The synthesis of 1-tuberculosinyl adenine and NE-tuberculosinyl adenine commenced with the
protection of N9 in adenine with a trityl group (Scheme 1).! The next step was to find suitable
conditions for N1 alkylation. Previously, our group has demonstrated that N1 alkylation of adenosine
can be achieved with a series of allylic chlorides, assisted by addition of sodium iodide in DMF.?
Alkylation of trityl-adenine 1 with freshly prepared tuberculosinyl chloride according to this procedure
did not lead to complete conversion in 12 h and we observed considerable precipitation of salts. This
issue was solved by adding a small amount of dichloromethane. This provided 2 in 65% yield after
column purification. Part of the material was subsequently subjected to Dimroth rearrangement using
Mez;NH (40% solution in water). This to prepare N®-tuberculosinyl adenine. Trityl protected 1-
tuberculosinyl adenine 2 has characteristic chemical shifts: & 8.41, and 7.85 ppm whereas N°-
tuberculosinyl-adenine 3 has characteristic chemical shifts 6 7.53, and 7.39 ppm.
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Scheme 1. Synthesis of N9-trityl protected tuberculosinyl-adenines.

To obtain the final compounds, the trityl groups in 2 and 3 had to be removed and the compounds
were therefore treated with a mixture of TFA/CH,Cl, at rt. Although this led to the formation of
products having the appropriate molecular mass (408 amu), *H NMR showed that double bond
migration in the tuberculosinyl unit had occurred leading to disappearance of an “alkene hydrogen”.
These compounds were, after close examination, assigned as 4 and 5 (Scheme 2).
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Scheme 2. TFA-mediated removal of the trityl protecting groups in 2 and 3 leads to Wagner-Meerwein
shifts
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The problem of the undesired rearrangement was solved by using formic acid as a weaker acid in the
deprotection step (Scheme 3). The compounds 2, and 3 were treated with a solution of formic acid in
chloroform at -10 °C. These reactions provided the desired products in good yields. The NMR spectra
of 6 and 7 are very similar and in order to exclude potential Dimroth rearrangement of 2 or 6 during
the deprotection reaction, the compounds were subjected to UPLC (Acquity UPLC BEH C8-Column, 1.7
um, flow rate 0.3 mL/min, 0.01% TFA in CHsCN, water: 5% to 50%, run time 17 min). The chromatogram
showed retention times of 12.4 and 11.8 min for 6 and 7, respectively. These similar but not identical



retention times led to the conclusion that 6 is a very weak base and preferentially exists in its
“deprotonated” neutral form (6’). This was confirmed by treating 6’ and 7 with HCl in methanol which
led to the formation of the charged species 6 and 7’. Also in this case, the *H-NMR spectra of these
compounds were very similar.
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Scheme 3. Trityl deprotection and proton shift to form Tb-adenines most substituted Tb-adenines.
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Figure 1. 'H NMR spectra of 6 (top) and 6’ (bottom) in methanol-d4.



9-trityl-9H-purin-6-amine (1)*

NH, To a stirred solution of adenine (3.23 g, 23.9 mmol) in DMF (24 mL) was added
NI X N\> sequentially pyridine (72 mL) and Ph3CCl (6.66 g, 23.9 mmol, 1.0 eq) at rt. The reaction
kN/ N was allowed to stir at rt overnight. The reaction mixture was diluted with EtOAc (150

CBHSAVCGH5 mL) and water (100 mL). The layers were separated and the organic layer was washed
with water (4 x 100 mL), dried with anhydrous MgSO, and concentrated under
reduced pressure to give the crude as a solid in oil suspension. This was re-suspended in Et,O and
filtered. The solid (2.0 g) was dried and characterized by NMR, which showed pure 1. The filtrate was
concentrated and purified by flash column chromatography (EtOAc/pentane = 2/8 to MeOH/DCM =
1/9) to give a second batch of the pure product as a colorless solid (3 g). *H NMR (400 MHz, Chloroform-
d) 6 8.05 (s, 1H), 7.75 (s, 1H), 7.36 — 7.27 (m, 10H), 7.21 — 7.11 (m, 5H), 5.99 (br, 2H); *C NMR (101
MHz, Chloroform-d) 6 152.5, 151.5, 142.0, 142.0, 141.5, 129.9, 128.2, 128.0, 121.3, 75.9. The spectral
data were identical with those in literature.

6-amino-1-((E)-3-methyl-5-((1R,2S,8aS)-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-
1-yl)pent-2-en-1-yl)-9-trityl-9H-purin-1-ium (2)

H ‘.\)\A+ NH, N To a suspension of N-chloro succinimide (0.088 g, 1.3 equiv) in dry CH,Cl,
\ NK\/ ) (1.3 mL) at -20 °C, was added dropwise dimethyl sulfide (0.057 mL, 1.5
N N\Tr equiv) in dry CH,Cl; (0.44 mL). After addition, the reaction became a milky

suspension, which was allowed to warm to 0 °C for 15 min, whereafter

the temperature was lowered to — 40 °C and tuberculosinol® (0.150 g, 0.52 mmol) in dry CH,Cl, (1.7

mL) was added dropwise over 15 min. After addition, the cooling bath was removed, and the reaction

was allowed to warm up to rt. The reaction was allowed to stir at this temperature for 2 h, after which

TLC indicated complete conversion of the tuberculosinol. The reaction mixture was concentrated

under reduced pressure and treated with pentane upon which succinimide oiled out. The mixture was

decanted and filtered, and the filtrate was concentrated under reduced pressure affording nearly pure
tuberculosinyl chloride (0.135 g) as a yellow oil.

The obtained tuberculosinyl chloride (0.135 g, 0.47 mmol) was dissolved in DMF and Nal (0.085 g, 0.56
mmol, 1.2 equiv) and trityl adenine (0.193 g, 0.51 mmol, 1.1 equiv) were added at rt. The reaction flask
was covered with aluminum foil and allowed to stir at rt for 16 h. The conversion was monitored by
TLC, which indicated 50% conversion. The reaction mixture was viscous and contained a lot of solid
material. Therefore, CH,Cl, (1 mL) was added and the reaction mixture was stirred for an additional
11 h. Volatiles were removed in vacuo and the crude was purified by column chromatography
(EtOAc/pentane = 2/1) to give 2 (0.208 g, 65%) as a brown amorphous solid. *H NMR (400 MHz,
Chloroform-d) 6 8.41 (s, 1H), 7.85 (s, 1H), 7.40 — 7.27 (m, 9H), 7.21 — 7.11 (m, 6H), 5.46 — 5.34 (m, 2H),
5.09 (d,/=7.1Hz, 2H), 2.15-5.01 (m, 2H), 2.09 (d, J = 13.2 Hz, 1H), 2.01 - 1.92 (m, 2H), 1.89 - 1.84 (m,
2H), 1.78 (s, 3H), 1.75-1.64 (m, 2H), 1.60 —1.50 (m, 2H), 1.49 - 1.38 (m, 3H), 1.38 — 1.23 (m, 2H), 1.04
(s,3H),0.99 (s, 3H), 0.77 (d, J = 6.7 Hz, 3H), 0.61 (s, 3H). 3 C NMR (101 MHz, cdcls) 6 162.7, 150.9, 146.0,
143.2, 140.4, 129.9, 129.7, 128.7, 128.5, 128.2, 128.0, 116.3, 113.0, 41.0, 39.9, 37.1, 36.6, 36.2, 34.6,
33,5, 33.1, 31.7, 31.6, 29.9, 29.1, 27.6, 22.3, 17.9, 16.3, 15.4, 15.3. MS: (ESI*) calculated mass [M]*
CasHs2Ns*™ = 650.42, found: 650.71.

Trityl deprotection:

A solution of N°-tritylated substrate (10 mg, 0.02 M) in CHCls was cooled to -10 °C by an ice-salt bath
before MeOH (0.01 mL) and a mixture (0.2 mL, 1:1) of formic acid in chloroform was added. The
reaction was allowed to reach 5 °C in 2.5 h. Thereafter, the reaction was quenched with saturated
aqueous NaHCOs (3 mL) and diluted with CHCIl5 (2 mL). This mixture was stirred for 10 min before layers



were separated and the aqueous layer was extracted with chloroform (5 mL). The combined organic
extract was dried with MgS0,, and concentrated in vacuo to give the crude product as a brown solid.
This product was triturated with pentane (3 x 2 mL) to remove the residual trityl formate, leaving
behind a solid, which was washed with Et,0 (1.5 mL) to give the pure product as a colorless solid.

6-amino-1-((E)-3-methyl-5-((1R,2S,8aS)-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-
1-yl)pent-2-en-1-yl)-9H-purin-1-ium (6’)

Compound 2 (10 mg, 0.015 mmol) was treated according to the
procedure to afford 3 (4 mg, 62%) as a yellow solid. *H NMR (600
MHz, methanol-d.) 6 8.25 (s, 1H), 8.07 (s, 1H), 5.41 — 5.28 (m, 2H),
4.80 (d, J = 6.7 Hz, 2H), 2.14 = 2.09 (m, 1H), 1.97 (dt, J = 10.7, 5.1 Hz,
2H), 1.79 (d, J = 1.2 Hz, 3H), 1.75 (dt, J = 5.4, 2.6 Hz, 1H), 1.71 — 1.63 (m, 2H), 1.53 — 1.39 (m, 4H), 1.35
—1.27 (m, 2H), 1.25-1.17 (m, 2H), 1.11 (td, J = 12.8, 4.9 Hz, 1H), 0.96 (m, 3H), 0.91 (s, 3H), 0.74 (d, J =
6.8 Hz, 3H), 0.55 (s, 3H). 3C NMR (151 MHz, Methanol-ds) 6 147.2, 147.1, 145.5, 117.5, 116.2, 116.1,
49.6,42.1,41.2, 38.1, 37.0, 36.0, 34.6, 33.9, 32.7, 30.3, 29.5, 28.6, 23.2, 17.0, 16.6, 15.5. HRMS: (ESI*)
calculated mass [M]* CasH3sNs* = 408.312, found: 408.311.

N-((E)-3-methyl-5-((1R,2S,8aS)-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a octahydronaphthalen-1-yl)pent-
2-en-1-yl)-9-trityl-9H-purin-6-amine (3)

H \)\/\ To a solution of 2 (50 mg, 0.07 mmol) in THF (1 mL) was added Me;NH
N X-NH (2.0 mL, 40% solution in water) and the resulting solution was allowed to
N)iN\> stir for 2.5 h. TLC indicated complete conversion of the starting material.
Sy N

Tr

The volatiles were removed by distillation in vacuo to give the crude

product (45 mg, 95%) as a white solid. The crude compound was found
sufficiently pure by NMR analysis. Therefore, we proceeded to the next step without further
purification. *H NMR (400 MHz, Chloroform-d) & 7.53 (s, 1H), 7.39 (s, 1H), 7.34 — 7.28 (m, 9H), 7.18 —
7.11 (m, 6H), 5.42 (dt, J = 4.8, 2.2 Hz, 1H), 5.36 (tt, / = 5.8, 3.4 Hz, 1H), 4.58 (d, / = 7.2 Hz, 2H), 2.12 (d,
J =129 Hz, 1H), 1.93 (h, J = 5.7 Hz, 2H), 1.87 - 1.82 (m, 2H), 1.73 (d, J = 1.3 Hz, 3H), 1.70 (s, 1H), 1.56
(tt,/=7.1,3.6 Hz, 2H), 1.52 - 1.39 (m, 4H), 1.20 (dp, J = 12.9, 4.4 Hz, 2H), 1.05 (s, 3H), 0.99 (s, 3H), 0.78
(d, J=6.8 Hz, 3H), 0.60 (s, 3H).

N-((E)-3-methyl-5-((1R,2S,8aS)-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-1-yl)
pent-2-en-1-yl)-9H-purin-6-amine (7)

H \)\/\ compound 3 (13 mg, 0.020 mmol) was deprotected according to the
NG X-"NH general procedure to afford 7 (5 mg, 61%) as a colorless solid. *H NMR
NES-N (600 MHz, methanol-d.) 6 8.35 (s, 1H), 8.19 (s, 1H), 5.53 — 5.36 (m, 2H),
I | N\> 4.90 (d, J = 6.7 Hz, 2H), 2.22 (dtd, J = 13.1, 4.1, 2.1 Hz, 1H), 2.07 (dq, J =

N' W 10.8, 6.0, 4.9 Hz, 2H), 1.91 — 1.88 (m, 3H), 1.88 — 1.82 (m, 1H), 1.81 —
1.74 (m, 2H), 1.55 (m, 4H), 1.45 — 1.38 (m, 2H), 1.20 (td, J = 12.8, 4.9 Hz, 1H), 1.06 (s, 3H), 1.01 (s, 3H),
1.05 — 1.01 (m, 2H), 0.84 (d, J = 6.8 Hz, 3H), 0.65 (s, 3H). 3C NMR (151 MHz, Methanol-d.) & 150.9,
149.1,147.2, 147.1, 145.5, 143.7, 117.5, 116.2, 42.1, 41.2, 40.4, 38.1, 37.0, 36.0, 34.6, 33.9, 32.7, 30.3,
29.5, 28.6, 23.2, 17.0, 16.6, 15.5. HRMS: (ESI*) calculated mass [M + H]" CasH3sNs* = 408.312, found:
408.312.
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