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SUMMARY
The characterization of somatic genomic variation associated with the biology of tumors is fundamental for
cancer research and personalized medicine, as it guides the reliability and impact of cancer studies and
genomic-based decisions in clinical oncology. However, the quality and scope of tumor genome analysis
across cancer research centers and hospitals are currently highly heterogeneous, limiting the consistency
of tumor diagnoses across hospitals and the possibilities of data sharing and data integration across studies.
With the aim of providing users with actionable and personalized recommendations for the overall enhance-
ment and harmonization of somatic variant identification across research and clinical environments, we have
developed ONCOLINER. Using specifically designed mosaic and tumorized genomes for the analysis of
recall and precision across somatic SNVs, insertions or deletions (indels), and structural variants (SVs), we
demonstrate that ONCOLINER is capable of improving and harmonizing genome analysis across three
state-of-the-art variant discovery pipelines in genomic oncology.
INTRODUCTION

Understanding how somatic genomic variation drives the

biology of tumors is the foundation of modern personalized

oncology. The characterization of somatic changes in cancer ge-

nomes has already uncovered hundreds of tumor-associated

genes that can potentially be used as diagnosis, prognosis,

and treatment markers.1–4 For this reason, the analysis of tumor

genomes has become a critical step within cancer genomic

research and for its downstream clinical translation into person-

alized medicine protocols.

This has motivated the development of multiple somatic

variant calling solutions over the past years, providing a wide

catalog of different available tools and methods, each of
Cell Genomics 4, 100639, Septem
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them typically focused on specific types and sizes of vari-

ants.5–22 Furthermore, the combination of different variant cal-

lers into complex pipelines has proven to be the best solution

for different types of analyses in both research and clinical set-

tings.23–26 Selecting the best-performing tools and deciding

how to best combine them to maximize recall and precision

of all types of variant discovery, as well as their precise charac-

teristics (e.g., tumor allele frequency, ploidy, exact break-junc-

tion sequence, etc.), are critical and challenging steps when

developing genome analysis pipelines, as they require know-

how as well as high-quality benchmarking information.27–30

In addition, pipelines can be designed to prioritize recall or

precision depending on the scenario of application, such as

research or healthcare.
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Despite the publication ofmany benchmarking efforts, their re-

sults are usually descriptive and difficult to translate into prac-

tical decisions for the design and development of variant calling

pipelines. This is due, for example, to the tendency to generate

and use theoretical scenarios of application, combined with full

in silico benchmarking datasets, which do not properly capture

the nature of the biological behavior, noise, and variation of the

data. That, together with the limited availability of real bench-

marking data for somatic variant detection, defines the current

scenario where variant calling across most of the different

research and clinical centers is often limited and highly heteroge-

neous. This is particularly severe when considering the analysis

of whole-genome sequencing (WGS) and the identification of

structural variants (SVs), which are critical for cancer genomic

studies. In this context, an increasing number of initiatives world-

wide are aiming at introducing the sequencing and analysis of

whole genomes as a routine for healthcare in genomic oncology,

facing the challenge of genome analysis pipeline design and im-

plementation.31–37 It is therefore necessary to have actionable

solutions in place, adjusted to the specific needs and scenarios

that require variant calling pipeline design, development, or

improvement.

Current limitations in somatic variant calling have a direct

impact on the quality and scope of downstream variant interpre-

tation in research studies and clinical applications that impede

the possibility of sharing, combining, and integrating data and re-

sults across different research groups and centers. In fact,

growing national and worldwide efforts toward designing and

building multicentric research ecosystems,38,39 operating under

federated or centralized schemes, require output harmonization

of their different analysis platforms at both the level of quality and

the scope of the variant calling, as well as at the level of stan-

dards that allow interoperability. Despite the high number of

global initiatives to standardize and harmonize the management

of biomedical data such as GA4GH40 and ELIXIR (https://elixir-

europe.org/), limited efforts have been devoted to the harmoni-

zation and standardization of analysis pipelines. The existing

heterogeneity across different cancer research and clinical cen-

ters currently frustrates any attempt to integrate data and results,

restricting the possibilities of new scientific discoveries, as well

as generating potential discordant tumor reports from different

healthcare centers. This heterogeneity also limits the chances

for interoperability at other levels, for example through variant-

based data discovery engines (e.g., Beacon from GA4GH),

which ideally also require homogeneous and consistent variant

data across centers. Because the adoption and maintenance

of identical reference pipelines across many research centers

is not a realistic solution for harmonization within growing feder-

ated (decentralized) data-sharing scenarios, we need applicable

and practical solutions for the improvement and harmonization

of somatic genome analysis across these data environments.

This will allow us to answer more ambitious biomedical research

questions and will enhance and globalize genomic oncology.

With this objective, we have designed a new actionable

benchmarking paradigm, implemented as the ONCOLINER plat-

form, a modular, configurable, and easy-to-use software solu-

tion that provides users with direct and personalized recommen-

dations for building, improving, and harmonizing somatic variant
2 Cell Genomics 4, 100639, September 11, 2024
calling pipelines from whole-genome short-read sequencing

data within and across research and clinical oncology centers.

The recommendations for improvement and harmonization are

based on quality standards measured through common accu-

racy metrics using a comprehensive set of validated somatic

variants. We have also processed and integrated these experi-

mentally validated somatic variant data into more accessible

benchmarking datasets that, in contrast to traditional in silico

simulations, capture real data noise and variability impacting

the calling of SNVs, insertions or deletions (indels), and SVs.

We here demonstrate that the combination of these develop-

ments and resources significantly improved and harmonized

real somatic variant calling pipelines that represent current

research and clinical scenarios in genomic oncology.

RESULTS

Large data integration efforts in cancer research1,4,21,41,42 have

already highlighted significant heterogeneity in performance,

quality, and scope of short-read-based genome analysis across

different centers. With the ultimate aim of providing actionable

and personalized solutions for the improvement and harmoniza-

tion of genome analysis across cancer research centers and

hospitals, we have first assessed the extent to which existing so-

matic variant calling pipelines need improvement and harmoni-

zation. For this, we have measured and compared the analysis

performance (recall and precision) of three selected state-of-

the-art variant calling pipelines from three active genome anal-

ysis research centers (A, B, andC). As recall and precision values

reflect different properties of the variant calling, their measure-

ment also requires specific and dedicated benchmarking data-

sets and scenarios.

To measure the recall (sensitivity) performance of these pipe-

lines, we used a comprehensive collection of reported and vali-

dated somatic variants encapsulated within mosaic tumor-

normal samples. These samples have been designed to retain

the recall assessment properties of the original samples while

reducing the analysis burden considerably (Figure 1A). Tumor

and normal mosaic samples preserve the intrinsic noise and

properties from the sample preparation (e.g., purity) and

sequencing (e.g., insert sizes). To produce these mosaics, all

the original sample reads mapped around a 2 kb window sur-

rounding the coordinates of each validated variant are inserted

into a WGS genome simulated from the GRCh37 reference while

removing the artificial reads that overlap the span of the window.

The same process is equally applied to the tumor and normal

samples. For this study, we have built four mosaic genomes se-

lecting a total of 32,267 validated variants (with non-overlapping

genomic positions), distributed across 47 selected tumor-

normal samples from the Pilot-504 and 12 from the HMF-129 da-

tasets. These variants include 15,000 SNVs, 13,896 indels

(composed of insertions, duplications, and deletions with a

length less than 100 bp), and 3,371 SVs (i.e., variants with length

greater than 100 bp). SVs are further subclassified in sizes and

classes defined through their breakpoints, resulting in 736 trans-

locations, 667 inversions, 1,318 deletions, and 650 duplications.

While all the variants of the 12 HMF-12 samples could be inte-

grated into a single mosaic tumor-normal pair with 1,754 SVs,

https://elixir-europe.org/
https://elixir-europe.org/
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the heterogeneity of insert sizes across the 47 PCAWG Pilot-50

tumor-normal samples forced us to group them in three mosaic

samples with consistent insert sizes and an average of

10,171 variants each, including SNVs, indels, and SVs (see

Figures S1–S4). The variant allele frequency (VAF) of the mosaic

genome variants ranges from 5% to 98%, following the original

distribution of the PCAWG samples (see Figures S5 and S6).

Within the scope of these variants and using a wide and repre-

sentative collection of available somatic variant callers, we

demonstrate that themosaic genomes retain practically identical

recall assessment properties to the original benchmarking data-

sets (Figure 1B).

On the other hand, to measure the reliability of the calling, we

have calculated the precision performance of pipelines A, B, and

C using tumorized genomes (Figure 2). In contrast to real or fully

simulated benchmarking genomes, tumorized samples are hy-

brids that can accurately capture precision values and false pos-

itive rates. To balance the control of the variants and, at the same

time, provide a real testing scenario to evaluate false positive

calls, we combined samples from the GIAB project (NA12878

and HG002)43 with a collection of synthetically reproduced true

somatic variants (11,987 SNVs, 1,397 indels, and 239 SVs)

from the PCAWG consensus callsets.4 Tumorized samples

contain only 0.2% of reads that are modified to accurately repre-

sent the sequence of the variant, while the other 99.8% of reads

remain unaltered. Importantly, in contrast tomosaics, whichmay

retain germline variants within somatic variant windows and

require controlled access agreements, tumorized samples can

be shared openly within the community as described by the

GIAB project.43

Analysis of heterogeneity
To precisely assess the extent to which pipelines A, B, and C

need improvement and harmonization, we tested them against

the four mosaics and the two tumorized benchmarking samples

described above and extracted recall and precision values for

each variant type and size. An initial inspection of the results

already shows some degree of heterogeneity and possibilities

for improvement for some pipelines across different variant

types and sizes (see Figure S7). As a signal of how different

two or more pipelines perform against the same benchmark

samples, we have defined a performance heterogeneity score

(PHS), reflecting the differences between their performances,

as of recall and precision (Figure 3A). Moreover, we also studied

the functional and clinical impact that these pipelines are able to
Figure 1. Generation of the mosaic tumor/normal genome pairs
(A) To assess the levels of recall for somatic analysis pipelines, we have design

information of a total of 59 (47 + 12) validated tumor-normal pairs into only four r

region of mapped reads around each validated variant of the original genomes in

genome (GRCh37). Whereas HMF-12 samples have homogeneous insert sizes

genome pair, the heterogeneity across samples of the PCAWG-Pilot dataset for

Figure S1). This avoids conflicts from some variant callers that depend on and ne

genomes reproduce the exact same genomic context for variant detection as in th

recall benchmarking properties of the original source samples. The results that w

SVs are practically identical between the 59 original samples (yellow line) and the

discarded two outlier samples from the 49 available tumor-normal pairs from th

considers effective sequencing coverages ranging from 273 to 623 for the norma

as variants with a defined variant allele frequency (VAF) larger than 1% (see Figu
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capture and how heterogeneous this is across centers by evalu-

ating the fraction of coding genes, including cancer drivers,2 that

are affected by non-synonymous variants (i.e., gene discor-

dance ratio [GDR]).

Overall, the three pipelines together could correctly identify

28,644 variants (13,834 SNVs, 11,704 indels, and 3,106 SVs) of

the 32,267 original truth variants from all four mosaic samples.

From the correctly identified variants, only 19,805 (10,052

SNVs, 7,273 indels, and 2,480 SVs) were concordantly identified

by the three centers, whereas 8,839 (3,782 SNVs, 4,431 indels,

and 626 SVs) were missed by at least one of the pipelines. Pair-

wise comparisons between pipelines A-B, A-C, and B-C showed

7,612, 3,616, and 6,450 discordant variants, respectively. Trans-

lating these differences into potential functional and clinical

impact, from a total of 3,217 genes with somatic coding muta-

tions, 2,624 were found by all three pipelines. Conversely, 593

(18%) of them, including 24 coding cancer drivers, were missed

or excluded by at least one of the pipelines. Among these, we

found genes that are key in decision-making processes within

tumor boards for the diagnosis, treatment, and prognosis of

different cancer types (ONCOKB45,46). For example, the gene

KIT, which codes for a receptor tyrosine kinase, is a proto-onco-

gene and a US Food and Drug Administration-approved therapy

target of kinase inhibitor drug groups.47–50 Similarly, among the

discordant variants, we found a translocation disrupting the

RARA gene, a retinoic acid receptor that is found translocated

as a gene fusion in certain types of leukemia. In particular,

some RARA mutations are standard diagnostic biomarkers for

acute promyelocytic leukemia.50,51 Another important discor-

dance was a translocation affecting CCND3. Alterations in

CCND3 are used as prognostic biomarkers of various hemato-

logic malignancies.50,52 Lastly, other genes, used as support

for the diagnosis of different cancer types, such as FOXP1 and

NOTCH2, also presented mutations that were discordantly de-

tected between the three pipelines.50

Overall, PHSs among the three pipelines range from 1.92% to

36.53%, showing heterogeneity across all variant types and

sizes (Figure 3B). We also observe differences in PHSs affected

by precision and recall heterogeneity values asymmetrically. For

SNVs, in agreement with previous studies,53 we find a significant

performance heterogeneity (PHS = 11.71%), mostly affecting

recall values (Figure 3B), which translates into 3,782 discordant

variants from all 13,834 SNVs identified by at least one center,

as well as 58 discordant coding and 4 cancer driver genes. We

also detected a degree of heterogeneity (PHS = 4.14%) for
ed mosaic tumor-normal genome pairs, which condense the benchmarking

esulting mosaic pairs. This is achieved by literally transferring (copying) a 2 kb

to a canvas genome generated by simulated reads from the human reference

and all the variants could be condensed into a single tumor-normal mosaic

ced us to generate three sample pairs with similar ranges of insert sizes (see

ed to generate internal decision criteria based on read pair distances. Mosaic

e original samples. In fact, in (B), we show that thesemosaic genomes retain the

e obtained using 12 different variant callers on the recall for SNVs, indels, and

derived mosaic genomes (blue line). During the quality check of the data, we

e PCAWG-Pilot dataset. Defined by the original data, this benchmarking set

l samples and from 273 to 1493 for the tumor samples (see Figure S2), as well

re S6).



Figure 2. Design and construction of the tumorized tumor-normal genome pairs

For an accurate assessment of the precision and to calculate the rate of false positives during somatic variant discovery, we have generated tumorized genomes.

These consist of real WGS samples from the GIAB project43 with synthetic cancer somatic variants extracted from the PCAWG consensus callsets.4 For each

introduced variant, a subset of reads in the tumor sample are modified to represent the variant. The number of modified reads depends on the depth of the region

where the variant is located and the selected VAF (see Figure S6). This method is implemented in GenomeVariator, a wrapper tool that enhances the func-

tionalities of BAMSurgeon.25,26,44 The high coverage of these samples (3003) allows the generation of tumor and normal genomes with a different composition of

reads, recreating real tumor-normal analysis scenarios. Furthermore, the fact that only 0.2% of the reads have been modified to reconstruct the variants in the

tumor samples of the tumorized genome pairs makes these samples ideal for an accurate evaluation of precision, as they retain 99.8% of the original sequencing

and mapping properties. In order to avoid potential sample bias, we have generated two tumor-normal samples with the same validated variants: one derived

from the NA12878 GIAB sample and the other from the HG002 GIAB sample.
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indels, resulting from the discordance of 4,431 variants that have

been missed by at least one center, affecting 39 coding and 4

cancer driver genes. Finally, the calling of SVs also shows low

concordance across centers, with 16 discordant cancer driver

genes disrupted by SVs in total (PHS = 6.63%). Particularly,

the 100–500 bp range shows the two highest PHS values, with

36.53% for duplications and 29.22% for deletions, translating

into 95 duplications and 68 deletions of the total 626 SVs differ-

ently identified by these pipelines, respectively (Figure 3C).

Conversely, deletions and duplications with lengths above

500 bp present the two lowest PHSs (1.92% and 3.7%, respec-

tively). This demonstrates that the detection of SVs within the
100–500 bp range remains challenging with short-read technol-

ogies. Altogether, duplications and deletions in the 100–500 bp

range cause 47 coding and 1 cancer driver and 34 coding and

4 cancer discordant genes, respectively (Figure 3D). Interest-

ingly, discordant false positive deletions produce significant dif-

ferences in precision across pipelines, whereas duplications of

the same size differ mostly in recall (see Figure 3B).

ONCOLINER solution
To overcome these quantitative and qualitative differences

across centers, and driven by the specific needs of each of the

pipelines, we designed and implemented a solution called
Cell Genomics 4, 100639, September 11, 2024 5



Figure 3. Comparative study of somatic variant analysis across different research and clinical scenarios

(A) A graphic and mathematical representation of the underlying rationale for the definition of PHS. This score measures the degree of heterogeneity in somatic

variant calling performance across two or more centers, independently of the overall quality of each pipeline. It is calculated as the normalized average distance

from each pipeline to the centroid in a Euclidean space delimited by recall and precision values. PHS values of 0% indicate no heterogeneity, whereas those of

100% indicate maximum heterogeneity.

(B) The results for the top four variant types and sizes by PHS for centers A, B, and C, representative of real and active genome analysis pipelines. SVs are grouped

by type, such as deletions (DEL), duplications (DUP), translocations (TRA) and inversions (INV) and by size (from 101 to 500 bp and more than 500 bp). Per-

formance parameters, including recall and precision, were obtained using a validated set of variants with a total of 38,947 SNVs, 16,688 indels, and 3,851 SVs of

different subtypes and sizes. The samples only contained inversions above 500 bp, so smaller ones could not be assessed (see Figures 1 and 2).

(C) The PHSs for all variant types.

(D) The effect of this calling heterogeneity on the functional reach and impact of the analysis in the form of the fraction of discordant genes identified asmutated by

at least one center and missed by another (GDR).
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ONCOLINER to assist in the development and improvement of

somatic genome analysis pipelines for cancer genomics

research and clinical oncology. ONCOLINER provides users

with multiple functionalities encapsulated in different interoper-

able modules, covering the assessment, improvement, and
6 Cell Genomics 4, 100639, September 11, 2024
harmonization of already operational variant calling pipelines,

to the de novo generation of optimized pipelines (Figure 4). In

brief, this tool first analyzes targeted pipelines, and then makes

a diagnosis based on calling performances and harmonization

levels, to finally provide improved and harmonized solutions in



Figure 4. Conceptual and functional map of ONCOLINER

Left of the image, a box represents the different functional modules and basic elements of ONCOLINER. In our use case, the defined benchmarking genomes are

composed of three mosaic and two tumorized tumor-normal genome pairs that have been designed to capture recall and precision performance, respectively

(see Figures 1 and 2). The three modules in orange correspond to the three main functionalities, assessment, improvement, and harmonization, which are

described on the right part of the image. In addition, shown in the blue box on the bottom, ONCOLINER also provides different standalone solutions for the

improvement and harmonization of genome analysis in additional contexts. In the middle of the image, a user interface (GUI) allows interaction with the platform

and the selection of the best solution for each specific clinical or research need.
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the form of specific and actionable recommendations, such as

adding or intersecting with additional variant callers.

The first step of ONCOLINER requires users to execute their

analysis pipelines against the benchmarking data, correspond-

ing in this case to the four mosaics and the two tumorized sam-

ples. After entering the pipeline’s results (in VCF format), the

assessment module first calculates basic performance metrics,

such as recall and precision, across awide range of variant types

and sizes (see Figure S7), highlighting parts that can be

improved. Next, targeting these limitations, the improvement

module provides specific recommendations that increase detec-

tion power or precision for each of the variant types and sizes.

These recommendations are based on the current knowledge

in state-of-the-art somatic variant detection, obtained through

thorough testing and benchmarking of 12 selected variant callers

and their combinations over the mosaic and tumorized bench-

marking genomes. Recommendations targeting the improve-

ment of recall values for certain pipelines and variant types

involve adding one or more of these variant callers, whereas rec-

ommendations to lower the rate of false positives and improve

precision involve recommending intersections. As different

research and clinical scenarios prioritize either recall or precision

differently, ONCOLINER generates different possibilities for

improvement, from which users can select the most suitable op-

tion for their needs. Finally, if more than one pipeline has been

provided, then the harmonization module enables selecting the

recommendations for improvement that also maximize the

harmonization across centers, quantitatively and qualitatively.
Along with ONCOLINER, we also provide additional stand-

alone software solutions to meet multiple needs associated

with improving, standardizing, and harmonizing genome anal-

ysis across centers. For example, to ensure interoperable inter-

pretation and representation of variants fromVCF files, we devel-

oped VariantExtractor as a library used by ONCOLINER and also

as a standalone package. VariantExtractor reads and interprets

SNV, indel, and SV records by applying a set of consistent rules

across all VCFs. This also facilitates downstream analysis with

no information losses, especially for SVs, as there are different

ways to encode the same variant that are biologically identical

but very different in the VCF format (see Figure S8). In addition,

we also provide GenomeVariator and GenomeMosaicMaker

for the generation of custom tumorized and mosaic genomes,

respectively. These tools can be used to generate genomes

adapted to specific needs for benchmarking data.

Beyond the functionalities aiming at improving and harmo-

nizing existing pipelines, we also include PipelineDesigner, a

standalone tool that helps users to find the best strategy to

combine and merge specific variant callers to maximize recall

and precision over all variant types. Using PipelineDesigner,

we designed and implemented a de novo variant calling pipeline

with the combination of the best-performing variant callers of this

study (see Table S1) that can be readily adopted. To facilitate the

application of the recommendations from both ONCOLINER and

PipelineDesigner, we provide each variant caller we used in a

container and the necessary tools for merging and combining

their results to provide a consistent framework for applying
Cell Genomics 4, 100639, September 11, 2024 7



Table 1. Pipeline heterogeneity and performance after ONCOLINER

SNV Indel SV

Discordant variants 1,548 (2,234 Y) 1,212 (3,219 Y) 92 (534 Y)

Discordant genes 22 (36 Y) 12 (27 Y) 60 (436 Y)

Discordant driver genes 2 (2 Y) 1 (3 Y) 0 (16 Y)

GDR, % 9 (15 Y) 8 (19 Y) 2 (15 Y)

PHS, % 4 (7 Y) 4 (0 = ) 3 (4 Y)

Average F1-score, % 92 (3 [) 87 (7 [) 90 (2 [)
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improvement and harmonization recommendations. In addition,

to increase flexibility and ensure future applicability over a wider

range of variant calling benchmarking scenarios, we allowed

ONCOLINER to function with other provided benchmarking da-

tasets and other reference variant callers, adapting to the spe-

cific needs of the user.

Application to a real research scenario
In order to prove ONCOLINER’s functional applicability to a

common research scenario, we have used pipelines A, B, and

C. First, the assessment module calculated and provided all

variant calling metrics for each pipeline and each variant type,

including affected coding and cancer driver genes, from

the analysis of the tumorized and mosaic genomes (see

Figures S9–S11). Next, the improvement module provided rec-

ommendations that enhance recall (at least 5%), precision (at

least 5%), or F1-score. For example, ONCOLINER’s recommen-

dation of adding GRIDSS2 to pipelines A and C improved their

recall for detection of SVs from 86% to 91% and from 78% to

89%, respectively. This recommendation also increased the

number of discovered mutated protein-coding genes for both

pipelines by 277 and 274 and cancer driver genes by 12 and 8

for A and C, respectively. The recommended intersection of

pipeline A with mutect2 (from GATK) and SAGE removed 1,741

false positives for SNVs and increased the precision from 93%

to 99.99% (see Figures S12 and S13).

Finally, the harmonization module evaluated and selected

those recommendations for improvement that also minimized

heterogeneity scores across centers. For example, among mul-

tiple choices with similar outcomes (see Figures S14 and S15),

the addition of GRIDSS2 to pipelines A and C not only improved

their recall as described above but also reduced PHSs from

6.63% to 2.57% for SVs, with notable effects in duplications be-

tween 101 and 500 bp decreasing PHSs from 36.53% to 4.03%.

Moreover, this harmonization option decreased the GDR for SVs

from 17.50% to 2.09% (notably from 87.04% to 3.64% for 100–

500 bp duplications), which translated into 436 less discordant

affected genes across pipelines. Overall, prioritizing PHSs, the

recommended strategies for harmonization and improvement

made consistent a total of 5,987 true variants (2,234 SNVs,

3,219 indels, and 534 SVs) out of the initial 8,839 discordant var-

iants across the three centers and also recovered variants that

affected 499 protein-coding and 21 cancer driver genes,

including the five actionable genes previously missed by at least

one of the three pipelines (Table 1). Despite considerably

improving performance and homogeneity across centers, a total
8 Cell Genomics 4, 100639, September 11, 2024
of 2,852 true variants remained discordant after a first iteration

with ONCOLINER, including 94 affected genes and three drivers.

The improvement and harmonization reached here apply to

these specific pipelines. We expect even higher improvement

and harmonization levels across research centers and hospitals

that, for example, require the de novo inclusion of WGS and SVs

into their protocols.

DISCUSSION

Naturally, the ultimate value of benchmarking efforts during the

development and improvement of genome analysis pipelines

critically depends on the quality and scope of the reference

(truth) set of validated variants. They will determine the reach

of the assessment and its final level of trust. Unfortunately, there

are only a handful of available and suitable patient-derived data-

setswith enough numbers and varieties of validated somatic var-

iants in WGS for building and calibrating somatic variant identifi-

cation and classification pipelines. Of these, we have used the

PCAWG-Pilot4 (SNVs, indels, and SVs) and the HMF-129 (SVs)

datasets, both generated in benchmarking contexts of somatic

variant calling. While the HMF dataset is more homogeneous

and internally consistent, the PCAWG set derives from samples

collected, processed, and sequenced in multiple centers with

different quality standards, such as tumor purity, insert size,

and sequencing coverage. This affects not only themosaic strat-

egy, which requires homogeneous insert sizes, but also the

scope of this study. For this reason, we cannot assure that pipe-

lines calibratedwith these specific datasets will actually translate

in calling improvement when applied outside their sample purity,

sequencing error rate, coverage, and insert size ranges (see Fig-

ure 1). Considering these limitations, we plan to improve further

benchmarking datasets by generating publicly accessible tu-

mor-normal benchmarking genomes for the evaluation of recall

and precision of somatic variant calling in a single run.

At the same time, the identification and validation methods

used to generate truth sets of variants also determine the value

and reach of benchmarking studies. For instance, at the level

of variant type, our benchmarking datasets cover SNVs, indels,

and breakpoint-definable SVs (deletions, inversions, transloca-

tions, and duplications) but do not include, for example, large in-

sertions and coverage-derived copy-number variants. In addi-

tion, other data quality issues can also affect the reliability of

pipeline assessment. Among these, even validated somatic vari-

ation datasets still contain a certain amount of germline contam-

ination and sequencing errors recalled as low-VAF SNVs. This
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could slightly generate underestimations of recall values, even in

this study. Upcoming efforts aiming to generate more accurate,

customized, and targeted benchmarking datasets for other po-

tential applications will surely improve the usability and quality

of the functionalities of ONCOLINER.

The reach of ONCOLINER is determined by the collection of

preselected variant callers used to generate recommendations

for improvement and harmonization. Although we have selected

twelve variant callers based on their acceptance and use within

the community, we cannot discard that other variant callers

could, in fact, outperform this set and generate better recom-

mendations for improvement and harmonization. For this reason,

together with customized benchmarking datasets, we have also

allowed the inclusion by the user of additional variant callers into

the platform to be able to improve the calling in general or to

target specific types of variants not included here. Among other

benchmarking datasets that can be used with ONCOLINER, we

can find high-quality tumor-normal pairs in previous studies.23,30

Nevertheless, even considering the limitations of the datasets

used as the ground truth, ONCOLINERmanaged to substantially

improve and harmonize the performance of the pipelines of

the three centers, leading to the recovery of mutations on five

discordant clinically actionable cancer genes. Thus, further

benchmarking efforts applying this paradigm shift with curated

gold-standard variants will be able to generate actionable rec-

ommendations for health centers.

Taking these results together, we present and validate a new

concept for the benchmarking of somatic variant discovery

with actionable recommendations to users for improving and

harmonizing across centers the identification of somatic variants

associated with cancer. The application of ONCOLINER to align

genome analysis across research centers and hospitals can pro-

vide consistency in the diagnosis and selection of treatment

within primary care, as well as for the possibility of improving sci-

entific discovery by allowing an interoperable integration and

sharing of cancer genomics datasets within emerging federated

data spaces around the world.

Limitations of the study
There are two major aspects of ONCOLINER that can have

generic and specific limitations, with potential consequences

for users. One relies on the quality of the benchmarking dataset,

which determines the scope and the reliability of all functional-

ities of ONCOLINER. Benchmarking datasets with low quality

or low diversity of variants will result in inaccurate and poor per-

formance assessments, which will also affect all improvement

and harmonizing recommendations. For our study, we have

taken two specific datasets4,9 that cover SNVs, indels, and

SVs that have passed different rounds of quality check, but we

cannot discard, for example, that a fraction of variants labeled

as somatic within original datasets are, in fact, germline. Other

sources of limitations rely on the sequencing and preprocessing

methods that have been used on those original benchmark data-

sets, which also determine the scope of application of

ONCOLINER. To solve these limitations, users can provide their

own benchmarking dataset with specific parts of their methodol-

ogy considered. Finally, other limitations rely on the algorithm

and implementation of ONCOLINER, which has been designed
to offer full functionality within low computational requirements.

This compromise forced us to allow the prioritization of the

harmonization to rely on the improvement of either the recall or

the precision but not both at the same time. Although we do

not expect much impact during implementations, this can some-

times result in suboptimal harmonization recommendations for

precision and require follow-up executions of ONCOLINER.

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by

the lead contact, David Torrents (david.torrents@bsc.es).

Material availability

No materials were generated in this study.

Data and code availability

d The interactive HTML report generated by ONCOLINER for centers A, B

and C has been deposited at a customHTTP server and is publicly avail-

able as of the date of publication. URL is listed in the key resources

table.

d Tumorized genomes CRAM and VCF files have been deposited at ENA

and are publicly available as of the date of publication. Accession

numbers are listed in the key resources table.

d Mosaic tumor-normal genome pairs CRAM files andGold Standard VCF

files from PCAWG-Pilot have been deposited at ICGC Data Portal, and

accession numbers are listed in the key resources table. They are avail-

able upon request if access is granted.

d Mosaic tumor-normal genome pairs CRAM files andGold Standard VCF

files fromHMF-12 have been deposited at EGA, and accession numbers

are listed in the key resources table. They are available upon request if

access is granted.

d All original code for ONCOLINER, PipelineDesigner, GenomeVariator

andGenomeMosaicMaker has been deposited at GitHub and is publicly

available as of the date of publication. DOIs are listed in the key re-

sources table.

d All original code for VariantExtractor has been deposited at GitHub and

is publicly available as of the date of publication. DOI is listed in the key

resources table. VariantExtractor is also available through PyPi.

d All the variant callers included in this study are listed and can be down-

loaded as Singularity containers from GitHub and are publicly available

as of the date of publication. URL is listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.
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METHOD DETAILS

Benchmarking datasets: Mosaic and tumorized genomes
Experimentally validated variants are the best solution to properly benchmark variant calling algorithms and pipelines. Validated

variant sets are highly valuable for providing realistic data in various fields, especially for cancer research. However, due to the dif-

ficulty of the validation process samples with validated variants are scarce. Additionally, existing validated datasets tend to be large

and require computationally intensive processing due to the inclusion of numerous samples, even when they contain few validated

variants. This computational demand poses challenges for researchers working with limited resources. To address this issue, we

produced two alternative approaches in Mosaic and Tumorized genomes. We also provide the necessary open-source tools to

generate them, GenomeVariator and GenomeMosaicMaker, intended for researchers interested in using these approaches for their

studies.

First, Mosaic genomes provide a condensed representation of the complete benchmarking datasets, conveying the same infor-

mation but significantly decreasing computational burden. Nevertheless, Mosaic genomes pose limitations. For once, the availability

of restricted access benchmarking datasets due to privacy concerns or other confidentiality clauses impedes open access toMosaic

genomes. Additionally, source benchmarking datasets often lack control over false positives, affecting reliability for precision assess-

ment on Mosaic genomes. To complement Mosaics and overcome these limitations, the Tumorized genomes were developed. Tu-

morized genomes address the need for patient data protection by ensuring that the genomes are de-identified, eliminating the need

for bureaucratic processes that can impede progress in cancer research. By utilizing Tumorized genomes, researchers gain absolute

control over the features and variants included in these datasets, allowing precise and controlled analysis. Themethod to bring these

approaches into real datasets for our study is detailed below.

The short-read sequencing data needed to discover somatic variants in a sample consists of a pair of tumor-normal samples map-

ped to a reference genome. The ground for constructing the tumor-normal datasets comprising a Mosaic genome are the original

reads sequenced from validated datasets such as the PCAWG-Pilot and HMF-12, and the validated variants within them. The first

step is to estimate the average depth, read length, and insert sizes of each of the validated samples. Then, a canvas WGS dataset is

simulated with these values from the same reference genome to which the samples are mapped. For our read simulations, we used

the ART Illumina software.56 Finally, read-alignments from the original tumor-normal samples overlapping with a 2kb window

centered around each of the validated variants are inserted into the canvas genome. The simulated reads in these regions from

the canvas genome are discarded in order to remove discrepancies in read depths or lengths. Thus, Mosaic genomes provide a real-

istic representation of the original somatic variants. We implemented this method as the GenomeMosaicMaker tool.

The HMF-12 samples contain a collection of experimentally validated short indels and SVs. These experiments were carried out

after variant discovery using GRIDSS2, Manta, and Strelka.9 Only SVs were used to construct the HMF-12 Mosaic genome because

short indel calls presented inconsistent coordinates between the variant callers mentioned earlier. Then, we analyzed the features of

the reads from each sample finding that all of them are homogeneous regarding sequencing depth, and lengths of reads and inserts.

Thus, we generated one single Mosaic compiling all HMF-12 samples into a canvas, simulated from the GRCh37 reference with me-

dian (Mdn) read length values of 150 bp, and Mdn insert length of 500 bp with a standard deviation (SD) of 125 bp. The read depth of

the normal Mosaic sample was 32x, and the tumor sample was 100x.

The PCAWG-Pilot data originates from different laboratories using different sequencing protocols and machines. Although the

variant discovery and validation pipelines were homogenized, the original experimental conditions made it impossible to compile

all samples into a single Mosaic. To find a consistent number of Mosaic genomes for this data, the following procedure was per-

formed. First, we estimated the insert size median (Mdn) and standard deviation (SD) values for each sample. Using this information,

we performed K-means clustering iteratively trying different cluster numbers to find the most consistent grouping for these samples.

Then, for each configuration, we executed the variant callers and computed their performancemetrics. These results were compared

to their performances on the original samples, proving that the best results were obtained with the three Mosaic representations.

Finally, these three Mosaics were generated with read depths of 40x for the normal samples and 60x for the tumor samples (see

Figures S3 and S4). To select the better suited mapping method for the benchmarking and further evaluate the potential effect of

different read aligners on ONCOLINER recommendations, the assessment process was performed over Mosaic genomes aligned

with three state-of-the-art algorithms in BWA-MEM (v.0.7.17),58 Bowtie2 (v.2.5.3),59 and Hisat2 (v.2.2.1).60 Based on these results

BWA-MEM was chosen for the generation of the final Mosaics (see Figure S16). Overall, the construction process of the Mosaics

from both datasets highlights the importance of careful control of sequencing features such as insert sizes, depths, and even map-

ping strategies to ensure the reliability of the Mosaic genome to represent real variation from the original samples.

In contrast to the Mosaic genome approach, a Tumorized genome provides a benchmark to test the precision of variant discovery.

To overcome data sharing limitations, publicly available read mappings are used as the base. First, they are carefully split into the

tumor-normal sets, ensuring that there are no duplicated reads between them, and that they come from different libraries, mimicking

real scenarios where normal and tumoral samples are processed and sequenced independently. To reach the desired coverage for

the benchmarking genome, balanced random downsampling is applied to maintain the original proportions of the read libraries.

Then, for each variant in the validated VCF, a subset of reads in the tumoral sample is modified to represent the variant. The number

of modified reads depends on the depth of the region where the variant is located and the provided VAF (see Figure S6). Thesemodi-

fied reads are remapped to the original reference genome. Therefore, the Tumorized genome will only contain somatic variants that
e2 Cell Genomics 4, 100639, September 11, 2024
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were inserted into the reads (see Figure S17), eliminating external false positives while avoiding artificial variations in read depth. This

method is implemented in GenomeVariator, a wrapper tool that enhances the functionalities of BAMSurgeon25,26,44 to facilitate the

construction of Tumorized genomes.

The Tumorized genomes (60x Tumoral - 40x Normal) used in this study were constructed from 300x depth Illumina reads from two

real WGS samples from the GIAB project: NA12878 and AshkenazimTrio son HG002,43 mapped to the GRCh37 reference using

BWA-MEM.55 The SNV, indel, and SV-validated variants from the PCAWGConsensus Callsets were simulated into the tumoral sam-

ple. To ensure the Tumorized genome contains a realistic amount of variants, the number of simulated variants of each type was set

to the median number of total variants of the same type in the original samples, discovered by all callers. The number of SVs was set

to double the median and overlapping SVs were excluded to avoid undesired results, prioritizing by SV type (SV type priority order:

translocation, inversion, duplication, and deletion).

Variant caller selection
We originally selected 18 candidate programs for somatic variant identification, covering different calling algorithms, strategies, and

scopes (SNV, indels, and SVs). From these 12 were selected for our study based on usability and efficiency: SvABA5 (version 1.1.0),

Delly6 (version 1.1.6), mutect2 (from GATK7 4.2.6.1), Strelka28 (version 2.9.10), GRIDSS29 (version 2.13.2), MuSE11 (version 2.0),

Manta10 (version 1.6.0), SAGE21 (version 3.0), cgpPindel12 (version 3.9.0), cgpCaVEManWrapper13 (version 1.16.0), Shimmer14

and BRASS22 (version 6.3.4). The other 6 variant callers were excluded due to: excessive execution time, non-standard input require-

ments, not maintained, or with merged germline-somatic variants outputs. The excluded tools were Lancet61 (version 1.1.0),

Platypus15 (version 0.8.1.1), Lumpy16 (version 0.3.1), breakdancer17 (version 1.4.5), SomaticSniper18 (version 1.0.5.0) and Seurat19

(version 2.5).

Assessment module
The ONCOLINER assessment module compares the discovered variants from the results of the input pipelines against the validated

variants. Comparisons depend on the variant types and sizes. In particular, SNVs and small indels are considered true positives if

their chromosome, coordinate, and alternate allele exactly match with a ground truth variant. To consider SVs as true positives their

breakends must be located within a 100 bp window of the breakends of a gold standard SV, and their orientation must be equal.

Conversely, even though large insertions are not present in the Mosaic or Tumorized datasets, their length would be compared

instead of their second breakend. The assessment module counts true positive, false positive, and false negative calls from the eval-

uated pipeline to estimate recall, and precision using the Mosaics and Tumorized genomes, respectively. Then, the F-score is

computed to provide a combined accuracy measure (see Figures S9–S11).

To assess the functional performance of the pipelines, every true positive variant inherits precomputed gene annotations of their

matched gold standard variant. This avoids the need to annotate every incoming test VCF. The same method is used to identify

affected cancer-driver genes. VEP57 was used to annotate SNVs and indels, avoiding annotations without functional phenotypes.

For SV annotation, VEP could not process multiple variants due to their VCF representation. To properly annotate SVs we developed

scripts based on VariantExtractor, where each gene that intersected the span of an SV was added to the corresponding VCF record.

In particular, for inversions and translocations, only the genes that intersected their breakpoints were considered as affected thereby

disrupting the open reading frame of the gene. Finally, the source for the annotation of protein-coding genes to SVs was the Ensembl

GHRCh37 transcriptome (v87),54 and the cancer driver genes were collected from the IntOGen Catalog (release 2023.05.31).2

Improvement module
The ONCOLINER improvement module follows the assessment step and provides recommendations based on the performance

evaluation of the input pipelines and the 12 selected variant callers. Specifically, the recommendations are the best combinations

of variant callers to integrate into the pipeline to maximize performance metrics. The first step is to perform both the union and

the intersection of the pipeline calls with the callers. Then, performance metrics are calculated for these merged results, and com-

binations are sorted based on them. In addition to a list of all possible combinations provided as a CSV file, the interactive GUI shows

the most relevant recommendations. This allows the user to sort them by any of the metrics between recall, precision, F1-score, or

even by the number of affected protein-coding or cancer-driver genes. To improve visualization of the most relevant recommenda-

tions, they are filtered by selecting the one in the top 5% for each performance metric, prioritizing those with the least number of

callers. This follows the rationale that a better recommendation minimizes the cost of adding too many tools to a pipeline and the

effort of going through redundant combinations (see Figure S18).

Harmonizer module
The ONCOLINER harmonizer module follows the improvement step generating recommendations to bring the performance of all

input pipelines closer while maintaining the best possible performance. To achieve this, pipeline heterogeneity is quantified into

two metrics, the Performance Heterogeneity Score (PHS) and Gene Discordance Ratio (GDR). The PHS is estimated from plotting

precision-recall ranges in a Euclidean space, where pipelines are represented by their respective performance coordinates. Consid-

ering pi (recall, precision) as a pipeline point from the set of n pipelines, a centroid (i.e., the gravity center) c is the point that minimizes

the sum of its square distance to all pi. Then, the PHS is computed as the normalized mean of all di. In other words, the PHS is the
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normalized average Euclidean distance from the position of each pipeline to the centroid or the theoretical maximum homogeneity

point. Equation 1 shows the calculation of the PHS.

PHS =

ffiffiffi
2

p

n

Xn

i = 1

di;where di =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðprecall

i � crecallÞ2+�pprecision
i � cprecision

�2q
(Equation 1)

Tomeasure functional impact heterogeneity in variant discovery we created the Gene Discordance Ratio (GDR). The GDR is calcu-

lated as the complement of the proportion between the variant-affected genes found by every pipeline (intersection) over the total

number of variant-affected genes even if only detected by one of the pipelines (union). Hence, a GDR value closer to 1 would imply

a high level of heterogeneity in functional impact between the pipelines. This metric follows Equation 2 whereGi represents the num-

ber of genes affected by the discovered variants from the i-th pipeline.

GDR = 1 � jG1XG2XG3.XGnj
jG1WG2WG3.WGnj (Equation 2)

To achieve comprehensive harmonization, this module first prioritizes the best recommendations to maximize performance for

each of the pipelines. Then, it minimizes PHS and GDR to decrease heterogeneity in accuracy and functional impact. This priority

order avoids optimized homogenization where the distance from a pipeline to the centroid could be 0, but would sometimes worsen

accuracy. As the harmonization module works with the performance enhancements generated by the improvement module, it will

highlight recommendations where heterogeneity decreases, but most importantly where performance improves in all possible ho-

mogenization scenarios. Finally, following the filtering logic of the improvement step, the user visualizes non-redundant recommen-

dations for harmonizing the pipelines that minimize the effort of adding too many variant callers (see Figure S19; Table S2).
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Figure S1: Insert size distributions for all samples from PCAWG-Pilot and HMF-12, related to Fig-
ure 1. A) PCAWG-Pilot insert sizes. Analysis of this distribution allowed us to find a bimodal sample,
which was excluded from the experiments. B) HMF-12 samples show consistent insert size homogeneity.



Figure S2: Coverage distribution in the tumor-normal datasets, related to Figure 1. A) PCAWG-Pilot
samples and B) HMF-12 samples.

Figure S3: Insert size boxplots samples in the HMF-12 and PCAWG-Pilot datasets (see Methods).
A) The HMF-12 samples showcase similar insert sizes where all the average values are between approx-
imately a 50bp range. B) Conversely, there is a high level of heterogeneity between insert sizes for each
sample in the PCAWG-Pilot dataset, with many even showing significantly bigger variances than others.
Mean insert sizes also range from as low as 200 bp to 500 bp.



Figure S4: Insert sizes of sample clusters from the PCAWG-Pilot datasets (see Methods). A) The
three clusters grouping the PCAWG-Pilot samples show low variance for insert sizes, where 0 and 1 range
mostly between 50 bp - 100 bp, and 2 depicts a higher variance concordant with the original samples
included in it. Nevertheless, the values between the first and third quartiles are limited to a range of at
most 150 bp. B) The insert sizes are shown for each sample, where the color indicates the clustering
conformation.



Figure S5: Variant Allele Frequency (VAF) distributions for the PCAWG-Pilot gold standard variants
included in this study, related to Figure 1. A) Variant Allele Frequency (VAF) distributions for SNVs and
B) Indels from the PCAWG-Pilot variant collection included in the mosaic genomes. VAF values shown
here follow a multimodal distribution, not produced by an underlying biological cause but by the criterion
for selecting these variants, which was the certainty of them being true calls.



Figure S6: Variant Allele Frequency Distributions for all variants in the PCAWG-Pilot datasets (in-
cluding samples not used in the study), related to Figure 1. A) shows the VAFs for SNVs following
a multimodal distribution due to the original selection bias of the validation process, with the most values
aggregated around 0.2. B) shows the distribution for indels with a similar trend to the SNVs. Due to the
difficulties in SV VAF estimation, these values were not present in either the PCAWG-Pilot or the HMF-12
Gold Standard VCFs.





Figure S7: Results from benchmarking on the mosaic and tumorized genomes for pipelines from
centers A, B, and C (see Methods). Rows show the specific variant type dissected by subtype and size
range for SVs, and columns showcase performance and functional measures including (in order) Recall,
Precision, F1 Score, and affected genes. The latter metric is additionally broken into two categories by
the color code of protein-coding and cancer-driver genes. The y-axis of each panel shows the respective
measure unit of the metric (proportions for performance and integer counts for genes) and the x-axis
displays the centers. Results for SNVs show how different research centers adapted to their specific
needs. Center B produced the lowest recall value of the three (70%) but did not generate false positives.
Center C shows the best performance in this category with a better recall (88%) while maintaining a
close precision (99%). This recall improvement translates into functional impact, as C also captures the
most gene-altering SNVs. A produced lower recall and precision than C, showing it has an important
margin for improvement. These results attest to the recall-precision trade-off, especially for B, where a
lower detection threshold is likely to produce more false positive calls. Still, a conservative method should
produce better precision at the cost of variant discovery. Short indel calling showed more homogeneous
results for the three centers with lower performances from center A. Although it had a slightly worse
recall than B (A: 68%, B: 69%), it detected more indels that functionally affected genes (A: 148, B: 136)
which evidences that some pipelines may better identify variants in non-repeat regions. Overall SV-
calling heterogeneity does not differ greatly in comparison to the experiments on SNVs and indels, with
exceptions in certain size ranges of specific SV types. Detecting all SVs, A presents the lowest precision
(93%) while C suffers from the lowest recall (78%). In turn, B shows the best results overall achieving
near-perfect precision (100%) while keeping the highest recall (86%) which translates into an F1 score
of 92%. The two most radical examples of differing results are deletions and duplications with lengths in
the 100 - 500 bp range. For these deletions, the maximum difference of recall is only 10%, but precision
varies from 51% for A to a value of 100% for B. C presents the lowest recall (87%) and a low precision
(58%) closer to A (51%). Pipeline B had substantially better results for detecting these deletions with an
F1 score of 89%. Although A shows poor performance on precision, it had the highest recall (87%) which
allows it to capture 11 more deletion-affected genes than the closest center B. For 100-500bp duplications,
no pipeline reports false positives, but recall values differ substantially. Similar to the observations from
deletions, B reported a much bigger recall (96%) compared to A (63%) and to the worst-performing C
(21%). This significantly affected the detection of duplication-affected genes where the difference in the
raw counts from B to C is 43, meaning C was not able to capture most of the functional impact of these
mid-sized duplications. Both centers A and B detected most of the inversions (86% recall) while center
C underperformed in this category, as evidenced by a 9% lower recall (77%). This difference in recall
could be evidenced by C missing 46 genes affected by inversion breakpoints in comparison to A and B.
Nevertheless, the three pipelines proved to be highly precise, shown by values close to 100% precision.
Translocation calling is fairly similar across all centers, but none was achieved with a recall bigger than
78%. Finally, deletions and duplications with lengths above 500bp show homogeneous results, where
differences in recall are consistent with those in detected SV-affected genes.

Table S1: Optimal pipelines generated by PipelineDesigner, related to Figure 4.

Variant type Optimal combination F1-score

SNV [mutect2 (from GATK 4.2.6.1) ∩ Strelka (v22.9.10)] ∪ SAGE (v3.0) 93%
Indel [mutect2 (from GATK 4.2.6.1) ∩ Strelka (v22.9.10)] ∪ SAGE (v3.0) 87%
SV [Delly (v1.1.6) ∩ Manta (v1.6.0)] ∪ GRIDSS (v2.13.2) 93%



Figure S8: VariantExtractor module functionality diagram, related to Figure 4. The figure shows the
functionality of VariantExtractor. VariantExtractor takes input VCF files and consumes VCF Records as
multiple types of variants interpreting them as specific objects keeping all their information fields. One
of the main advantages of this utility is the interpretation of breakends (BND) into comprehensive SV
records with type-specific representations. BNDs are the most common way to represent SVs in short-
read-based variant calling, due to the inherent limitations of this sequencing technology. VariantExtractor
solves this issue by applying homogenization rules to the input BND records thereby removing ambiguity
in the interpretation of these variants. This is especially useful for variants recorded in the bracket notation.
This advantage is shown in the example of the figure. This deletion is represented in multiple ways from
different variant calling pipelines. VariantExtractor standardizes the deletion information from bracket
notations (paired or single), and shorthand notations into a comprehensive representation that can be
used for variant analysis, or to produce a new VCF with a different representation.



Figure S9: Screenshot of the assessment module description section (see Methods). Interactive
results are provided in HTML format. This report is composed of different sections. First, the visualization
of the results is described by enumerating the input pipelines and the benchmarking genomes. As can
be seen in the image, the warning button provides the user with useful information when discrepancies
or lacking information are found in the VCF inputs. The samples used as the gold standard to calculate
precision and recall are also displayed.



Figure S10: Graphic section of the assessment module, showcasing performance metrics (see
Methods). This section displays the results in terms of performance metrics (recall, precision), and true
positive-false positive variant counts, as a cohesive figure that can be exported and used for further pub-
lications by the user. These results can be plotted by variant types in SNVs, Indels, and SVs, broken by
SV types, or further dissected in these categories plus SV size ranges. These options also consistently
modify a table that shows all of these values accordingly, found just below the figure panel. Additionally,
this table showcases the counts for protein-coding and cancer-driver genes affected by true positive vari-
ants. The display can be modified according to the criteria shown in the tabs. The table can be filtered or
sorted according to the column variables.



Figure S11: Graphics of the assessment on individual benchmarking samples (see Methods). The
last panel of this section displays similar figures plotted according to the selected benchmarking dataset,
in this case, the results for precision assessment over only one of the tumorized genomes. This may also
be useful for a hypothetical user who wants to evaluate if using one benchmarking genome over another
impacts the quality of variant calling of their pipelines.



Figure S12: Description of the improvement module (see Methods). To facilitate the rapid improve-
ment of a specific pipeline, the best recommendations according to the F1 score by variant category are
highlighted here.



Figure S13: Graphic results of the improvement solutions (see Methods). The graphical results of
the improvement recommendations are displayed for each one of the individual input pipelines as perfor-
mance figures, showing the baseline performance, the improved value, and the difference in percentage
for recall, precision, and F1-Score. Recommendations can be categorized by variant type, SV type, and
size by choosing one of these options. The user chooses which recommendation is displayed in the result
figures. The results table can be sorted by any criteria between the performance metrics, counts, affected
protein-coding or cancer-driver genes, or even by the number of added variant callers.



Figure S14: Screenshot of the description section for the harmonization tab (see Methods). The
harmonization tab is the last element of the output report and follows a similar structure to the improvement
tab. The description found first describes the top recommendation for harmonizing each type of variant
for the input pipelines according to the lowest Performance Heterogeneity Score (PHS), in addition to
the standard description of the results. For each variant category, the best combinations between the
user pipelines and the recommended callers are shown to allow easy access to the best results of the
harmonization functionality, based on improving accuracy and minimizing heterogeneity.





Figure S15: Graphs of the harmonization options for different variant types, displaying the per-
formance metrics for each harmonized pipeline according to the selected recommendations (see
Methods). The figures show the performance metrics from the baseline assessment and the improve-
ments from the chosen harmonization strategy located in the table. To avoid an uninformative and difficult-
to-visualize display, performance values and counts are shown as the average between the results of
assessing all input pipelines. Two important columns are included in this harmonization tab showing the
PHS and Gene Discordance Ratio (GDR) achieved by each recommendation row, which can also be used
to sort recommendations



Figure S16: Performance of all callers over a mosaic genome mapped with different read aligners,
per variant type (see Methods). Color codes portray the recall values for callers on the samples by
read-mapper software. A) Shows SNVs, B) indels, and C) SVs. Panel A) and B) show that for SNVs and
indels, BWA and Bowtie2 achieved similar sensitivities, but the former allowed callers to further improve
on this performance metric. Panel C) shows how all callers benefit from using BWA for calling SVs since
they rely on supplementary mappings provided by this tool for SV discovery. Panels A), B), and C) show
how multiple tools across all variation types had technical issues when running on Hisat2 alignment inputs
and, thus, are shown to have a zero recall value because they could not be evaluated.



Figure S17: Sizes of the selected variants to produce the tumorized genome, related to Figure 2.
SVs of the shown types and sizes were selected by excluding overlapping variants in this order: translo-
cation, inversion, duplication, and deletion.

Figure S18: User case example for improving the recall of their pipeline for large duplications
and interpreting the recommendations (see Methods). A) First, they choose to plot improvement
recommendations for duplications bigger than 500bp. B) To choose based on the highest recall they sort
them the recommendations in the respective column, using the symbol. C) Panel showing the figures that
appear for each performance metric based on the user filtering. D) Figure downloaded as a PNG image
that the user will use in their reports.



Figure S19: User example for choosing their appropriate harmonization recommendation (see
Methods). A hypothetical user wants to harmonize three input pipelines for SNV discovery, but their use
case is focused on making functionally relevant discovered variants as consistent as possible between
the SNV calling pipelines. Also, he must generate a report to show graphically how this harmonization
process would improve or worsen discovery performance metrics. A) First, this user would begin by filter-
ing the table and choosing only SNVs. B) Next step, they would sort the list by clicking on the arrow on
the GDR header and choose the first recommendation by clicking the button on the left. Panels C) and
D) show how this element would display the figures for this recommendation, and the user would be able
to save the performance figures as individual images. This chosen recommendation shows that although
the main election criterion was decreasing GDR, recall and precision improved or were equal for the input
pipelines. Additionally, they now know which callers they have to add and how to do it, which in this case
would mean adding 4 variant callers, which is not a problem since in this use case the main need is to
decrease inconsistencies in calling of gene-affecting variants.
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