Proteolysis and deglycosylation of human $C\overline{1}$ inhibitor

Effect on functional properties

Angeline REBOUL, Marie-Hélène PRANDINI* and Maurice G. COLOMB† Laboratoire d'Immunochimie-CEN-G, INSERM U238, unité alliée CNRS, USTMG, Grenoble, France

The effects of proteolysis and deglycosylation on $C\overline{1}$ inhibitor ($C\overline{1}$ Inh) were tested with respect to both its ability to form complexes with $C\overline{1}$ s and its capacity to block C1 autoactivation. Limited proteolysis of $C\overline{1}$ Inh by *Staphylococcus aureus* V8 proteinase, proline-specific endopeptidase or elastase generated a major high- M_r (~ 86000) fragment. In contrast with the fragment produced by elastase, which was inactive, the fragments resulting from V8 proteinase and proline-specific endopeptidase treatment retained activity. Deglycosylation with *N*-glycanase or *O*-glycanase, or both, had no major effect on the functional activity of $C\overline{1}$ Inh.

INTRODUCTION

CĪ inhibitor (CĪInh) is a highly glycosylated plasma protein (Pensky & Schwick, 1969; Haupt *et al.*, 1970; Harrison, 1983; Bock *et al.*, 1986). It is the only known plasma inhibitor of the CĪ serine proteinases CĪr and CĪs (Sim *et al.*, 1979), but it also inactivates several other enzymes of plasma, such as kallikrein (Gigli *et al.*, 1970), factors XIa and XIIa (Forbes *et al.*, 1970) and plasmin (Harpel & Cooper, 1975). More recently CĪInh has also been shown to control the activation of C1 (Ziccardi, 1982). CĪInh deficiency is associated with the pathological condition hereditary angioneurotic oedema ('HANE'), which is caused by uncontrolled complement activation (Donaldson & Evans, 1963).

Biosynthesis of $C\overline{1}Inh$ in vitro has been studied in our laboratory with monocytes (Bensa et al., 1983; Reboul et al., 1985) or Hep G₂ cells (Prandini et al., 1986). As these cells also synthesize C1r and C1s, CIInh is likely to control their state of activation and their activity. We have shown that CIInh undergoes maturation, which is expressed as a progressive glycosylation of the polypeptide backbone during biosynthesis; even 'early' underglycosylated forms can interact with CIs. CIInh is known to react with Clr and Cls in two different ways: inhibition of the activated proteinases involves apparently covalent complexes of the proteinases with CIInh, whereas control of the activation of the proenzyme C1r involves non-covalent interactions. As regards the interactions between $C\overline{1}$ Inh and C1 that are involved in the control of C1 activation, the importance of the backbone-attached sugars is not well-defined. Thus, in order to understand better the role of CIInhglycosylation, we studied the influence of glycanase treatment on $C\overline{1}$ Inh activity.

Observations of electron micrographs of CIInh revealed a highly elongated molecule consisting of a globular and a rod-like domain (Odermatt *et al.*, 1981). Neutron scattering has confirmed the very elongated

structure of CIInh (Perkins, 1985). To seek the functional domains inside this structure we studied the effect of limited proteolysis of CIInh on its properties; the dual inhibitory role of CIInh in both C1 autoactivation and CI activity was taken into account in order to estimate its functional activity. Interpretation of our data may be aided by recent results on CIInh sequence. Indeed, a nearly complete CIInh amino acid sequence has been published by Bock *et al.* (1986). Partial and complete cDNA clones of human CIInh have recently been isolated and sequenced and the CIInh gene mapped to human chromosome 11 (Tosi *et al.*, 1986; Bock *et al.*, 1986).

MATERIALS AND METHODS

Materials

Elastase (EC 3.4.21.11) from bovine pancreas (70 units/mg) and thermolysin were purchased from Sigma. Endoproteinase Glu-C (EC 3.4.21.19) from *Staphylococcus aureus* V8 (20 units/mg) was from Boehringer. Proline-specific endopeptidase (EC 3.4.21.26) from *Flavobacterium meningosepticum* (35 units/mg) was obtained from Seikagaku Kogyo, Tokyo, Japan. Neuraminidase (EC 3.2.1.18) was from Sigma; *N*-glycanase (peptide *N*-glycosidase F) and *O*-glycanase (endo- α -*N*-acetylgalactosaminidase) were from Genzyme. Na¹²⁵I was purchased from Oris, Saclay, France. Molecular-mass markers were obtained from Sigma.

Methods

The purification of CIInh from fresh plasma was performed by the method of Reboul *et al.* (1977), slightly modified by Prandini *et al.* (1986). C1q and CIs were purified from recalcified plasma as described by Arlaud *et al.* (1979).

Purified CIInh, CIs, Clq and Clr_2-Cls_2 were estimated from their absorbances at 280 nm by using

Abbreviations used: iPr_2P -F, di-isopropyl phosphorofluoridate; NPGB, *p*-nitrophenyl -*p'*-guanidinobenzoate; the nomenclature of the complement components and subcomponents is that recommended by the World Health Organisation (1968), the activation of a component being indicated by an overbar.

^{*} Present address: INSERM U.217, DRF/HEM, CEN-Grenoble, France.

[†] To whom correspondence and requests for reprints should be sent at the following postal address: DRF/ICH, CEN-G, 85 X, 38041 Grenoble Cédex, France.

 $A_{1}^{1}{}_{cm}^{*}$ values of 4.5 (Haupt *et al.*, 1970), 9.5 (Sim *et al.*, 1977), 6.8 (Reid *et al.*, 1972) and 10.6 (Sim *et al.*, 1977) respectively.

SDS/polyacrylamide-gel electrophoresis

Samples for electrophoresis were diluted with an equal volume of 0.126 M-Tris/HCl buffer, pH 7.0, containing 4% SDS, 20% (v/v) glycerol and 5% (v/v) 2-mercaptoethanol and boiled for 5 min.

SDS/polyacrylamide-gel electrophoresis was performed as described by Laemmli (1970), with 10 or 8.5%-acrylamide slab gels. After electrophoresis the gels were stained with Coomassie Brilliant Blue R250, dried and, if necessary, autoradiographed with Kodak X-Omat AR film at -70 °C. Standards for M_r determination, included in each gel, were myosin (M_r 205000), β -galactosidase (M_r 116000), phosphorylase b (M_r 97400), bovine albumin (M_r 66000), ovalbumin (M_r 45000) and carbonic anhydrase (M_r 29000).

Endopeptidase treatment of CIInh

Proteolysis by elastase or proline-specific endopeptidase was performed in 145 mM-NaCl/5 mM-triethanolamine, pH 7.4; for V8 proteinase treatment, CIInh was dialysed against 0.1 M-NH₄HCO₃. Proteolyses were conducted at 37 °C, with incubation times and CIInh/proteinase ratios (w/w) of 1 h and 100:1 (elastase), 4 h and 50:1 (V8 proteinase), and 20 h and 3:1 (proline-specific endopeptidase). The reactions were terminated by treating the samples for electrophoresis as described above or by addition of 5 mM-iPr₂P-F for 30 min at 37 °C, followed by extensive dialysis against the appropriate buffer.

Deglycosylation of CIInh

Neuraminidase and glycanases were used in sequence. CIInh (1.5 mg/ml), dialysed against 20 mM-Tris/maleate buffer, pH 7.0, was incubated with neuraminidase (0.5 units/mg of CIInh) for 1 h at 37 °C. Glycanase treatments were then performed by adding O-glycanase (50 munits/mg of CIInh) or/and N-glycanase (5 units/mg of CIInh) and continuing the incubation for $4\frac{1}{2}$ h at 37 °C. When O-glycanase was used, 1 mM-calcium acetate and 10 mM-D-galactono- γ -lactone were included in the medium.

Reactivity with C1s

CIInh was incubated with 1–2-fold molar excesses of CIs for 30 min at 37 °C in 145 mM-NaCl/5 mMtriethanolamine buffer, pH 7.4. After incubation, formation of complexes between CIInh and CIs was analysed by SDS/polyacrylamide-gel electrophoresis under reducing conditions.

Preparation of proenzymic C1r₂-C1s₂

 $C1r_2-C1s_2$ was prepared from serum by the method of Arlaud *et al.* (1980), with modifications taking into account the dissociating effect of diamines on C1 (Villiers *et al.*, 1984). All manipulations were performed as close to 0 °C as possible. Human serum (800 ml), thawed and centrifuged from 15 min at 20000 g, was adjusted to pH 7.0 before incubation with 1 mM-NPGB and 1 mM-iPr₂P-F for 25 min. Then 80 mg of insoluble IgG-ovalbumin immune complexes [prepared at equivalence as described by Arlaud *et al.* (1979)] was then added in the serum and the suspension incubated for 25 min. The immune-complex-bound C1 was separated by centrifugation for 8 min at 7000 g and the aggregates were washed three times with 160 ml of 120 mm-NaCl/5 mm-CaCl₂/20 mm-Tris/HCl, pH 7.0, containing 1 mm-iPr₂P-F and 1 mm-NPGB.

The aggregates were extracted with 40 ml of 120 mm-NaCl/5 mm-CaCl₂/20 mm-Tris/HCl, pH 7.0, containing 20 mm-1,3-diaminopropane, 1 mm-iPr₂P-F and 1 mm-NPGB. The extracted $C1r_2$ - $C1s_2$ appeared highly contaminated with albumin and was thus purified by chromatography on a column of Sepharose 4B coupled to anti-(human albumin) IgG. The column was equilibrated in 120 mm-NaCl/5 mm-CaCl₂/20 mm-Tris/HCl, pH 7.0, containing 1 mm-iPr₂P-F and 1 mm-NPGB. The perfusate, containing $C1r_2$ - $C1s_2$, was incubated with 5 mm-iPr₂P-F for 30 min, concentrated by ultrafiltration on a PM10 membrane (Amicon) to about 1-2 mg/ml, extensively dialysed against 120 mm-NaCl/5 mm-CaCl₂/20 mm-Tris/HCl, pH 7.0, and stored at -80 °C before use.

 $C1r_2$ - $C1s_2$ was labelled with ¹²⁵I, at 0 °C in the presence of 5 mM-iPr_2P-F, by the iodogen method of Fraker & Speck (1978).

Reconstitution and autoactivation of C1

C1 was reconstituted with stoichiometric amounts of C1q and ¹²⁵I-labelled C1r₂-C1s₂ (C1q, 0.28 mg/ml; C1r₂-C1s₂, 0.24 mg/ml; final concns.), in the presence of 5 mM-CaCl₂. The activation was assessed after incubation for 1 h at 37 °C followed by SDS/polyacrylamide-gel electrophoresis and autoradiography. Autoradiograms were scanned with a Vernon photometer. The activation, leading to the proteolytic cleavage of single polypeptide chains into two disulphide-bound chains, was estimated as the percentage of radioactivity transferred from the single band of proenzymic C1r and C1s to the A- and B-chains of the activated enzymes.

RESULTS

Limited proteolysis of CIInh

Endopeptidases with different specificities were used. Staph. aureus V8 proteinase, when the hydrolysis is performed in NH₄HCO₃, cleaves on the C-terminal side of glutamic acid residues (Houmard & Drapeau, 1972), proline-specific endopeptidase is a post-proline-cleaving enzyme (Yoshimoto *et al.*, 1980), and pancreatic elastase, which has a broader specificity, hydrolyses peptide bonds on the C-terminal side of amino acids bearing uncharged non-aromatic side chains, with a preference for alanine (Shotton, 1970). These enzymes are sensitive to iPr_2P -F and, furthermore, CIInh shows no inhibitory effect towards these proteinases.

For each endopeptidase, under the conditions used, the electrophoretic pattern of proteolysed CIInh shows a major band, often appearing as a doublet (Fig. 1, lanes 2, 3 and 4). The M_r values of the fragments are very similar (~ 86000), but only V8 proteinase and prolinespecific endopeptidase generated fragments still able to form apparently covalent complexes with CIs B-chain (Fig. 1, lanes 5 and 6). Elastase treatment suppressed the capacity of CIInh to block CIs (Fig. 1, lane 7). Limited proteolysis by thermolysin also generated a fragment of $M_r \sim 86000$ unreactive with CIs (results not shown).

Fig. 1. Limited proteolysis of CIInh: effect on reactivity with CIs

Proteolytic treatments, incubation with \overline{CIs} and electrophoretic separation were as described in the Materials and methods section. Lane 1, reference \overline{CIInh} ; lane 2, \overline{CIInh} proteolysed by V8 proteinase; lane 3, \overline{CIInh} proteolysed by proline-specific endopeptidase; lane 4, \overline{CIInh} proteolysed by elastase; lane 5, \overline{CIInh} proteolysed by V8 proteinase, then incubated with \overline{CIs} ; lane 6, \overline{CIInh} proteolysed by proline-specific endopeptidase, then incubated with \overline{CIs} ; lane 7, \overline{CIInh} proteolysed with elastase, then incubated with \overline{CIs} . When \overline{CIInh} proteolysed by proline-specific endopeptidase, a high \overline{CIInh} /proteinase ratio (3:1, w/w) was used, and the proteinase was thus visible on the gel (extra band on gels 3 and 6).

Fig. 2. Deglycosylation of C1Inh: effect on reactivity with C1s

Neuraminidase, O- and N-glycanase treatments, incubation with CIs and electrophoretic separation were as described in the Materials and methods section. Lane 1, reference CIInh incubated with CIs; lanes 2 and 3, neuraminidase-treated CIInh (lane 2) after incubation with CIs (lanes 3); lanes 4 and 5, desialylated CIInh treated with N-glycanase (lane 4) after incubation with CIs (lane 5); lanes 6 and 7, desialylated CIInh treated with O-glycanase (lane 6) after incubation with CIs (lane 7); lanes 8 and 9, desialylated CIInh treated with N- and O-glycanase (lane 8) after incubation with CIs (lane 9).

Table 1. Effect of proteolysis or deglycosylation on the ability of CIInh to block C1 autoactivation

CIInh, after treatment with proteinases or glycanases as described in the Materials and methods section was incubated with iPr_2P -F (5 mM final concn.) for 30 min at room temperature and dialysed against 120 mM-NaCl/ 5 mM-CaCl₂/20 mM-Tris/HCl, pH 7.0. Cl, reconstituted as described in the Materials and methods section, from C1q and ¹²⁴I-labelled Clr₂-Cls₂, was incubated for 1 h at 37 °C in presence of the indicated proteins. Cl activation was measured, after SDS/polyacrylamide-gel electrophoresis under reducing conditions and autoradiography, by the percentage of radioactivity transferred from proenzymic Clr and Cls to the A- and B-chains of Clr and Cls.

Addition to Cl	C1 autoactivation (%)
None	89
ClInh	1
Elastase fragment of CIInh	90
V8-proteinase fragment of CIInh	2
Proline-specific-endopeptidase fragment of CIInh	2
Ovalbumin	92
N-Glycanase-treated $C\overline{1}Inh$	3
O-Glycanase-treated CIInh	0
O- and N -Glycanase-treated ClInh	0

Deglycosylation of CIInh

Neuraminidase treatment lowered the $C\overline{1}Inh M_r$ from ~ 98000 to ~ 93000 (Fig. 2, lanes 1 and 2). We tested the susceptibility of desialylated CIInh to two types of endoglycosidases which hydrolyse the linkage between glycans and the protein backbone. N-Glycanase cleaves asparagine-N-linked carbohydrate chains (Plummer et al., 1984) and O-glycanase serine- or threonine-Olinked chains (Umemoto et al., 1977). When glycanases were applied to desialylated CIInh, an increase in electrophoretic mobility was observed and heterogeneous lower- M_r products were detected (Fig. 2, lanes 4 and 6). The major form generated by N-glycanase, in the presence or absence of 5 mm-iPr₂P-F, had a lower mobility ($M_r \sim 81000$) than the main form generated by O-glycanase ($M_r \sim 74000$). When CIInh was treated with both N- and O-glycanase, a major form, of $M_{\rm r} \sim 65000$, appeared on the electrophoretogram (Fig. 2, lane 8). No significant variations in M_r were observed when the glycanase treatments were conducted (in 0.1%SDS/0.7% Nonidet P40-supplemented medium) with CIInh denatured by boiling for $3 \min in 0.1\%$ SDS/20 mm-Tris/maleate buffer, pH 7.

We tested the reactivity towards $C\overline{1}s$ of the different forms of deglycosylated $C\overline{1}Inh$. They all reacted with $C\overline{1}s$, as illustrated in Fig. 2 (lanes 3, 5, 7 and 9) by bands in the electrophoretogram corresponding to complexes with the $C\overline{1}s$ B-chain.

Effect of deglycosylation and proteolysis of CIInh on its ability to block C1 autoactivation. C1 was reconstituted from purified C1q and ¹²⁵I-labelled proenzyme C1r₂– C1s₂ in the presence of Ca²⁺, and the percentage of autoactivation was estimated after incubation for 1 h at 37 °C. Results are shown in Table 1. An 89% activation of isolated C1 occurred after 1 h at 37 °C, and stoichiometric amounts of CIInh blocked the activation, in agreement with previous results (Ziccardi, 1982).

Deglycosylation of CIInh by N-glycanase, O-glycanase, or both enzymes, did not suppress the capacity of the protein to block Cl autoactivation.

We tested the ability of the three types of $C\overline{I}Inh$ proteolytic fragments described above to inhibit C1 autoactivation. As indicated in Table 1, the fragments obtained by limited proteolysis of $C\overline{I}Inh$ with V8 proteinase or proline-specific endopeptidase were still able to block C1 autoactivation; by contrast, the fragment generated by elastase was inactive. Ovalbumin, which was also tested because it shares sequence homologies with C-terminal parts of proteins of the serpin family (Doolittle, 1983), had no effect on C1 autoactivation.

DISCUSSION

Three proteinases of different specificities, namely V8 proteinase, proline-specific endopeptidase and elastase, each cleave CIInh, generating a major, high- M_r , peptide. Despite their nearly identical M_r values, fragments generated by V8 proteinase and proline-specific endopeptidase are active, whereas the fragment generated by elastase is inactive.

V8 proteinase and proline-specific endopeptidase both probably cleave CIInh in its N-terminal portion, at a distance from the reactive site; in the 105 N-terminal residues, which account for the rod-like part of the inhibitor, three glutamic acid and 15 proline residues represent potential sites for cleavage by these two proteinases. In contrast, elastase inactivates CIInh, in agreement with previous results from Brower & Harpel (1982) and Catanese & Kress (1984). The effect of elastase on native CIInh seems to be in favour of a cleavage in the C-terminal portion of the molecule, which contains the reactive site. Further characterization of the proteolytic fragments should be possible on the basis of recent sequence data.

We have shown that CIInh is sensitive to glycanases. which release N- or O-linked sugars, a finding in agreement with the presence of these two types of oligosaccharides in the molecule (Bock et al., 1986). The M_r of the protein after deglycosylation by both types of glycanases (~ 65000) is comparable with that (64000) of a cell-free-translation product of CIInh human liver mRNA (Tosi et al., 1986). These values are clearly higher than values (53000) provided by Bock et al. (1986), either calculated from CIInh cDNA sequence or measured on cell-free-translation products of Hep G₂ mRNA. The discrepancy between the results of Bock *et al.* (1986) and ours is probably due to differences in the methods used for the estimation of these M_r values. In any case it appears that deglycosylation by the joint action of Nand O-glycanases leads to a largely deglycosylated protein, as the values observed are still lower than another value (78000) reported by Harrison (1983) for the M_r of chemically deglycosylated CIInh. According to the work of Bock et al. (1986), most of the carbohydrates are located at the N-terminal end of the $C\overline{1}$ Inh protein, and the reactive site maps in the C-terminal end of the molecule, which does not contain known carbohydrateattachment sites in the 147 C-terminal residues. In keeping with these results, ours show that extensive deglycosylation of $C\overline{IInh}$ does not significantly alter its functionality, confirming our previous observations on $C\overline{IInh}$ biosynthesis (Prandini *et al.*, 1986).

Effects of CIInh modification were tested by its ability to form complexes with CIs and also on its capacity to block C1 autoactivation. In both cases close parallelism between these two types of reactivities seems to indicate that the dual role of CIInh involves the same region of the molecule. With regard to the tests used, the unusually high glycosylation of CIInh does not seem essential. However, a role of carbohydrates cannot be excluded when CIInh exerts its control on membrane-bound C1. It has been hypothesized that, when C1 is bound to activator surfaces, it escapes control by CIInh (Tenner & Frank, 1986); this control might involve the interaction of glycosidic residues.

The functional tests of $C\overline{I}Inh$ described in the present paper, which take into account the influence of $C\overline{I}Inh$ on both C1 activation and $C\overline{I}$ activity, seem a valid test for monitoring $C\overline{I}Inh$ production in future programs dealing with gene transfection. Demonstration of the functional activity of deglycosylated $C\overline{I}Inh$ points to the possibility of $C\overline{I}Inh$ transfection in non-glycosylating prokaryotic cells. In the search for a minimal effective molecule for therapy, production of active $C\overline{I}Inh$ polypeptides of reduced length by prokaryotic cells could also be considered.

REFERENCES

- Arlaud, G. J., Sim, R. B., Duplaa, A. M. & Colomb, M. G. (1979) Mol. Immunol. 16, 445–450
- Arlaud, G. J., Villiers, C. L., Chesne, S. & Colomb, M. G. (1980) Biochim. Biophys. Acta 616, 116–129
- Bensa, J. C., Reboul, A. & Colomb, M. G. (1983) Biochem. J. 216, 385–392
- Bock, S. C., Skriver, K., Nielsen, E., Thogersen, H. C., Wiman, B., Donaldson, V. H., Eddy, R. L., Marrinan, J., Radziejewska, E., Huber, R., Shows, T. B. & Magnusson, S. (1986) Biochemistry 25, 4292–4301
- Brower, M. S. & Harpel, P. C. (1982) J. Biol. Chem. 257, 9849-9854
- Catanese, J. & Kress, L. F. (1984) Biochim. Biophys. Acta 789, 37–43
- Davis, A. E., Whitehead, A. S., Harrisson, R. A., Dauphinais, A., Bruns, G. A. P., Cicardi, M. & Rosen, F. S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3161–3165
- Donaldson, V. H. & Evans, R. R. (1963) Am. J. Med. 35, 37-44
- Doolittle, R. F. (1983) Science 222, 417-419
- Forbes, C., Pensky, J. & Ratnoff, O. (1970) J. Lab. Clin. Med. 76, 809-815
- Fraker, P. J. & Speck, J. C. (1978) Biochem. Biophys. Res. Commun. 80, 849–857
- Gigli, I., Mason, J., Colinan, R. & Austen, F. (1970) J. Immunol. 104, 574–581
- Harpel, P. C. & Cooper, N. R. (1975) J. Clin. Invest. 55, 593-604
- Harrison, R. A. (1983) Biochemistry 22, 5001-5007
- Haupt, H., Heimburger, N., Kranz, T. & Schwick, H. (1970) Eur. J. Biochem. 17, 254–261
- Houmard, J. & Drapeau, G. R. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 3506–3509
- Laemmli, U. K. (1970) Nature (London) 227, 680–685
- Odermatt, E., Berger, H. & Sano, Y. (1981) FEBS Lett. 131, 283–285
- Pensky, J. & Schwick, H. (1969) Science 163, 698-699
- Perkins, S. J. (1985) Biochem. J. 228, 13-26

- Plummer, T. H., Elder, J. H., Alexander, S., Phelan, A. W. & Tarentino, A. L. (1984) J. Biol. Chem. 259, 10700-10704
- Prandini, M. H., Reboul, A. & Colomb, M. G. (1986) Biochem. J. 237, 93-98
- Reboul, A., Arlaud, G. J., Sim, R. B. & Colomb, M. G. (1977) FEBS Lett. 79, 45-50
- Reboul, A., Prandini, M. H. & Colomb, M. G. (1985) FEBS Lett. 190, 65-68
- Reid, K. B. M., Lowe, D. M. & Porter, R. R. (1972) Biochem. J. 130, 749-763
- Shotton, D. M. (1970) Methods Enzymol. 19, 113-140
- Sim, R. B., Porter, R., Reid, K. B. M. & Gigli, I. (1977) Biochem. J. 163, 219–227

- Sim, R. B., Reboul, A., Arlaud, G. J., Villiers, C. L. & Colomb, M. G. (1979) FEBS Lett. 97,111–115
- Tenner, A. J. & Frank, M. M. (1986) J. Immunol. 137, 625-630
- Tosi, M., Duponchel, C., Bourgarel, P., Colomb, M. G. & Meo, T. (1986) Gene 42, 265–272
- Umemoto, J., Bhavanandan, V. P. & Davidson, E. A. (1977)
 J. Biol. Chem. 252, 8609–8614
- Villiers, C. L., Arlaud, G. J. & Colomb, M. G. (1984) Eur. J. Biochem. 140, 431–426
- World Health Organisation (1968) Bull. W.H.O. 39, 935-936
- Yoshimoto, T., Walter, R. & Tsuru, D. (1980) J. Biol. Chem. 255, 4786-4792
- Ziccardi, R. J. (1982) J. Immunol. 128, 2505-2508

Received 15 September 1986/9 December 1986; accepted 11 February 1987