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Supplementary methods 

16S rRNA qPCR 

Bacterial abundance was assessed using qPCR of 16S rRNA genes. The reaction mixture (10 

µl total volume) included: 1 x Roche TaqMan Master Mix, 0.9 µM of each primer (Bact 349F, 

Bact 806R), 0.3 µM TaqMan probe (Bact 516F_FAM), molecular grade water (Qiagen) and 2 

µl of DNA extracts or standards [1]. The employed thermal cycling was: 10 min at 95°C (initial 

denaturation; ramp time: 4.4°C/min) and 45 cycles of denaturation (40 s at 95°C), annealing 

(40 s at 53°C) and elongation (1 min at 72°C). The amplification was performed in technical 

triplicates using a LightCycler 480 System (Roche, Basel, Switzerland) in 384 well plates, and 

the results were normalized to the dry mass of extracted sediment. External standards were 

prepared from E. coli using pGEM T Easy (Promega, Madison, WI, USA) containing a 16S 

rRNA gene insert of 1465 bp length. Negative controls (reaction mixture + molecular grade 

water) and extraction blanks were included. Amplification efficiency (99%) and error of the 

external standard curve (R2 = 0.999) were checked.  

Amplicon sequencing 

16S rRNA gene amplicon sequencing was performed by Novogene (Hong Kong) following 

standard sequencing and quality control protocols. The 24 DNA samples were amplified with 

universal 16S rRNA gene primers 341F (5’-CCT AYG GGR BGC ASC AG-3') and 806R (5’-

GGA CTA CNN GGG TAT CTA AT-3') targeting the V3-V4 region (Fragment length ~466 bp), 

followed by size selection, end repair and A-tailing and adaptor ligation steps. The libraries 

were checked with Qubit and real-time PCR for quantification and bioanalyzer for size 

distributions and sequenced with Illumina HiSeq technology to generate 2x300 bp paired-end 

reads. This resulted in 24 samples with an average of 112,857 raw paired-end reads. The 

sequences were analyzed separately for each lake using the DADA2 pipeline in R (version 

3.5.1). Briefly, after a quality check, the raw sequence adapters were trimmed, dereplicated 

and error rates were calculated before applying the DADA2 core sample inference algorithm. 

Next, the forward and reverse reads were merged to obtain amplicon sequence variants 



(ASVs). Following chimera removal with the removeBimeraDenovo algorithm, the taxonomic 

assignment of the ASVs was performed using a Naïve Bayesian classifier method based on 

the SILVA database 138 for the V3/V4 region [2]. Unclassified ASVs and ASVs assigned to 

chloroplasts were filtered out. The ASV abundance tables and the corresponding 

environmental parameters were further analyzed by calculating the beta diversity (ordination 

analysis), testing for significantly different microbial community composition between the 

lakes, locations, sampling months, and sediment sampling depth, using adonis. All results 

were visualized with the phyloseq, ggplot2, vegan and microbiomeSeq packages using R 

statistical software (Version 3.6.3) [3–6]. The abundance table is available from the ERIC open 

data repository (see data availability). 

Metagenomics and metatranscriptomics 

The metagenomes and metatranscriptomes were sequenced using the Illumina NextSeq 

platform to generate 2 × 150 bp paired-end reads by Novogene (Hong Kong) following 

standard library generation protocols. Briefly, for metatranscriptomics, the RNA extracts were 

depleted for rRNA, followed by fragmentation, reverse transcription and second strand cDNA 

synthesis, end-repair and A-tailing, adaptor ligation, size selection and PCR amplification. The 

library was checked with Qubit and real-time PCR for quantification and bioanalyzer for size 

distribution. For shotgun metagenomics the same steps were followed for library generation 

omitting the RT and cDNA synthesis steps. Metagenomic and metatranscriptomic datasets 

were processed as previously described [7,8]. Briefly, BBMap (v.38.71) was used to quality 

control sequencing reads from all samples by removing adapters from the reads, removing 

reads that mapped to quality control sequences (PhiX genome) and discarding low-quality 

reads (trimq=14, maq=20, maxns=1, and minlength=45). Quality-controlled reads were 

merged using bbmerge.sh with a minimum overlap of 16 bases, resulting in merged, 

unmerged paired, and single reads, each of which were considered as one ‘insert’ for gene 

profiling steps (see below). From transcriptomes, rRNA sequences were removed with 

sortmeRNA [9].  



The reads from metagenomic samples were assembled into scaffolded contigs (hereafter 

scaffolds) using the SPAdes assembler (v3.15.2) [10] in metagenomic mode. Scaffolds were 

length-filtered (≥ 500 bp) and gene sequences were predicted using Prodigal (v2.6.3) [11] with 

the parameters -c -q -m -p meta. 

Genes were subsequently clustered at 95% identity, keeping the longest sequence as 

representative using CD-HIT (v4.8.1) with the parameters -c 0.95 -M 0 -G 0 -aS 0.9 -g 1 -r 0 -

d. Representative gene sequences were aligned against the KEGG database (release 

April.2022) using DIAMOND (v2.0.15) [12] and filtered to have a minimum query and subject 

coverage of 70% and requiring a bitScore of at least 50% of the maximum expected bitScore 

(reference against itself). 

Metagenomes and transcriptomes were then mapped to the cluster representatives (i.e., 

reference genes) with BWA (v0.7.17-r1188; -a) [13] and the resulting BAM files were filtered 

to retain only alignments with a percentage identity of ≥95% and ≥45 bases aligned. Gene 

abundance profiles were calculated by first counting inserts from best unique alignments and 

then, for ambiguously mapped inserts, adding fractional counts to the respective target genes 

in proportion to their unique insert counts and dividing the total insert counts by the length of 

the respective gene. We subsequently converted the gene abundance profiles into functional 

abundance profiles by taking the sum of the length-normalized abundances across reference 

genes belonging to the same functional group based on shared KEGG Orthology (i.e., same 

KO). 

Gene-length normalized read abundances were further converted into per-cell gene and 

transcript copy numbers by dividing them by the median abundance of 10 single-copy marker 

genes [14] (MGs) in each sample. MGs were selected as all genes with KEGG annotation 

corresponding to K06942, K01889, K01887, K01875, K01883, K01869, K01873, K01409, 

K03106, and K03110. MGs are particularly suitable for normalizing metagenomic and 

metatranscriptomic data to provide estimates of relative per-cell gene copies, because they 



represent universal, single-copy and constitutively expressed housekeeping genes [8,15]. The 

normalized metagenomic abundance can therefore be interpreted as the per-cell number of 

gene copies of a given gene. Accordingly, the normalized metatranscriptomic abundance can 

be interpreted as the relative per-cell number of transcripts of a given functional group. Gene 

expression profiles, representing the relative number of transcripts per gene copy, were 

computed as the ratio between the log2-transformed, DESeq2-variance stabilized [16] and 

MG-median centered metatranscriptomic profiles (reflecting the relative number of transcripts 

per cell) and the metagenomic profiles (reflecting the number of gene copies per cell) [8].  

The vegan package in R was used to calculate the distance (metaMDS) of N-transformation 

genes and transcripts between lakes, and to find explanatory environmental parameters (envfit 

and bioenv). The co-expression was calculated using the network analysis from igraph (R 

package) based on Pearson correlation. To reduce the data noisiness, we only incorporated 

co-expression correlation with a P-value >0.8/<-0.8. All computations were performed based 

on log2-transformed values of the metagenomic and metatranscriptomic count profiles. 

Supplementary results and discussion 

Divergence between microscale microbial processes and whole-lake budgets  

In this supplementary discussion, we explore links between metagenomic and transcriptomic 

data and whole lake N removal rates.  

Investigating the N cycle and N-transformation genes at a small scale (i.e., in a single core) 

enabled us to verify the role of OM properties in driving individual benthic microbiological 

processes. Metatranscriptomics highlighted the complexity of the relationship of genomic 

potential versus activity of the microbial N cycle in freshwater sediments at this scale. We 

showed in earlier work that significant spatial differences can occur in the N-transformation 

potential of sediments of a single lake, depending on sampling depth and associated spatio-

temporal changes in the environment (e.g., redox regime, OM export flux) [17]. We therefore 



want to discuss the extent, to which the analyses of the sediment cores investigated here, 

were representative of the lake systems studied.  

Whole-lake budgets can be used to quantify the overall N-removal efficiency of lakes [18,19], 

based on the mass balance of N loading, export, and loss (mostly DN and burial) [20]. The 

fluxes calculated here from porewater NO3
- profiles compare relatively well with trends in areal 

DN rates calculated by Müller et al (2022) for the same lacustrine systems (Figure S7A). 

Relative differences between lake groups are equally well reflected by the two approaches. In 

addition, both approaches agreed in that they similarly predict that bottom water NO3
- 

concentration is the main driving factor modulating NO3
- flux (Figure. S7B, [21]). Overall, the 

flux estimates from single cores seem representative for whole lakes, in spite of the disparity 

of the methods. However, in terms of absolute flux values, porewater-based flux estimates 

were ~40% lower than the estimates from whole lake budgets [19]. The difference between 

the two estimates was previously ascribed to processes occurring elsewhere in the lake (e.g. 

in the water column), as opposed to at the SWI. This discrepancy could also derive from 

uncertainty in the mass balance terms, insufficient resolution in the porewater concentration 

profiles, and/or local sediment heterogeneity. Moreover, Müller et al (2022) employed long-

term datasets to generate annual DN rates, whereas our porewtare-concentration based 

fluxes, as well as our gene expression data represent snapshots in time, during the 

stratification phase, when NO3
- consumption decays [21] and DN rates tend to decrease [22].  

Thus our results are consistent with Müller et al 2022 in indicating that [NO3
-]bottom is the main 

predictor of DN rates in the considered lakes based on whole-lake N budgets. However, the 

present study showed that the structure and expression of microbial N-cycle genes is primarily 

driven by bulk OM properties, and to a limited extent by NH4
+, while [NO3

-]bottom plays only a 

subordinate role. This suggests that the link between microbial N-community structure, 

transcriptional regulation, activity and process rates in benthic ecosystems is complex, and 

predictions of ecosystem functioning solely based on metagenomic/-transcriptomic analyses 



are difficult. These results should be confirmed by other studies and methods, in particular 

linking transcriptional observations directly to rate measurements at the same scale.  

  



Supplementary tables 
Table S1: Sampling point coordinates (CH1903+ LV95), depth and date of sampling. Lakes marked with * were 
not sampled at the deepest location 

Lake Group Lake 

Sampling Coordinates  
(CH1903+ LV95) Sampling 

depth [m] 
Data of 

sampling 
X Y 

Pristine-alpine 
 lakes 

Brienz (BRI) 639226 174179 250 29/08/19 

Lucerne (LUC)* 669359 208244 106 26/08/19 

Sarnen (SAR) 658769 191107 49 04/09/19 

Walen (WAL) 735380 220704 151 26/09/19 

Agriculture-
influenced  

lakes 

Baldegg (BAL) 662366 227683 66 02/09/19 

Hallwil (HAL) 658862 236313 46 17/09/19 

Sempach (SEM) 654659 221318 80 30/09/19 

Zug (ZUG)* 679543 219302 144 11/09/19 

Large-deep  
lakes 

Constance 
(CON) 749287 274886 251 24/09/19 

Geneva (GEN) 534721 144984 313 01/10/19 

Maggiore 
(MAG)* 698758 106354 273 19/09/19 

Neuchâtel (NEU) 554566 195117 152 09/09/19 

 
  



Table S2: Overview of samples/measurements taken and analyses performed, with number or replicate samples. 
Shaded cells indicate no sample obtained.  

Cores Core I Core II Cores III & IV 
Sampling None Porewater sampling Sediment sampling 

for bulk OM 
 

Sediment sampling  
for microbiology 

Methods O2 microprofiling Ion chromatography  Elemental analyzer, 
isotope ratio mass 
spectrometer 

Nucleic acid 
extraction  
(DNA & RNA) 

Parameters O2  NH4+, Mn2+, NO3-, 
SO42-  
(Na+, K+, Ca2+, Mg2+, 
Cl-, NO2-,  
PO43-)a 

TOC, TN,  
13C-TOC, 15N-TN 
isotopes 

DNA ->  
Metagenomics, 
16S rRNA gene 
amplicon sequencing  
RNA -> 
Metatranscriptomics 

Depth Measurements Samples Samples Samples 
-1-0cm   ×1    
0-0.25 cm 

×1 
(continuous 

microprofiling at  
100 μm 

resolution) 

×1 ×1  
(composite III&IV) ×5(III) ×5(IV) 

0.25-0.5 cm ×1 
0.5-0.75 cm ×1 ×1  

(composite III&IV) ×5(III) ×5(IV) 
0.75-1 cm ×1 
1-1.25 cm ×1 ×1  

(composite III&IV) 
 

1.25-1.5 cm ×1 
1.5-1.75 cm ×1 ×1  

(composite III&IV) 1.75-2 cm ×1 
2-2.5 cm ×1 ×1  

(composite III&IV) 2.5-3 cm ×1 
3 – 3.5 cm ×1 ×1  

(composite III&IV) 3.5-4 cm ×1 
4-4.5 cm ×1 ×1  

(composite III&IV) 4.5-5 cm ×1 
 
a Data not included in manuscript, available from the data repository.  
  



Table S3: Overview of replicate samples used for nucleic acid (DNA and RNA) extraction for each lake and 
sediment depth. From each lake, two cores were sampled with 5 replicates per core and sediment depth for a 
total of 10 possible extractions (see Table S2). The number of extracted replicates depended on the DNA and 
RNA yield. Samples were chosen randomly for extraction, but at least one replicate per core was chosen. The 
replicate DNA and RNA extracts were subsequently pooled to yield one extract per lake and depth that was used 
for all downstream analyses (pooled DNA: qPCR, 16S rRNA gene amplicon sequencing, shotgun metagenomics. 
Pooled RNA: metatranscriptomics).   

Lake Sediment depth (cm) 
 

Numbers of replicate 
samples used for 

extraction  
Baldegg 0.5 3 
Baldegg 1 3 
Hallwil 0.5 3 
Hallwil 1 3 
Sempach 0.5 3 
Sempach 1 2 
Zug 0.5 3 
Zug 1 3 
Neuenburg 0.5 2 
Neuenburg 1 2 
Geneva 0.5 3 
Geneva 1 2 
Maggiore 0.5 3 
Maggiore 1 3 
Lucerne 0.5 6 
Lucerne 1 6 
Sarnen 0.5 3 
Sarnen 1 9 
Walen 0.5 3 
Walen 1 3 
Brienz 0.5 6 
Brienz 1 9 

 
 
 
  



 

Supplementary figures 

 
Figure S1: Principal Component Analysis of the geochemical data of surface sediment (0 for porewater and 0-
0.5 cm for bulk organic matter). The lakes are colored according to the group colors from the physico-chemical 
definition (yellowish = agriculture-influenced lakes, reddish = pristine-alpine lakes, greyish = deep- large lakes). 
Sampling depths for the respective lakes are indicated. 

  



 

 

 

  



 

Figure S2: Porewater concentration profiles of the (A) oxidants O2 (light blue dashed line), SO42- (black open 
circle) and NO3- (red open triangle) and (B) reductants NH4+ (green cross) and Mn2+ (pink open square). All 
concentrations are reported in µM; concentration data of reductants below the LOD were omitted. Sediment 
profiles of (C) bulk organic matter properties: elemental C/N ratio (blue line), TN (red line) and TOC (black line) 
contents (in %). Data from all twelve lakes are reported: Baldegg (BAL), Brienz (BRI), Constance (CON), Geneva 
(GEN), Hallwil (HAL), Lucerne (LUC), Maggiore (MAG), Neuchâtel (NEU), Sarnen (SAR), Sempach (SEM), 
Walen (WAL) and Zug (ZUG). The lakes are clustered by group according to the following color shading: yellow 
shades = agriculture-influenced lakes, red shades = pristine-alpine lakes, gray shades = deep-large lakes. 

  



 

 
Figure S3: Correlation plot of the chemical, organic matter (obtained within this project), and lake 
hydromorphological/limnological data. The reported values represent the significant correlation coefficients 
(confidence level = 0.95). Abbreviations: total nitrogen (TN), total organic carbon (TOC), carbon/nitrogen ratio 
(CN), total phosphorus (TP), phosphorous (P), epilimnetic (epi), hypolimnetic (hypo). The employed data include 
(in order of appearance): fluxes, penetration depths and concentrations of O2, NH4+ and NO3-, 𝛅𝛅15N-TN, TN 
content,  𝛅𝛅13C-TOC, TOC content, C/N, TP, sampling depth, lake volume, lake area, maximum lake depth, mean 
lake depth, mean hypolimnion depth (epilimnion = 15 m), annual water discharge, water residence time, volume 
of hypolimnion, lake area at 15 m depth, epilimnion volume top 15 m, stratification factor (annual average 
concentration of TP at the surface divided by TP after spring mixing), P net sedimentation rate, TP concentration 
after spring mixing, fraction of annual water load that is discharged during summer, P loading in summer, TP 
content in the epilimnion, available P, areal P supply (TP in the top 15 m), areal hypolimnetic mineralization rate. 
Some of the site-descriptive parameters (e.g. sedimentation rates), when not determined in this study, were 
adopted from Müller, 2022. 

  



Figure S4: (A) TOC versus TN contents (in %), (B) bulk organic matter C and N isotopic composition (in ‰) 
across the top 5 cm of the surface sediments for all twelve lakes: Baldegg (BAL), Brienz (BRI), Constance 
(CON), Geneva (GEN), Hallwil (HAL), Lucerne (LUC), Maggiore (MAG), Neuchâtel (NEU), Sarnen (SAR), 
Sempach (SEM), Walen (WAL) and Zug (ZUG). The symbol size decreases with sediment sampling depth from 
0.25 cm to 4.75 cm. The color shades are set according to the defined lake groups (yellow shades = agriculture-
influenced lakes, red shades = pristine-alpine lakes, gray shades = deep-large lakes). 

  



 

Figure S5: Network analysis showing the co-expression of operons (color = operon and process, shape = co-
expression group). Only edges indicating co-expression with a correlation P>0.8 are shown. Correlations are all 
positive correlations, indicated by blue lines. Single genes do not have a correlation >0.8 with any other point. 
The minimum spanning tree was calculated using Prim’s algorithm, and the co-expression clusters were 
identified using the edge.betweeness.community() command from igraph. The network analysis was run with 
gene expression data and the environmental parameters.  
  



 
Figure S6: Microbial community composition on class level (Silva DB138) obtained from 16S rRNA gene amplicon 
sequencing (A) and analysis of beta diversity (CCA) with the most significantly correlating environmental 
parameters (p<0.01), explaining the variability (B), and C) the results of the 16S rRNA gene abundance measured 
by qPCR for each lake and sediment depth. The qPCR triplicates were averaged and normalized to dry sediment 
mass (g).   



 

Figure S7: (A) NO3- fluxes and denitrification (DN) rates (in mmol m-2 d-1) calculated based on porewater profiles 
(our study) and whole-lake budgets (Müller, 2022), respectively. The linear regression (dashed grey line) was 
forced through the origin. The 1:1 line is indicated by the dotted line. The slope of 0.623 in (A) indicates that 
porewater based fluxes underestimate overall denitrification rates (based on N budget considerations) by 
approximately 40%; (B) Correlation of NO3- fluxes and bottom water concentrations for the twelve lakes included 
in this study. 
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