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Dataset descriptions:

Passive Sampler Data Collection: 

Passive samplers (n=55) were deployed during the summer and fall months of 2016 and 2017 in 

the Cape Fear River of North Carolina as previously described.1 This waterway was known to 

possess widespread PFAS contamination during this period as a result of local fluorochemical 

manufacturing and corresponding outfall.2-4 Passive samplers were deployed both upstream and 

downstream of the chemical manufacturer for a period of ~2 weeks and were subsequently 

retrieved and extracted for PFAS profiling using LC-IMS-MS.1, 5 All analyses were performed in 

negative ion mode over the 50-1700 m/z range and MS data was acquired solely in MS1 mode for 

sensitive PFAS monitoring (precursor scan only).    

Pregnancy Data Collection:

Previously, plasma samples from pregnant individuals diagnosed with preeclampsia (PRE) were 

collected on the day of delivery and compared to those from healthy controls for evaluation of 

potential lipidomic biomarkers of condition.6 All study samples were obtained through the 

informed consent of the donors and de-identified prior to their receipt by the authors. Each sample 

was extracted for lipids and assessed using LC-IMS-MS. Data was acquired in both positive and 

negative ion mode over the same 50-1700 m/z range used for characterization of the passive 

samplers. For lipid characterization, both MS1 and MS/MS for monitoring both precursors and 

product ions was performed. Data analysis conducted in the previous study noted several proteins 

and lipid species dysregulated in PRE using targeted data processing of the NTA and hence served 

as an applicable model to evaluate our developed methods. For this analysis, a subset of the 

lipidomic portion of this data (n=115) was reprocessed by collapsing the LC dimension as 
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described and reassessed using the summed IMS-MS screening approach to evaluate signals of 

interest potentially missed in the previous targeted data processing. 
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Workflow Discussion

The summed IMS-MS screening approach has several main steps, as outlined in Figure 2.  

Following LC-IMS-MS analysis for samples of interest, data were imported into Agilent’s IM-MS 

Browser, which allows for interactive browsing and visualization of LC-IMS-MS data. Within this 

software, summed 2D IMS-MS nested spectra or heatmaps can be viewed at different retention 

times, providing a snapshot of the size and mass of molecules occurring at different timepoints. 

These individual nested IMS-MS spectra can be summed together, providing a singular 2D spectra 

and showing the entire molecular profile of the sample over the course of the analysis. While this 

ultimately collapses the LC dimension, by including chromatography in the experimental 

workflow, we are able to retain the LC analytical benefits such as reducing ionization suppression 

and filtering out early and late eluting contaminants. This allows for a more comprehensive picture 

of molecules present and of interest in the samples.7 Additionally, following the screening analysis, 

the collected LC data can be revisited to aid in molecular annotations. 

Following collapse of the LC dimension and IMS-MS summation, the final summed IMS-

MS spectra for each sample are exported in the form of a matrix with drift time and m/z values as 

the corresponding row and column labels and abundances comprising the individual matrix cells. 

These matrices were then imported into R for general data cleaning, model construction, and 

evaluation. The first of these steps was binning the data, which entailed taking the column-wise 

sum for m/z values within 2 Da of each other and the row-wise sum for drift times within 0.5 ms 

of each other. This step was essential to ensure that all samples had consistent coordinates, and 

therefore were readily comparable. Bin sizes were chosen based on instrument precision with the 

goal of features fitting into individual coordinates. However, due to the inherent discretization in 

this binning process, some features might be split between coordinates..  As such, modifying bin 
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size parameters as well as the binning function itself to minimize feature splitting is a possible 

future direction. 

Following binning and other data cleaning steps, classification models were constructed. 

As the number of coordinates greatly outnumbered the samples in the training data (42,036 

coordinates vs. 42 samples for the passive sampler data and 28,499 vs. 87 for the pregnancy data), 

performing coordinate selection prior to building these models was imperative to reduce the risk 

of overfitting. This was achieved by first combining unique m/z and drift time pairs to create 

coordinates, and then applying Lasso logistic regression, which encourages a sparse model by 

imposing a penalty on regression coefficients. Selection with this method was initially performed 

on the entire training dataset, and all coordinates with a nonzero coefficient were retained. 

However, we noticed that the coordinates selected were sensitive to variation in the size of the 

training set, as well as the random seed used. Therefore, to improve the stability of the selected 

coordinates, we opted for a bootstrapped Lasso approach. With this method, 1,000 datasets were 

randomly generated by sampling the training data with replacement and then Lasso regression was 

applied to each dataset. From each analysis, selected coordinates were noted, and a running tallying 

was kept across all iterations. Thus, to be retained for final analysis, a coordinate had to be selected 

at least 200 out of the 1000 runs. This threshold was set to ensure a balance between retaining 

informative coordinates and excluding those less consistently relevant. The training data was then 

subset to only selected coordinates, and classification models were constructed using support 

vector machines and subsequently evaluated. 
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Figure S1: Example sample heatmaps for select A) passive sampler data and B) pregnancy data. Individual 
coordinates are colored based on their respective abundances. Circles highlight coordinates that were selected 
by the bootstrapped Lasso, and a zoomed in example of coordinates within these circles is shown in the upper 
left of each heatmap. 
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m/z bin DT bin observed m/z
RT (if 1-2 

peaks) type annotation/notes

1082-1084 46-46.5 1083.803 precursor no ID

646-648 40-40.5 647.506 fragment neutral loss fragment of any FA from TGs with two 20:4 FAs

466-468 28-28.5 466.336 9.4 precursor LPE O-18:1 M+H

204-206 35.5-36 205.041 12.5 fragment
likely fragment of 621.316 (no ID - also has fragments 215, 223, 271 

and 279)

270-272 20.5-21 270.006 2.7 fragment M+2 of 269.001 (no ID)

214-216 17.5-18 215.127 2.7 fragment
multiple contributors at same RT - 215.127 (high/low energy) and 

215.0907 (high energy); maybe oxidized FAs

478-480 20.5-21 478.332 fragment
neutral loss fragment of any FA from PCs with a 16:0 FA originating 

from a doubly charged lipid

246-248 29.5-30 247.206 6.7 fragment probably polymer fragment

290-292 22-22.5 29.233 4.9 precursor M+1 and M+2 of FA 16:0;O2 (289.2303 - theoretical is 289.2373)

290-292 21.5-22 29.233 4.9 precursor Same as above

528-530 30.5-31 528.394 8.1, 8.5 precursor M+4 of LPC 18:0 M+H (524.374)

360-362 26-26.5 360.362 8.5 precursor in-source fragment of LPC 18:0

360-362 26.5-27 360.362 8.5 precursor Same as above

414-416 26-26.5 414.322 7 precursor m/z match to AC 16:1;O

502-504 29-29.5 502.374 6.8 precursor m/z match to AC 20:1;O3

308-310 39.5-40 309.281 fragment neutral loss fragment M-HG-X for PC O-18:0/X M+Na

1080-1082 42.5-43 1080.803 precursor no ID

848-850 36.5-37 849.29 19.1 precursor M+3 and M+4 of 845.296; maybe SM

L
ip

id
 C

oo
rd

in
at

es

584-586 33-33.5 581.2466 7.3 fragment fragment

m/z bin DT bin observed m/z
RT (if 1-2 

peaks) type annotation/notes
CCS 
(Å2)

448-450 23-23.5 448.954 10.6, 10.9 precursor maybe fragment of PFNS (-C2F4) 173.8

636-638 24-24.5 636.935 7.7 precursor has M-H-CO2 at 592.947 177.9

656-658 24-24.5 656.904 7, 7.5 precursor likely related to 672.897, potentially an oxidation product 181.0

PF
A

S 

886-888 28-28.5

(1) M+2 of 
884.8482 (2) 

886.8469 9.8, 10 precursor
likely dimer of 442.9192 containing Sulfur; also an isobar of 

PFO5DoA and NBP1 dimers 209.7

Table S2:  Coordinate annotations for Lipids and PFAS noted by m/z and drift bins. Annotations are based 
on accurate mass, fragmentation spectra when available, and CCS.

Table S1:  Coordinate annotations for lipids and PFAS noted by m/z and drift time bins. Annotations are 
based on accurate mass, fragmentation spectra when available, and CCS.
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Figure S2: Analysis of passive sampler data with reduced m/z bin size (1 Da and 0.5 ms).  A) Results of a classification 
model using passive sampler data B) Abundance distributions for selected training sample coordinates shown as (m/z range (Da) 
and drift time range (ms)) for the passive sampler data. 
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33 m/z 886

2 m/z bin
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Coordinate 4, Unknown

B) Coordinate Descriptors

PFO5DoA (Dimer)*

Coordinate 4, Unknown*

M+1 Isotope

M+1 Isotope

C14H2F26O14 [M-H]-

Exp. CCS Value

Chemical Formula
Observed m/z 886.8969 ~2 ppm error

233.7 Å2 (0.2% error)
Retention Time 10.05 minutes

Unknown

Exp. CCS Value

Chemical Formula
Observed m/z 886.8557

207.1 Å2

Retention Time 9.8 minutes

Drift bins
(0.5 ms)

m/z bins
(2 m/z)

Figure S3:  Illustrative depiction of coordinate assessment of the passive sampler dataset. A) Coordinate 
binning process for both the mass and drift time dimension. B) Molecular annotators for known PFAS detected 
in passive samplers and suspect coordinates. 
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Figure S4:  Chemical evidence to support 
coordinate annotations as potential PFAS. A) 
Coordinates of this model were observed to 
possess CCS values per mass to charge ratio 
(m/z) consistent with previously known 
PFAS. B) Mass defect values were also in the 
same range as previously logged PFAS 
entries. C) Support for dimer notation as 
retention times between dimers and 
monomers were conserved.   
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