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Foundation Model | # layers | Emb. dim. | Inter. dim. | LR | WD | warmup steps
EnCodon (80M) 12 1024 2048 le-4 | 1le-2 | 10,000
EnCodon (620M) 12 2048 8192 5e-5 | 1le-2 | 10,000
EnCodon (1B) 18 2048 8192 le-5 | 1e-2 | 10,000
DeCodon (200M) 12 1024 2048 le-4 | 1le-2 | 10,000
DeCodon (1B) 18 2048 8192 le-5 | 1e-2 | 10,000

Supplementary Table 1 | Hyperparameters used for each of our pre-trained codon foundation models (cdsFMs).
Emb. dim.: codon-level embedding dimensionality, Inter. dim.: Intermediate layers’ dimensionality, LR: learning
rate, WD: weight decay
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Supplementary Figure 1: T-SNE visualization of sequence embedding space learned by a) EnCodon
(80M), b) EnCodon (620M), and ¢) EnCodon (1B) where each dot is a sequence and they are colored
by sequence’s organism division (top row) and domain (bottom row).
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Supplementary Figure 2: a) Representation of MLM loss distribution for pre-trained
EnCodon models across taxonomy divisions with mean bars and standard error lines. b) Scatter plots
of KNN Purity scores against numbers of nearest neighbors, using organisms’ Division as clustering
labels. ¢) Spearman correlations bar plot between the top 10 principal components (PC) of the pre-
trained /adapted EnCodons and the hydrophobicity index of codon’s amino acid. d) KNN Purity scores
of the codon embedding space of EnCodons with amino acid labels against the number of neighbors

(K).
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Supplementary Figure 3: a) Masked language modeling confusion matrix of pre-trained EnCodon (1B)
model. We use sequences in the pre-training test split and randomly masked each codon in the sequence
with 0.15 probability. The shown confusion matrix is computed from EnCodon’s prediction on the
masked positions. b) Difference plot of synonymous codon confusion per amino acid is shown for the
purpose of comparing pre-trained EnCodons — EnCodon (80M), EnCodon (620M), and EnCodon(1B).
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Supplementary Figure 4: T-SNE visualization of sequence embedding space learned performing eukary-
otic adaptation on a) EnCodon (80M), b) EnCodon (620M), ¢) EnCodon (1B), d) DeCodon (200M),
and e) DeCodon (1B) where each dot is a sequence and they are colored by sequence’s organism division
(top row) and domain (bottom row).
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Supplementary Figure 5: Codon Embedding Space Analysis for pre-trained EnCodons and
DeCodons: a) PCA visualization of codon embeddings learned by EnCodon (620M) and DeCodon
(150M) colored by Amino Acid. b) Violin plots of two cosine distance between pairwise synonynous
against non-synonymous codons. c¢) Violin plot of two codon distance metrics i.e. cosine distance
in learned embedding space and hamming distance between codon sequences for all possible pairs of
codons annotated with spearman correlation between the two metrics. d) PCA visualization codon
embeddings colored by amino acid’s Hydrophobicity Index. e) Scatter-plot of pair-wise cosine distance
between amino acids and their corresponding PAM250 entry score for pre-trained models. Scatter plot of
KNN purity scores of clusters of synonymous codons in learned codon embedding space by f) EnCodon
and g) DeCodon models against different numbers of neighbors.
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Supplementary Figure 6: Analysis of DeCodon-generated coding sequences: a) PCA visualiza-
tion of EnCodon (1B)Ad‘“s sequence embedding space to compared generated coding sequences with
wild-type and random cohorts in E. coli. b) Accuracy bar plots of start and stop codon grammar
checks on the generated coding sequences for human and E. coli. ¢) Scatter plot of observed codon
usage (in wild-type sequences) against codon usage in generated coding sequences (x-axis) for E. coli.
d) Comparison of the GC content distribution between generated sequences and natural coding se-
quences from E. coli (top) and human (bottom), where each distribution is compared with two sets of
10K randomly generated sequences. €) Louvain clustering performed on 10,000 sequences generated by
DeCodon (1B)49, with a t-SNE visualization colored by cluster ID. f) Functional region prediction of
generated sequences using InterPro and PANTHER, highlighting the top 20 most common Gene Ontol-
ogy (GO) terms as bars representing log-transformed number of annotated sequences colored by their
namespace. g) Fisher’s Exact Test for GO term enrichment across Louvain clusters, with a heatmap
showing significant enrichments (p _adjusted < 0.05) based on the GO namespaces: biological process
(BP), molecular function (MF), and cellular component (CC).
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Supplementary Figure 7: DeCodon organism embedding space: PCA visualization of pre-trained De-
Codon’s organism embedding space for a) DeCodon (200M) and b) DeCodon (1B)

25


https://doi.org/10.1101/2024.10.10.617568
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.10.617568; this version posted October 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ROC Curve of 48K Missense Variants from ClinVar

1 -
0.75
(]
+—
©
o
(V)
=
= 0.50+
wn
(@)
o Foundation Model
g — DeCodon (1BY*%  —— EnCodon (80M)
|t DeCodon (200M)Ad HyenaDNA (large 1M)
—— EnCodon (1B)*@2 ~ —— HyenaDNA (medium 160K)
EnCodon (600M)Ada HyenaDNA (medium 450K)
0.25 - —— EnCodon (80M)Ada HyenaDNA (small 32K)
CalLM (85M) HyenaDNA (tiny 16K)
—— CodonBERT (87M) —— HyenaDNA (tiny 1K)
DNABERT 2 (117M) Nucl. Trans. (2.5B, 1000G)
—— DeCodon (1B) —— Nucl. Trans. (2.5B, MS)
DeCodon (200M) —— Nucl. Trans. (500M, 1000G)
7 —— EnCodon (1B) —— Nucl. Trans. (500M, MS)
01 e —— EnCodon (620M)
4
T T T T T
0 0.25 0.50 0.75 1

False Positive Rate

Supplementary Figure 8: Receiver Operating Characteristic (ROC) curve depicting the True Positive
Rate (TPR, y-axis) versus the False Positive Rate (FPR, x-axis) for the foundation models evaluated
in predicting ClinVar variant pathogenicity. The comparison was standardized by calculating the TPR
and FPR on a common set of 48,000 shared missense variants across all models.
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Supplementary Figure 9: Distribution of missense variant scores for all the models used in the zero-shot
ClinVar benchmark. Missense Variant scores distribution colored by the consequence of the variant where
P/LP and B/LB represents Pathogenic/Likely Pathogenic and Benign /Likely Benign variants. The score
distribution is shown for a) EnCodon (80M), b) EnCodon (620M), ¢) EnCodon (1B), d) DeCodon
(200M), e) DeCodon (1B), f) EnCodon (80M)49? g) EnCodon (620M)49? h) EnCodon (1B)A9e
i) DeCodon (200M)4% | j) DeCodon (1B)49, k) Nucleotide Transformer (2.5B, 1000G), 1) Nucleotide
Transformer (500M, 1000G), m) Nucleotide Transformer (2.5B, MS), n) Nucleotide Transformer (500M,
MS), o) DNABERT 2 (117M), p) HyenaDNA (medium 450K), q) HyenaDNA (large 1M), r) HyenaDNA
(tiny 1K), s) CaLM (85M), and t) CodonBERT (87M).
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Supplementary Figure 11: Relationship between model size (log-scaled number of trainable parameters,
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EnCodon's performance on external test S22A1 synonymous variants
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Supplementary Figure 12: a) 3D structure visualization of KCNJ2 protein from 3 different angles where
critical variants identified by EnCodon (1B) are colored in pink and green. b) Performance of EnCodon
(1B)A9e in abundance prediction for KCNJ2 (left) and SLC22A1 (right) variants in the validation set.
c) Bar plot of Speraman correlations of fine-tuned EnCodon models on the external set of SLC22A1
variants. d) Line plot of computed p-values at different distance cut-offs for KCNJ2 and SLC22A1
proteins.
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Predicted vs. observed abundance of EnCodon models on S22A1 External Test set
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Supplementary Figure 13: Scatter plot of all 6 fine-tuned EnCodon models on the external test set of
SLC22A1 variants. 3 pre-trained (bottom row) and 3 eukaryotic adapted EnCodon models (top row)
were fine-tuned.
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Supplementary Figure 14: a) Barplot of observed gene expression levels of 4 other tested synonymous
variants (2 controls and 2 predicted as pathogenic). b) Immunoblots of FLAG-tagged RRAS and
YWHAG protein variants expressed in HEK293T cells, showing three biological replicates for both
wild-type (Ref) and mutated (Mut) sequences. [S-tubulin signal is used as a loading control. Lollipop
plots showing potential synonymous variants with extremely pathogenic score for ¢) SMARCA4, d)
RET, e) STK11, and f) SRC.
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Version | # Variants | # P/LP | # B/LB | # VUS
v0.1 76,051 27,760 48,291 0
v0.2 1,120,127 81,465 98,755 939,907

Supplementary Table 2 | Summary statistics of the different versions of the preprocessed ClinVar dataset. P/LP:
Pathogenic/Likely Pathogenic; B/LB: Benign/Likely Benign; VUS: Variant of Uncertain Significance.
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HGVS | Gene PHRED | Prediction
NM 006412.4(AGPAT2):c.702C>T AGPAT?2 | 0.034 -3.207 (pathogenic)
NM 006270.5(RRAS):c.333C>T RRAS 1.505 -3.057 (pathogenic)
NM_002872.5(RAC2):c.501C~T RAC2 | 0.069 "2.928 (pathogenic)
NM 012479.4(YWHAG):c.564C>T YWHAG | 0.295 -2.667 (pathogenic)
NM_001317778.2(SFTPC):c.228G~C | SFTPC | 0.012 0.097 (benign)
NM_000717.5(CA4):c.492G~A CA4 0.061 0.000 (benign)

Supplementary Table 3 | Nominated synonymous variants, including detailed PHRED scores and predictions
from our codon-based model (showing pathogenicity scores and corresponding predicted labels)
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