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Appendix Figure S1 (associated with Figure 1): Radiographic, histopathologic, and 
transcriptomic features of the N1IC and p53 mouse glioma models  
a. MRI demonstrates significantly slower tumor progression and increased latency in tumor 

formation in p53-/- N1IC mice with diffusely infiltrative tumors at 30 dpi and large necrotic and 
hemorrhagic tumors at 60 dpi. p53 tumors reach end stage around 30 dpi.  

b. Representative H&E staining of endstage tumors demonstrate high grade histological 
features, including pseudopalisading necrosis and neo-angiogenesis in both models. Scale 
bars, 2 mm for panoramic view (top) and 100 μm for detailed inset (bottom). 

c. Violin plot of AUCell persister scores in the two models, P-value via Welch’s t test. Persister 
scores based on gene set described by Liau et al (Liau et al, 2017).  

d. Heatmap of differentially expressed genes that are direct N1ICD targets in persister cells.  
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Appendix Figure S2 (Associated with Figure 2): Differential activation of Notch signaling 
in primary cell cultures isolated from N1IC vs. p53 tumors 
a. Genomic DNA PCR isolated from 6 different murine cell lines demonstrating persistence of 

the N1IC transgene in all three N1IC cell lines.  
b. qRT-PCR of direct Notch downstream targets Hey1, Hes1 and Hes5 demonstrating 

upregulation of Hey1/Hes5 in the N1IC cell line. Data obtained on a pair of N1IC/p53 cells 
pooled from n=3 independent experiments. P-values calculated via unpaired t test. 

c. Immunofluorescence of N1IC and the tumor marker HA in a pair of p53/N1IC cells 
demonstrating nuclear localization of the intracellular portion of the Notch1 receptor in the 
N1IC cell line. All cells cultured in vitro expressed the HA marker. Scale bar, 10 μm.  

d. Quantification of N1IC mean fluorescence intensity in p53 and N1IC cell lines, n=9 different 
fields per cell line. P-value via unpaired t test.  
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Appendix Figure S3 (Associated with Figure 2): Metabolomic/lipidomic pathway analysis 
reveals differences between N1IC and p53 models 
a. Metabolite Set Enrichment Analysis (MSEA) depicting significant ontologies from untargeted 

metabolomic LC-MS in p53 (blue) and N1IC (red) cell lines.   
b. Combined transcriptomic/metabolomic pathway analysis in the N1IC model demonstrating 

activation of taurine/hypotaurine, pyruvate and pentose phosphate pathways. Select 
significant pathways are highlighted in red. Punctate line indicates cutoff level of significance 
(p<0.05).  

c. KEGG-based diagram depicting compensatory upregulated genes encoding enzymes and 
enriched transcriptional metabolic pathways in the N1IC model. Significant genes/pathways 
in N1IC compared to p53 tumors highlighted in red.  The AC-like model demonstrates 
ineffective cysteine/methionine metabolism secondary to high ROS production and decreased 
mitochondrial metabolic function, including decreased FAO, TCA cycle activity and ETC 
function based on functional/metabolomic analysis. FAO – fatty acid oxidation, TCA – 
tricarboxylic acid. 

d. PCA of lipidomics data shows that the lipid profile segregates by model, in both the negative 
and positive mode.  

e. Lipid ontology analysis demonstrating upregulation in TAG in the N1IC model with enrichment 
in lipids stabilizing the membrane in p53 cells. Blue – enriched in p53 cell cultures, red – 
enriched in N1IC cell cultures.  
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Appendix Figure S4 (Associated with Figure 3): Differences in energetic metabolism 
between N1ICand p53 cells 

a. Bar plot demonstrating pixel fluorescence intensity ± SEM after quantification of mitoRED 
staining demonstrating decreased membrane potential in the N1IC model, n=21 p53 cells; 
n=18 N1IC cells. P-value calculated by Welch’s t-test.  

b. Quantification of different Seahorse parameters demonstrating higher ATP production, higher 
respiratory capacity, and higher basal and maximal respiration in p53 tumor cells. Bar graph 
depicting means ± SEM. Normalized by protein quantification. Data from n=2 independent 
cell lines per model, n=10 replicates per condition.  

c. Seahorse ECAR analysis suggesting increased glycolysis in p53 cells accounting for the 
higher OCR. Each point represents mean, error bars represent SEM of n=10 independent 
replicates with n=2 independent cell lines per model.  

d. Time course of Seahorse analysis of a p53/N1IC tumor cell pair with or without 
cysteine/methionine deprivation. Each point represents mean, errors bars represent SEM 
calculated from n=10 replicates per condition. Normalized by protein quantification. 

e. Quantification of Seahorse parameters demonstrating decreased maximal respiration after 
cysteine/methionine deprivation in p53 cells with no impact on N1IC cells. Normalized by 
protein quantification. Mean ± SEM from n=5 replicates. b, e: Q-values calculated by two-way 
ANOVA correcting for multiple comparisons by controlling the FDR using the 2-stage linear 
step-up procedure of Benjamini, Krieger, and Yekutieli.  
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Appendix Figure S5 (Associated with Figure 4): Increased sensitivity to Gpx4-driven 
ferroptosis of N1IC cells  
a. Dose response curves in a N1IC cell line treated with RSL3 in combination with ferroptosis, 

apoptosis and necroptosis inhibitors. Only the ferroptosis inhibitor Ferrostatin (Fer-1, 2 µm) 
induces partial rescue, while Z-VAD-FKM (50 µm) and Necrostatin-1 (Nec1, 10 µm) have no 
significant effect, demonstrating that RSL3 induces cell death via ferroptosis-specific 
mechanisms. Error bars represent SEM from n=3 replicates.  

b. Viability with ferroptosis, necroptosis and apoptosis inhibitors alone in the same N1IC cell line. 
Error bars represent mean ± SEM from n=5 replicates. P-values calculated by ordinary 
ANOVA.  

c. Live imaging with BODIPY-C11 stains demonstrating time course of 500 nM RSL3-induced 
ferroptosis in N1IC cell line. The 510/590 ratio, marker of increased lipid peroxidation 
secondary to ferroptosis, increases 10 to 25 minutes after drug treatment. Scale bar, 50 μm. 

d. Dose response curve for ML162, 24-hour treatment, normalized to DMSO. AUC without/with 
Ferrostatin, n=3 p53/n=2 N1IC cell lines. Error bars represent SEM.  

e. Dose response curves for ML210, 48-hour treatment, normalized to DMSO. AUC without/with 
Ferrostatin, n=2 p53/n=2 N1IC cell lines. Error bars represent SEM. Q-values in d, e 
calculated by ANOVA with FDR correction via Benjamini, Krieger, and Yekutieli.  

f. Western blot of GPX4 in a N1IC cell line demonstrating effective knockdown 48 hours after 
siGPX4 transfection with no effect of Ferrostatin-1 on GPX4 protein levels. Actin used as 
loading control. Right: quantification of GPX4 after transfection with GPX4 siRNA, data pooled 
from n=3 independent experiments. P-values calculated  by ordinary ANOVA.   

g. Ridge plot demonstrating increased lipid peroxidation as measured by BODIPY-C11 flow 
cytometry in a p53 cell line transfected for 48 hours with GPX4 siRNA compared to control 
siRNA or with addition of Ferrostatin-1.  

h. Representative microscopic images of a N1IC and p53 cell line transfected for 48 hours with 
control or GPX4 siRNA with or without Ferrostatin-1. Quantification provided in Figure 4d. 
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Appendix Figure S6: Lack of response to Slc7a11 inhibition in murine glioma models.  
a. Dose response curves for the Slc7a11 inhibitor IKE, 24-hour treatment, normalized to DMSO. 

Error bars represent SEM from n=3 replicates. 
b. AUC without and with Ferrostatin, n=3 p53/n=2 N1IC cell lines. Error bars represent SEM. Q-

values in d, e calculated by ANOVA with FDR correction via Benjamini, Krieger, and Yekutieli.  
c. PCR ΔΔCT ± SEM in two independent p53 and N1IC cell lines for the Slc7a11 transporter 

demonstrating marginal differences at the transcriptomic level between models. Data pooled 
from n=3 independent experiments. P-values calculated by one-way ANOVA.  

d. Representative Western blot demonstrating presence of the Slc7a11 transporter in two 
independent p53 and N1IC murine cell cultures. Note there are no significant differences in 
Slc7a11 protein levels between models. Actin used as loading control.  

e. Bar plot demonstrating mean GSH fluorescence levels ± SEM and mean GSH/GSSG ratio ± 
SEM after treatment with DMSO vehicle (red) or 100 and 1000 nM IKE (pink) in a N1IC cell 
line demonstrating decrease in GSH fluorescence but no significant difference in GSH/GSSG 
ratio after inhibition of Slc7a11. Data pooled from n=2 independent experiments. P-values 
calculated by one-way ANOVA.  
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Appendix Figure S7 (Associated with Figure 5): Impact of ETC modulation and ROS 
scavengers on lipid peroxidation and ROS production 
a-d.  Response to mitochondrial ETC inhibitors demonstrating no difference in response to 

complex I inhibitor IACS (a), complex III inhibitor Antimycin (b) or complex V/ATP synthase 
inhibitor Oligomycin (c) and minimal differential sensitivity to uncoupling agent FCCP (d) 
between p53/N1IC cells. Glioma cells are most sensitive to complex III inhibition. n=6 
replicates per condition, n=4 replicates for Oligomycin. P-values calculated via unpaired t 
test. 

e.  Violin plots depicting JC-1 ratio in p53 and N1IC cells treated with FCCP demonstrating 
decrease in mitochondrial membrane potential as expected after uncoupling of oxidative 
phosphorylation.   

f. Dose response curves in N1IC cells treated with DMSO followed by RSL3 (red), FCCP 
followed by RSL3 (light blue) and IACS followed by RSL3 (dark green) demonstrating the 
need for effective ROS production at complex I to effectively initiate ferroptosis.  Error bars 
represent SEM from n=3 replicates. 

g.  Bar plots depicting mean ROS ± SEM after two different doses of the TSPO inhibitor 
PK11195 demonstrating no impact on total ROS production with TSPOi treatment. Data 
pooled from n=3 independent experiments. P-values calculated by unpaired ANOVA.  

h. Violin plots depicting JC-1 ratio in a N1IC cell line treated with DMSO vehicle or 10 μM 
PK11195 demonstrating marginal decrease in mitochondrial membrane potential. 

i-k. Bar graphs depicting mean ± SEM MitoCLOX, BODIPY-C11 and H2DCFDA in a N1IC cell 
line treated with the ER-targeted ROS scavenger Ferrostatin-1 or the iron chelator DFO. 
Both DFO and Ferrostatin-1 inhibit ferroptosis but have no effect on total ROS. DFO but 
not Ferrostatin-1 decreases mitochondrial lipid peroxidation. P-values calculated by 
unpaired t-test. Data pooled from n=4 (DFO) and n=5 (Ferrostatin) independent 
experiments.  
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Appendix Figure S8: N1IC-like tumor populations in treatment-naïve and post-treatment 

human GBM  
a. UMAP embedding of scRNA-seq data from n=8 GBM patient samples described in (Yuan et 

al, 2018) colored by sample (left) and by proliferation status and cell state (right) 
b. Same as a. but colored by expression of TSPO  
c. Violin plots of TSPO expression in proliferating vs quiescent transformed populations in 

human GBM samples. P-value calculated by Welch’s t-test.  
d. Heatmap of Spearman correlation index between the AUCell gene signatures generated from 

the Notch murine model (N1IC_up and N1IC_down) and Neftel cell state using the scRNA-
seq data in panels a-b. Note the clustering of the “N1IC_up” signature with the AC/MES 
signatures. The “N1IC_down” signature clusters with the NPC/OPC and proliferation 
signatures.  

e. Left: Bar plot demonstrating enrichment in the “N1IC_up” signature in 4 out of 5 patients 
undergoing chronic intratumoral delivery of topotecan in a recurrent GBM cohort (Spinazzi et 
al, 2022). Right: GSEA of the “N1IC_up” signature in all 5 patients combined.  

f. Heatmap of Spearman correlation between cell states and metabolic gene ontologies using 
the same scRNA-seq dataset used in panels a-b. Note divergent programs in the AC and 
NPC cell states, including upregulated mitochondrial programs in AC and enriched amino acid 
programs in NPC. Full list provided in Dataset EV5.  
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Appendix Figure S9: Effects of Notch activation are context dependent in patient-derived 
transformed cell lines  
a. Heatmap of Spearman correlation index between glioma cell state scores and Notch signaling 

using bulk RNA-seq data from glioma cell lines in the Cancer Cell Line Encyclopedia (CCLE) 
dataset demonstrating no significant correlation between Notch activation and cell state in 
vitro. Note the positive correlations between all cell state scores demonstrating poor 
preservation of cell identity in vitro. P-values provided in Dataset EV7. 

b. Heatmap of Notch signaling and TSPO expression based on bulk RNA-seq glioma cell data 
from CCLE demonstrating poor correlation between Notch status and ferroptosis susceptibility 
but anticorrelation between RSL3 AUC and TSPO expression. P-values in Dataset EV7. 

c. Bar plots depicting mean ± SEM for RSL3 AUC, GSH/GSSG ratio, log10NAD and log10NADH 
relative abundance in Notch low (blue) and Notch high (red) (Methods) glioma cell lines.  

d. Volcano plot of differentially expressed genes in control GFP compared to N1IC 
overexpressing TS543 cells. N1IC upregulated genes in red. Note upregulated canonical 
Notch target genes HES5, HEY1, HEY2, HEYL and downregulated NPC/OPC genes ASCL1, 
OLIG1, OLIG2 after Notch overexpression. Inset: GSEA using glioma cell state gene 
signatures demonstrating enrichment in the MES1 gene signature with Notch activation. Only 
signatures with FDR<0.05 depicted. Also refer to Table EV2 for complete list of differentially 
expressed genes.  

e. Bar graph depicting significant metabolic gene ontologies in control GFP vs N1IC 
overexpressing TS543 cells. Blue enriched in GFP, red enriched in N1IC overexpression. 
NES – normalized enrichment score. Full list of transcriptional metabolic programs provided 
in Table EV2. Only gene sets with nominal p value<0.05 are shown.   

f. qRT-PCR of direct Notch downstream targets and NPC markers demonstrating 
downregulation of HEY1, HEY2, HEYL in TS543 dnMAML without effect on OLIG2 or SOX2 
expression. Data pooled from n=3 independent experiments. P-values via unpaired t test. 

g. Dose response curve in control GFP and dnMAML TS543 treated with RSL3 or DMSO vehicle 
with or without Ferrostatin 1 demonstrating no differential response with Notch genetic 
inhibition. Error bars represent SEM from n=3 replicates.  

h. AUC for RSL3 in GFP vs dnMAML TS543. Data pooled from n=3 independent drug screens, 
P-value calculated by Welch’s t-test.  

i. Dose response curve in control GFP and dnMAML TS543 treated with IKE or DMSO vehicle 
with or without Ferrostatin 1 demonstrating no differential response with Notch genetic 
inhibition. Error bars represent SEM from n=3 replicates. 

j. AUC for IKE in GFP vs dnMAML TS543. Data pooled from n=3 independent drug screens, P-
value calculated by Welch’s t-test.  
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Appendix Figure S10: Selection or transformation of the AC-like population in PDX models  
a. UMAP embedding of scRNA-seq data from TS543 PDX model at 21 days post-injection 

colored by replicate.  
b. Same as a. but colored by the relative expression of human transcripts indicative of whether 

the cells are transformed tumor cells (human) or untransformed cells in the brain 
microenvironment (mouse).  

c. UMAP embedding of scRNA-seq data from a after isolating the transformed tumor cells 
colored by replicate.  

d. Same as c. but colored based on unsupervised clustering of the single-cell expression profiles.  
e. Heatmap of average gene expression for markers of various GBM cell subsets and states 

across clusters and replicates.  
f. Heatmap of normalized enrichment scores (NES) from GSEA of GBM subset signatures from 

Neftel et al(Neftel et al, 2019) across clusters and replicates.  
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Appendix Figure S11 (Associated with Figure 7): Identification of transformed populations 
in slice cultures via chromosome copy number alterations  

a. Heatmaps showing the average chromosomal copy number from whole genome sequencing 
of patient samples used for slice cultures in Figure 7.  

b. Left: UMAP embeddings of scRNA-seq profiles from TB6181, TB6328, TB6458, TB6528, 
TB6534 and TB6545 slice cultures colored by the log-ratio of Chr. 2 to Chr. 1 average 
expression (TB6181) or by the log-ratio of Chr. 7 to Chr. 10 average expression (TB6328, 
TB6458, TB6528, TB6534 and TB6545). The high ratio (red) indicates malignant 
transformation. Right: Violin plots showing the distributions of log-ratios of Chr. 2 to Chr. 1 or 
Chr. 7 to Chr. 10 average expression for each Phenograph cluster identified for TB6181, 
TB6328, TB6458, TB6528, TB6534 and TB6545 slice cultures. 
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