Supplemental Data for: DNA Polymerase η is regulated by competitive mono-ubiquitination and mono-NEDDylation

Natália Cestari Moreno¹⁺, Emilie J. Korchak²⁺, Marcela Teatin Latancia¹, Dana A. D'Orlando¹, Temidayo Adegbenro¹, Irina Bezsonova^{2*}, Roger Woodgate^{1*}, Nicholas W. Ashton^{1*}

¹ Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA

² Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06032, USA

⁺The first two authors contributed equally to this work

* To whom correspondence should be addressed: Irina Bezsonova: Tel: +1 860-679-2769; Email: bezsonova@uchc.edu

Roger Woodgate: Tel: +1 301-435-4040; Email: woodgate@nih.gov

Nicholas W. Ashton: Tel: +1 617-582-9358; Email: nicholas_ashton@dfci.harvard.edu

Present Addresses:

Natália Cestari Moreno, Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA

Nicholas W. Ashton, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 4 Blackfan Street, Boston, MA 02215, USA

This document includes:

Supplemental Materials and Methods Table S1 Figures S1 to S4 References for Supplemental Information

Supplemental Materials and Methods

Dot blot

Recombinant human NEDD8 (R&D Systems #UL-812-500) or ubiquitin (R&D Systems #U-100H-10M) was diluted to 10 μ g μ L⁻¹ in sample buffer (50 mM Tris pH 8.0, 150 mM NaCl and 0.1 mM EDTA) to prepare a stock, then further diluted to concentrations of 2, 1, 0.5, and 0.25 μ g μ L⁻¹. 0.5 μ L of sample was spotted onto a nitrocellulose membrane and allowed to air dry for 30 minutes. Proteins were visualized with a reversible total protein stain (Revert total protein stain, LiCor #926-11011) and imaged on an Odyssey CLX infrared imaging system (Li-Cor) at 700 nM. Membranes were then destained, blocked, and immunoblotted with ubiquitin (E4I2J; Cell Signaling Technology #43124) or NEDD8 antibodies (E19E3; Cell Signaling Technology #2754). Primary antibodies were detected using IRDye 800CW-conjugated antirabbit fluorescent secondary antibodies (Li-Cor) and visualized at 800 nM.

Supplemental Table S1. Expression constructs used in this study

Plasmid	Mammalian/ E. coli	Figure(s)	Source	Addgene #
pCMV6-AN-DDK_ WT POLH (pJRM160)	Mammalian	1B-D, 2A-C, 3B-C, 6C	(1)	221897
pCMV6-AN-DDK_ K682A POLH (pNCM23)	Mammalian	1C	This work	221862
pCMV6-AN-DDK_ K709A POLH (pNCM24)	Mammalian	1C	This work	221863
pCMV6-AN-DDK_ K682A_K709A POLH (pNCM25)	Mammalian	1C	This work	221864
pCMV6-AN-DDK_ K682A_K686A_K694_K709A POLH (4KA) (pNCM26)	Mammalian	1C	This work	221865
pcDNA3.1(+)-N-HA _HA NEDD8 (pNCM18)	Mammalian	1D, 3C	This work	221859
pCMV6-AN-DDK_ WT POLH_ΔGG NEDD8 (pNCM21)	Mammalian	2В	This work	221860
pCMV6-AN-DDK_ D652A POLH (pNWA8)	Mammalian	3B, 3C	This work	222006
pCMV6-AN-HA_ Ubiquitin (pJRM147)	Mammalian	3B	(2)	131258
pEGFP-C1_NLS (pNCM36)	Mammalian	6A	This work	221867
pEGFP-C1_NLS_ WT POLH (pNCM37)	Mammalian	6A	This work	221868
pEGFP-C1_NLS_ WT POLH_∆GG Ubiquitin (pNCM38)	Mammalian	6A	This work	221869

pEGFP-C1_NLS_ WT POLH_AGG NEDD8 (pNCM39)	Mammalian	6A	This work	221870
pEGFP-C1_NLS_ D652A POLH (pNCM40)	Mammalian	6A	This work	221871
pEGFP-C1_NLS_ K682A_K686A_K694_K709A POLH (4KA) (pNCM41)	Mammalian	6A	This work	221872
pEGFP-C1_NLS_ L704A_F707A_F708A POLH (PIP) (pNCM42)	Mammalian	6A	This work	221873
pcDNA3.1(+)-N_DYK_ WT PCNA (pNCM47)	Mammalian	6B	This work	221858
pcDNA3.1(+)-N_DYK_ K164R PCNA (pNCM48)	Mammalian	6B	This work	221874
pcDNA3.1(+)-N_DYK_ K164R PCNA_∆GG Ubiquitin (pNCM49)	Mammalian	6B	This work	221875
pCMV6-AN-HA_ WT POLH (pJRM56)	Mammalian	6B	(3)	201671
pET15b_Pol η UBZ	E. coli	4A-D 5A-B	(4)	-
pET-15b_Ubiquitin	E. coli	4A-D	(5)	-
pET-28b(+)_N-His_NEDD8 (pNCM35)	E. coli	4A-D 5A-B	This work	221866

Supplemental Figures

Figure S1: **Specificity of detection of the NEDD8 antibody**. A dot blot of recombinant human NEDD8 or ubiquitin (0.5 μ L of 2, 1, 0.5, or 0.25 μ g μ L⁻¹ of protein). Membranes were stained to detect total protein, then immunoblotted with antibodies against NEDD8 or ubiquitin.

Figure S2: **The UBZ-binding residues of ubiquitin are conserved in NEDD8**. An alignment of the ubiquitin and NEDD8 primary sequences. The blue residues of ubiquitin are those which have previously been shown to be form the UBZ-binding surface (4). The corresponding residues of NEDD8 are shown in red where these residues are identical or similar. These UBZ-binding and corresponding residues are highlighted on the crystal structures of ubiquitin (PDB:1ubq) (6) or NEDD8 (PDB:1ndd) (7).

Figure S3: The sidechains of Pol η **K694 and K709 do not interact with PCNA**. A published crystal structure of a PIP-box containing Pol η peptide (amino acids 694-712) in complex with PCNA (PDB: 2zvk) (8) revealed that the side chains of K694 and K709 are directed away from the PCNA surface. The PCNA residues highlighted in orange define the PIP-binding universal binding site of PCNA.

Figure S4: A PCNA-ubiquitin chimera mimics mono-ubiquitinated PCNA (**A**) A model of mono-ubiquitinated PCNA in complex with the PIP box (amino acids 694-712) and UBZ (amino acids 625-664) of Pol η . This model was assembled from a crystal structure of mono-ubiquitinated PCNA (PDB: 3tbl) (9), a crystal structure of the Pol η PIP box in complex with PCNA (PDB: 2zvk) (8), and an AlphaFold 3 (10) model of the Pol η UBZ domain bound to ubiquitin. (**B**) An AlphaFold model of the PCNA-ubiquitin chimera in complex with the C-terminus of Pol η (amino acids 634-713)

References

- McIntyre, J., Sobolewska, A., Fedorowicz, M., McLenigan, M.P., Macias, M., Woodgate, R. and Sledziewska-Gojska, E. (2019) DNA polymerase ι is acetylated in response to S_N2 alkylating agents. Sci Rep, 9, 4789.
- Ashton, N.W., Valles, G.J., Jaiswal, N., Bezsonova, I. and Woodgate, R. (2021) DNA polymerase ι interacts with both the TRAF-like and UBL1-2 domains of USP7. J Mol Biol, 433, 166733.
- McIntyre, J., Vidal, A.E., McLenigan, M.P., Bomar, M.G., Curti, E., McDonald, J.P., Plosky,
 B.S., Ohashi, E. and Woodgate, R. (2013) Ubiquitin mediates the physical and functional interaction between human DNA polymerases η and ι. Nucleic Acids Res, 41, 1649-1660.
- 4. Bomar, M.G., Pai, M.T., Tzeng, S.R., Li, S.S. and Zhou, P. (2007) Structure of the ubiquitinbinding zinc finger domain of human DNA Y-polymerase η. EMBO Rep, 8, 247-251.
- Ashton, N.W., Jaiswal, N., Cestari Moreno, N., Semenova, I.V., D'Orlando, D.A., Teatin Latancia, M., McIntyre, J., Woodgate, R. and Bezsonova, I. (2023) A novel interaction between RAD23A/B and Y-family DNA polymerases. J Mol Biol, 168353.
- 6. Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol, 194, 531-544.
- 7. Whitby, F.G., Xia, G., Pickart, C.M. and Hill, C.P. (1998) Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem, 273, 34983-34991.

- Hishiki, A., Hashimoto, H., Hanafusa, T., Kamei, K., Ohashi, E., Shimizu, T., Ohmori, H. and Sato, M. (2009) Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J Biol Chem, 284, 10552-10560.
- 9. Zhang, Z., Zhang, S., Lin, S.H., Wang, X., Wu, L., Lee, E.Y. and Lee, M.Y. (2012) Structure of monoubiquitinated PCNA: implications for DNA polymerase switching and Okazaki fragment maturation. Cell Cycle, 11, 2128-2136.
- Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A.J., Bambrick, J. *et al.* (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630, 493-500.