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Appendix A: Detailed theory of EDF-RIM
Model for extend depth image formation
We write r := (r⊥,z) ∈ R3 as a spatial coordinate in 3D, with r⊥ := (x,y) locating a position in the (transverse) plane
perpendicular to the optical axis z. Additionally, if f is a function defined over of r, we note f⊥ its projection along the optical
axis

f⊥(r⊥) :=
∫

f (r)dz. (1)

For a given 3D speckle excitation, the EDF (2D) image corresponds to the sum of the contribution from all planes, which writes
as follows:

IEDF(r⊥) =
∫ (∫∫

ρ(r′⊥,z
′)S(r′⊥,z

′)h(r⊥−r′⊥,z− z′)dr′⊥dz′
)

dz (2)

with h is the 3D PSF of the microscope, S the speckled illumination and ρ the fluorescence density (which is the product
between the fluorophore concentration and their brightness). In the above equation, if we integrate along z first, we get

IEDF(r⊥) =
∫∫

ρ(r′⊥,z
′)S(r′⊥,z

′)h⊥(r⊥−r′⊥)dr′⊥dz′ (3)

where we used the fact that
∫

h(r⊥,z− z′)dz =
∫

h(r⊥,z)dz = h⊥(r⊥). Let us assume further that speckles are columnar
functions. In such an instance, S is invariant along z and we write S(r⊥,z) = SB(r⊥), ∀z. The relation above has the following
specific form

IB(r⊥) =
∫∫

ρ(r′⊥,z
′)SB(r

′
⊥)h⊥(r⊥−r′⊥)dr′⊥dz′ (4)

and if we finally integrate along z′, we obtain a simple convolution model that involves projected quantities only

IB(r⊥) =
∫

ρ⊥(r
′
⊥)SB(r

′
⊥)h⊥(r⊥−r′⊥)dr′⊥. (5)

In summary, under the assumption of a Bessel illumination, the model for the microscope image is analogous to the one of a
standard widefield microscope, but it involves the extended depth PSF, h⊥ and the projection of the object ρ⊥.

Theoretical expression of the EDF variance
We derive now the theoretical variance of a EDF-RIM experiment. We start first by making no specific assumption about the
illumination function S(r⊥, z). More specifically, we write from Eq.3:

σ
2
EDF(r⊥) := ⟨I2

EDF(r⊥)⟩−⟨IEDF(r⊥)⟩2

=
∫∫ 〈∫

ρ(r′⊥, z′)S(r′⊥, z′)dz′
∫

ρ(r′′⊥, z′′)S(r′′⊥, z′′)dz′′
〉

h⊥(r⊥−r′⊥)h⊥(r⊥−r′′⊥)dr′⊥ dr′′⊥

−
∫ 〈∫

ρ(r′⊥, z′)S(r′⊥, z′)dz′
〉

h⊥(r⊥−r′⊥)dr′⊥

∫ 〈∫
ρ(r′′⊥, z′′)S(r′′⊥, z′′)dz′′

〉
h⊥(r⊥−r′′⊥)dr′′⊥ (6)

Assuming speckles that are invariant along z, we can write S(r⊥,z) = SB(r⊥) which allows the following simplification∫
ρ(r⊥, z)S(r⊥, z)dz = ρ⊥(r⊥)SB(r⊥) (7)

hence leading to the following approximation for the EDF-RIM variance

σ
2
EDF(r⊥)≈ σ

2
B(r⊥) :=

∫∫
ρ⊥(r

′
⊥)ρ⊥(r

′′
⊥)ΓB(r

′′
⊥−r′⊥)h⊥(r⊥−r′⊥)h⊥(r⊥−r′′⊥)dr′⊥ dr′′⊥ (8)

where we have introduced the 2D auto-covariance of the columnar speckle ΓB(r
′′
⊥−r′⊥)= ⟨SB(r

′
⊥)SB(r

′′
⊥)⟩−⟨SB(r

′
⊥)⟩⟨SB(r

′′
⊥)⟩.

The right-hand side in Eq. 8 has the structure of the variance expression in RIM given by Eq. 3 in the main text. It should be
noted, however, that the classical result h⊥ = ΓB(r⊥) will not be verified, unless we modify the observation PSF by putting a
ring in the pupil (Fourier plane).
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EDF-RIM variance with standard speckles: the case of a spatially smooth fluorescence surface
Bessel-speckles are rarely used as an illumination function. Here, we investigate under what conditions EDF-RIM can be
performed with conventional 3D speckles. We thus return to the general case of an illumination speckle that is not invariant
along z. Using Eq. 6, the EDF-RIM variance reads

σ
2
EDF(r⊥) =

∫∫
h⊥(r⊥−r′⊥)h⊥(r⊥−r′′⊥)

∫∫
ρ(r′⊥,z

′)ρ(r′′⊥,z
′′)ΓS(r

′′
⊥−r′⊥,z

′′− z′) dz′ dz′′ dr′⊥ dr′′⊥ (9)

where we have introduced the 3D auto-covariance of the speckle ΓS(r
′′
⊥−r′⊥,z

′′−z′)= ⟨S(r′⊥,z′)S(r′′⊥,z′′)⟩−⟨S(r′⊥,z′)⟩⟨S(r′′⊥,z′′)⟩.
Let us assume now that the sample is such that the fluorophores are distributed along a surface denoted Z(r⊥):

ρ(r⊥,z) = ρ(r⊥)δ (z−Z(r⊥)) (10)

where δ is the Dirac distribution. Under this assumption, Eq. 9 simplifies into

σ
2
EDF(r⊥) =

∫∫
ρ(r′⊥)ρ(r

′′
⊥)ΓS

(
r′′⊥−r′⊥,Z(r

′′
⊥)−Z(r′⊥)

)
h⊥(r⊥−r′⊥)h⊥(r⊥−r′′⊥) dr′⊥ dr′′⊥

This expression is similar to the standard 2D RIM expression of the variance (Eq. 3 in the main text) except that it involves
ΓS

(
r′′⊥−r′⊥,Z(r

′′
⊥)−Z(r′⊥)

)
rather than ΓS

(
r′′⊥−r′⊥,0

)
. To further simplify the speckle auto-covariance into a 2D expression,

we hypothesize that the objects distribute on a smooth topography. This translates mathematically into the following assumption
for ΓS:

• ||r′′⊥−r′⊥||<
λ

2NA =⇒ Z(r′′⊥)≈ Z(r′⊥) =⇒ ΓS(r
′′
⊥−r′⊥,Z(r

′′
⊥)−Z(r′⊥))≈ ΓS(r

′′
⊥−r′⊥,0)

• ||r′′⊥−r′⊥||>
λ

2NA =⇒ ΓS(r
′′
⊥−r′⊥,z

′′− z′)≈ 0

Two assumptions have been made. The first one states that the surface does not vary much in z over lateral distances of the
order of λ

2NA (smoothness hypothesis). The second one neglects long-range correlations in the illumination, which is ensured
because speckle decorrelates on length-scales similar to the lateral extent of the PSF, λ

2NA
1. Following these assumptions,

the expression of the variance of the intensity is simplified: it involves the 2D PSF h⊥ and the 2D auto-covariance function
ΓEDF(r⊥) := ΓS(r⊥,0):

σ
2
EDF(r⊥)≈

∫∫
ρ(r′⊥)ρ(r

′′
⊥)ΓEDF(r

′′
⊥−r′⊥)h⊥(r⊥−r′⊥)h⊥(r⊥−r′′⊥) dr′⊥ dr′′⊥ (11)

To conclude, our study has shown that the variance of the extended depth RIM images can be simplified into the classical RIM
2D expression (Eq. 3 in the main text) for any type of sample, by using columnar speckles (see Eq. 8), and for surface and
smoothed samples, when using regular 3D speckles (see Eq. 11).

In the following section, we demonstrate an experimental implementation of EDF-RIM. We then investigate the performance
of EDF-RIM and the limits of its numerical approach through simulations.
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Appendix B: Simulations
We investigate the realms of application of EDF-RIM through simulations. More specifically, we examine the implications of
the EDF variance expression in the case of the 3D speckle (Eq. 9) only approximately conforming to the canonical 2D-RIM
expression (Eq. 3 of the main text). In the simulations, the imaged object is characterized by its star-shaped lateral distribution
ρ(r), as shown in Fig. S1.A (left). We investigate three distinct topographies for the 3D object, as depicted in Fig. S1.A (right).
These include a flat structure, a smoothly varying surface in shape of a cone, and a random distribution of z-position. The flat
object serves as a reference for which our model is correct, with no approximation. The smoothly varying surface satisfies
the approximation conditions for the EDF variance to align with the canonical 2D-RIM expression (Eq. 3 in the main text),
whereas the random configuration does not.
From a numerical standpoint, the inversion requires the deconvolution of the variance of the prefiltered images (η = 10−6)
images using a Tikhonov regularized inverse filter2. The effectiveness of this inverse filter depends on its regularization
parameter. When this parameter is too high, it can result in image blurring and prevent super-resolution. Conversely, setting it
too low may lead to the amplification of noise and the appearance of artefacts. We compared the inversions for 2 different
regularization parameters -one large (10−5) and one low (10−10 respectively), and for the 3 aforementioned 3D objects, the
idea being that an inaccurate model generally induces more artifacts for small regularization parameters.
We first examine the scenario of a 3D propagating speckle, which aligns with our experimental implementation. In Fig. S1.B,
we present the reconstructed images for the three topographies, with both large (µ = 10−5) and small (µ = 10−10) Tikhonov
regularization parameters. While all three results appear satisfactory at µ = 10−5, this setting is over-regularized, leading to a
suboptimal resolution. At µ = 10−10, only the smooth surface compares well with the 2D case, while reconstruction of the
random z-position is thwarted by amplified noise. Thus, it stands that conditions that permit the use of an exact or at least
approximate expression for the image variance are a prerequisite for EDF-RIM.
As outlined in Appendix A, the EDF-variance expression can be transformed into a 2D-RIM expression for all types of samples
when using a speckle that remains invariant along the optical axis. This condition is achieved experimentally by blocking light
outside an annulus in the pupil plane (Bessel speckle, Fig. S1.C, right). We simulated these Bessel speckles by modifying the
binary mask in the pupil plane which is no longer a disk but an annulus. This annulus filters out all frequencies smaller than
0.95 2NA

λ
and bigger than 2NA

λ
. The generated speckle are effectively invariant along the optical axis (Fig. S1.C, right panels).

Simulating EDF-RIM with these Bessel speckles, we were able to achieve high-resolution images for all samples, including
the random z configuration, for every value of the regularization parameter tested (Fig. S1.B, lower panels). This is consistent
with our prediction that with columnar speckles, the reconstruction does not rely on the sparsity hypothesis.
In conclusion, our simulations confirm that EDF-RIM is a feasible imaging method, and support the limits outlined in the
theory section. Specifically, we have demonstrated that 3D-speckles can be used to image sparse samples along the optical axis,
such as surfaces, and Bessel speckles can used for arbitrary samples.
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Figure S1. Simulations. A) Simulated object: the lateral distribution ρ(r) is depicted on the left, while three topographies are
studied – a flat structure (left), a dome (center) and a random topography (right). B) Simulated reconstructions for the 3
topographies studied, with 2 different illumination-patterns (see below). For each condition, we consider the reconstruction
using a large and a small regularization parameter in the inversion procedure (10−5 and 10−10 respectively). Images include
guidelines at λ

2NA (blue circle), λ

2.96NA (cyan circle) and λ

4NA (red circle). C) The three dimensional illumination patterns used in
the simulation (scale bar: 2 µm). The 3D-Speckle is obtained numerically by simulating the propagation of an electromagnetic
field with uniform amplitude and random phase distribution in the back focal plane of the objective. The Bessel speckle is
obtained by replacing the homogeneous amplitude in the back focal plane of the lens with an annulus illumination.
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Figure S2. Fourier spectral analysis (A,B) correspond to the Fourier spectra in log scale of Fig. 2A,C. Spatial frequencies
are normalized by the OTF cut-off frequency fc =

2NA
λ

with NA = 1.21 and λ = 530 nm. The black and white circles indicate
the frequencies fc and 2 fc, respectively. (C) Line profile along Kx for Ky = 0 of the EDF-RIM Fourier spectra (blue curve) and
deconvolved EDF-widefield (red curve). The Fourier spectrum of deconvolved EDF-widefield is limited to fc while the Fourier
spectrum of EDF-RIM is limited to 2 fc. There is an intensity decay in the Fourier spectrum of EDF-RIM at roughly 1.7 fc. By
using smaller regularization parameters, this value could be improved to be closer to 2 fc, but would generate more artefacts.
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Figure S3. Cytokinesis quantification in the Drosophila embryo. Quantification of cytokinetic ring contraction taken from
Supplementary movies 1 . A) Schematic of a dividing cell showing the cytokinetic ring, measured in this figure. B,C)
Snapshots from Supplementary movie 1, in which the white arrows point to dividing cells. D) Ring contraction as measured
from Supplementary movie 1 using EDF-RIM and Supplementary movie 2 using 2D-RIM. Each point corresponds to one time
point from the movie. The superior temporal resolution of EDF-RIM is reflected in the more than 10-fold increased density of
measurement points. The reduced temporal resolution in 2D-RIM results in jitter, than makes cell divisions hard to follow
(white arrow in Supplementary movie 2).
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Figure S4. Effect of z-sampling on the quality of surface reconstruction. To estimate the dependence of the surface
reconstruction on z-sampling, we estimate the surface using increasing Z intervals ∆Z = n.δ z, where δ = 177nm is the
minimal interval used, and n is an integer. The error with respect to the best estimation (n=1), is quantified as the root mean
squared normalized by the height of the tissue (Zmax, see inset on top left of image). The z-dependence is quite low up to
n = 12 corresponding to ∆Z ≃ 2.1µm.
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Figure S5. EDF-RIM using a stair-step phase mask. The ETL was replaced with a stair-step phase mask3. (A,B) The net
result is an extension of the axial PSF from 0.65µm to 1.60µm. (C) Application to MyoII imaging in a Drosophila egg
chamber. The schematic on the right shows the molecular structure of a typical mini-filament. The anti-polar arrangement leads
to a fluorescent structure consisting of two fluorescent points, rigidly linked and spaced by approximately 300nm. (D) Close-up
on sequences, imaged with a 960 ms interval, showing the rotation of an individual Myosin-II mini-filament, a typical behavior
that was described in4. Scales bars=300 nm when not specified.
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Figure SM1. Supplementary movie 1 caption. Myosin:TagRFP imaging in the Drosophila embryo with EDF-RIM, in link
with Fig. S3. White arrows point to closing cytokinetic rings. The temporal resolution is improved compared to Supplementary
Movie 2.
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Figure SM2. Supplementary movie 2 caption. Myosin:TagRFP imaging in the Drosophila embryo with 2D-RIM in link
with Fig. S3. Multiple planes are acquired sequentially, and summed for projection. White arrows point to closing cytokinetic
rings. The temporal resolution is decreased compared to Supplementary Movie 1.
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Figure SM3. Supplementary movie 3 caption. Myosin-II:GFP in the basal surface of follicle cells from a Drosophila egg
chamber in link with Fig. S5C.
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Figure SM4. Supplementary movie 4 caption. Myosin-II:GFP in the basal surface of follicle cells from a Drosophila egg
chamber in link with Fig. S5D
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