yb ions in the Je f f = 1/2 state. (b) Combined temperature and field
dependence of AC magnetic susceptibility χ′(T) from 300 mK to 4 K showing all collected fields. (c) Spe-
cific heat data collected under 0T (black) and 5T (blue) fields that display remnant heat capacity centered
around 100 mK likely due to a nuclear Schottky anomaly. A cross check of the power law fit of data in the
0T quantum-disordered phase (green) was obtained by subtracting out the field-independent Schottky
anomaly using 5T data (grey) in the antiferromagnetically ordered state where low energy spin fluctua-
tions are suppressed. The fit value obtained between 100 − 400mK is in agreement with that in the main
text. (d) Magnetization data collected at 2 K. Data show the response up to 9 T fit to a two-component
model. The low field data was fit to a Brillouin fit assuming the average g-factor and Je f f = 1/2 moments
with a variable volume fraction, and the high field part was fit to a linear response due to the strong an-
tiferromagentic exchange field. The fraction of free spins determined from this model is ≈ 7%, in rough
agreement with the Curie-Weiss analysis presented in the main text. Error bars and values in parenthesis
represent one standard deviation.
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Supplemental Figure 3: Top-down views of magnetic unit cells refined from field subtracted powder neu-
tron diffraction data at 450 mK (5 T−0 T) as described in the main text (Fig 4). Due to the three-fold sym-
metry of the structure, three symmetry equivalent q-vectors can describe the neutron diffraction data
with corresponding basis vectors and spin structures. All structures consist of collinear Yb moments. (a)
As shown in the main text Fig. 4, the ordering wave vector of q=(1/3,1/3,0) creates a magnetic state of
Yb spins approximately along the < 1,−1,−1 > direction. (b) The wave vector of q=(2/3,−1/3,0) contains
moments aligned near the < 1,2,−1 > direction. (c) With an ordering wave vector of q=(1/3,−2/3,0), mo-
ments align close to the <−2,−1,−1 > direction.
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Supplemental Figure 4: Neutron powder diffraction data collected on the DCS instrument at the NIST
Center for Neutron Research. (a) 67 mK elastic scattering data integrated from -0.1 meV to 0.1 meV plotted
as a function of momentum transfer under both zero field and 5T. Subtracted 5T - 0T data are also plotted
and the inset shows a zoomed in region where the (1/3, 1/3, L)-type antiferromagnetic peaks appear under
field. (b) Field dependence of the (1/3, 1/3, 0) magnetic Bragg peak. The integrated intensity of the peak is
plotted versus the applied magnetic field. (c) Zero field diffraction data showing the subtraction of 67 mK
and 3 K data and the absence of zero field magnetic order. The oversubtraction of intensities at the nuclear
Bragg positions (0,0,3) and (0,0,6) is due to slight alignment/polarization of the loose powder upon cycling
field between the 67 mK and 3 K measurements. Error bars represent one standard deviation.
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|Q|(Å−1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
(m

eV
)

(Jz, Jxy) = (0.50, 0.45) meV

B = 5.00 T, θB = 75◦

Top view:

Front view:

Side view:

0

1

2

In
te

n
si

ty
(a

rb
.)

(b)

0.5 1.0 1.5 2.0 2.5

|Q|(Å−1)
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Supplemental Figure 5: Dynamic spin structure factor S (k,ω) and the classical three-sublattice (red,
green and blue) spin ground state from different views. The exchange parameters are (a,b)(Jz , Jx y ) =
(0.5,0.45)meV, and (c,d)(Jz , Jx y ) = (0.45,0.51)meV. Field strength is fixed at B = 5T, while the field orien-
tation is tilted from the z axis with an angle of either (a,c)θB = 0◦ or (b,d)θB = 75◦.
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